1887

Chapter 7 : Topological Behavior of Plasmid DNA

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Topological Behavior of Plasmid DNA, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap07-2.gif

Abstract:

DNA topology is a critical factor in essentially all chromosomal processes, including DNA replication, RNA transcription, homologous recombination, site-specific recombination, DNA repair, and integration of the abundant and mechanistically distinct forms of transposable elements. Plasmids can be invaluable tools to define the dynamic mechanisms of proteins that shape DNA, organize chromosome structure, and channel chromosome movement inside living cells. The advantages of plasmids include their ease of isolation and the ability to quantitatively measure DNA knots, DNA catenation, hemi-catenation between two DNA molecules, and positive or negative supercoils in purified DNA populations. Under ideal conditions, and results can be compared to define the complex mechanism of enzymes that move along and change DNA chemistry in living cells. Many techniques that can be easily done with plasmids are not feasible for the massive chromosome that carries most of the genetic information in or . Whereas a large fraction of contemporary chromosomal “philosophy” is based on extrapolation of results from small plasmids such as pBR322 to the 4.6-Mb bacterial chromosome, the comparison is not always valid. One aim of this article is to explain how results derived from small plasmids can be misleading for understanding and interpreting the DNA structure of the large bacterial chromosome.

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014

Key Concept Ranking

Chromosomal DNA
0.49002078
Type IA Topoisomerase
0.43284976
0.49002078
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The simplest knots (a) and catenanes (b). DNA molecules are capable of adopting these and many more complex topological states. doi:10.1128/microbiolspec.PLAS-0036-2014.f1

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Diagram of closed circular DNA. The linking number, of the complementary strands is 18. doi:10.1128/microbiolspec.PLAS-0036-2014.f2

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Typical simulated conformations of supercoiled DNA 4.4 kb in length. The conformations correspond to a DNA superhelix density of (a) –0.030 and (b) –0.060. doi:10.1128/microbiolspec.PLAS-0036-2014.f3

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Electrophoretic separation of topoisomers of pUC19 DNA. The mixture of topoisomers covering the range of Δ from 0 to –8 was electrophoresed from a single well in 1% agarose that was run from top to bottom. The topoisomer with Δ = 0 has the lowest mobility: it moves slightly slower than the open circular form (OC). The value of (–Δ) for each topoisomer is shown. doi:10.1128/microbiolspec.PLAS-0036-2014.f4

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Separation of pUC19 DNA topoisomers by two-dimensional gel electrophoresis. Topoisomers 1 to 4 are positively supercoiled; the rest have negative supercoiling. After electrophoresis in the first direction, from top to bottom, the gel was saturated with ligand intercalating into the double helix. Upon electrophoresis from left to right in the second direction, the 2nd and 13th topoisomers turned out to migrate near the relaxed position in the second dimension. The spot in the top-left corner corresponds to the open circular form (OC); the spot near the middle of the gel corresponds to linear DNA (L). doi:10.1128/microbiolspec.PLAS-0036-2014.f5

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

High-resolution gel electrophoresis of knotted forms of plasmid DNA that was run from left to right. Knot types are described in Fig. 1 (see reference ). Reproduced from the with permission from Elsevier. doi:10.1128/microbiolspec.PLAS-0036-2014.f6

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Alternative DNA structures that are stabilized by negative supercoiling. doi:10.1128/microbiolspec.PLAS-0036-2014.f7

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Two-dimensional gel showing the transition from B- to left-handed Z-DNA in plasmid DNA. This research was originally published in Kang DS, Wells RD. 1985. B-Z DNA junctions contain few, if any, nonpaired bases at physiological superhelical densities. 7783–7790. © the American Society for Biochemistry and Molecular Biology. doi:10.1128/microbiolspec.PLAS-0036-2014.f8

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Conversion of interwound negative supercoils into catenanes linked by site-specific recombination. EM reprinted from Spergler SJ, Stasiak A, Cozzarelli NR. 1985. The stereostructure of knots and catenanes produced by phage lambda integrative recombination: implications for mechanism and DNA structure. 325–334 with permission from Elsevier. doi:10.1128/microbiolspec.PLAS-0036-2014.f9

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Alternative RNA-DNA structures that contribute to constrained supercoiling in a plasmid containing a fragment of the chicken IgA immunoglobulin switch region during transcription. The R-loop structure shown in (A) results in a displaced strand of DNA that constrains a Δ of about +1 for every 10 bp of RNA/DNA hybrid. (B) shows the structure of an intermolecular triplex in which Hoogsteen base pairing occurs in the major groove of the DNA strand (see reference ). doi:10.1128/microbiolspec.PLAS-0036-2014.f10

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Proposed mechanism for stable RNA-DNA hybrids that can stimulate repeat instability. Transcription of DNA regions containing CG-rich trinucleotide repeats (red) favors formation of stable RNA-DNA hybrids. The displaced nontemplate DNA strand can adopt non-B DNA structures, such as CTG or CAG hairpins. The unpaired regions of the nontemplate strand are reactive to bisulfite modification. Reprinted from reference with permission from the National Academy of Sciences. doi:10.1128/microbiolspec.PLAS-0036-2014.f11

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Replication intermediates identified in plasmid replication systems. (A) Replication initiated at a unique position leads to dual forms that move toward the terminus of replication. (B) Introduction of positive supercoils leads to replication fork reversal and formation of a four-way junction. (C) Negative supercoiling, which is generated by gyrase ahead of the fork, can be converted into precatenanes (D), which become catenanes (E) upon completion of DNA synthesis. (F, G) Topoisomerase activity in the replicated region can lead to complex knots. doi:10.1128/microbiolspec.PLAS-0036-2014.f12

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Model of replication repair. Strand displacement and branch migration create an alternative replication template allowing replication to bypass a lesion (X). Reproduced from reference with permission from Elsevier. doi:10.1128/microbiolspec.PLAS-0036-2014.f13

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Replication fork reversal (see Fig. 12 ). Reprinted from reference with permission from the American Association for the Advancement of Science. doi:10.1128/microbiolspec.PLAS-0036-2014.f14

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

Resolution of catenane (CATS) and precatenane links (RI) in plasmid DNA (see Fig. 12 ). Reprinted from reference with permission from Elsevier. doi:10.1128/microbiolspec.PLAS-0036-2014.f15

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 16
Figure 16

Schematic models for generating hemicatenanes during DNA replication. Three pathways to yield hemicatenane structures are shown. (Left) Lagging strand synthesis encounters a damage site, and the pairing of the lagging strand with the complementary leading strand can produce a pseudo-double Holliday structure. Dissolution of the pseudo-double Holliday structure leads to hemicatenanes and allows replication to bypass the damage site. (Center) Convergence of two replication forks at the final stage of replication can lead to either a single-strand catenane or hemicatenane conjoining two replicated duplexes. Both single-strand catenanes and hemicatenanes can be resolved by a type IA topoisomerase, allowing the segregation of the daughter chromosomes. (Right). Convergent branch migration of a double Holliday junction can generate a hemicatenane. Reproduced from reference with permission from the National Academy of Sciences. doi:10.1128/microbiolspec.PLAS-0036-2014.f16

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17
Figure 17

Knotting of replication bubbles . Reprinted from reference with permission from Wiley. doi:10.1128/microbiolspec.PLAS-0036-2014.f17

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818982.chap7
1. Vinograd J,, Lebowitz J,, Radloff R,, Watson R,, Laipis P . 1965. The twisted circular form of polyoma viral DNA. Proc Natl Acad Sci USA 53 : 11041111.[PubMed] [CrossRef]
2. Bauer WR,, Crick FHC,, White JH . 1980. Supercoiled DNA. Sci Am 243 : 100113.[PubMed]
3. Calugareanu G . 1961. Sur las classes d’isotopie des noeuds tridimensionnels et leurs invariants. Czech Math J 11 : 588625.
4. White JH . 1969. Self-linking and the Gauss integral in higher dimensions. Am J Math 91 : 693728.[CrossRef]
5. Fuller FB . 1971. The writhing number of a space curve. Proc Natl Acad Sci USA 68 : 815819.[PubMed] [CrossRef]
6. Brown PO,, Cozzarelli NR . 1979. A sign inversion mechanism for enzymatic supercoiling of DNA. Science 206 : 10811083.[PubMed] [CrossRef]
7. Vologodskii AV,, Cozzarelli NR . 1994. Conformational and thermodynamic properties of supercoiled DNA. Annu Rev Biophys Biomol Struct 23 : 609643.[PubMed] [CrossRef]
8. Laundon CH,, Griffith JD . 1988. Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell 52 : 545549.[PubMed] [CrossRef]
9. Adrian M,, Wahli W,, Stasiak AZ,, Stasiak A,, Dubochet J . 1990. Direct visualization of supercoiled DNA molecules in solution. EMBO J 9 : 45514554.[PubMed]
10. Boles TC,, White JH,, Cozzarelli NR . 1990. Structure of plectonemically supercoiled DNA. J Mol Biol 213 : 931951.[PubMed] [CrossRef]
11. Vologodskii A,, Cozzarelli NR . 1994. Supercoiling, knotting, looping and other large-scale conformational properties of DNA. Curr Opin Struct Biol 4 : 372375.[CrossRef]
12. Bednar J,, Furrer P,, Stasiak A,, Dubochet J,, Egelman EH,, Bates AD . 1994. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo . J Mol Biol 235 : 825847.[PubMed] [CrossRef]
13. Lyubchenko YL,, Shlyakhtenko LS . 1997. Visualization of supercoiled DNA with atomic force microscopy in situ . Proc Natl Acad Sci USA 94 : 496501.[PubMed] [CrossRef]
14. Rybenkov VV,, Vologodskii AV,, Cozzarelli NR . 1997. The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. J Mol Biol 267 : 299311.[PubMed] [CrossRef]
15. Vologodskii AV,, Levene SD,, Klenin KV,, Frank-Kamenetskii M,, Cozzarelli NR . 1992. Conformational and thermodynamic properties of supercoiled DNA. J Mol Biol 227 : 12241243.[PubMed] [CrossRef]
16. Keller W . 1975. Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc Natl Acad Sci USA 72 : 48764880.[PubMed] [CrossRef]
17. Lee C-H,, Mizusawa H,, Kakefuda T . 1981. Unwinding of double-stranded DNA helix by dehydration. Proc Natl Acad Sci USA 78 : 28382842.[PubMed] [CrossRef]
18. Wang JC, . 1986. Circular DNA, p 225260. In Semlyen JA (ed), Cyclic Polymers. Elsevier, Essex, England. [CrossRef]
19. Vologodskii A . 1998. Circular DNA. Mol Biol 35 : 130.[PubMed] [CrossRef]
20. Wasserman SA,, Cozzarelli NR . 1986. Biochemical topology: application to DNA recombination and replication. Science 232 : 951960.[PubMed] [CrossRef]
21. Vologodskii AV,, Crisona NJ,, Laurie B,, Pieranski P,, Katritch V,, Dubochet J,, Stasiak A . 1998. Sedimentation and electrophoretic migration of DNA knots and catenanes. J Mol Biol 278 : 13.[PubMed] [CrossRef]
22. Cook DN,, Ma D,, Pon NG,, Hearst JE . 1992. Dynamics of DNA supercoiling by transcription in Escherichia coli . Proc Natl Acad Sci USA 89 : 1060310607.[PubMed] [CrossRef]
23. DiNardo S,, Voelkel KA,, Sternglanz R,, Reynolds AE,, Wright A . 1982. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31 : 4351.[PubMed] [CrossRef]
24. Wang JC . 1996. DNA topoisomerases. Annu Rev Biochem 65 : 635692.[PubMed] [CrossRef]
25. Stewart L,, Redinbo MR,, Qiu X,, Hol WGJ,, Champoux JJ . 1998. A model for the mechanism of human topoisomerase I. Science 279 : 15341541.[PubMed] [CrossRef]
26. Krasnow MA,, Cozzarelli NR . 1983. Site-specific relaxation and recombination by the Tn3 resolvase: recognition of the DNA path between oriented res sites. Cell 32 : 13131324.[PubMed] [CrossRef]
27. Johnson RC,, Bruist MF . 1989. Intermediates in hin-mediated DNA inversion: a role for Fis and the recombinational enhancer in the strand exchange reaction. EMBO J 8 : 15811590.[PubMed]
28. Kanaar R,, Klippel A,, Shekhtman E,, Dungan JM,, Kahmann R,, Cozzarelli NR . 1990. Processive recombination by the phage Mu Gin system: implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 62 : 353366.[PubMed] [CrossRef]
29. Perals K,, Capiaux H,, Vincourt J-B,, Louarn J-M,, Sherratt DJ,, Cornet F . 2001. Interplay between recombination, cell division and chromosome structure during chromosome dimer resolution in Escherichia coli . Mol. Microbiol. 39 : 904913.[PubMed] [CrossRef]
30. Higgins NP,, Peebles CL,, Sugino A,, Cozzarelli NR . 1978. Purification of the subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. Proc Natl Acad Sci USA 75 : 17731777.[PubMed] [CrossRef]
31. Cozzarelli NR . 1980. DNA gyrase and the supercoiling of DNA. Science 207 : 953960.[PubMed] [CrossRef]
32. Kampranis SC,, Maxwell A . 1998. The DNA gyrase-quinolone complex. ATP hydrolysis and the mechanism of DNA cleavage. J Biol Chem 273 : 2261522626.[PubMed] [CrossRef]
33. Hiasa H,, Yousef DO,, Marians KJ . 1996. DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex. J Biol Chem 271 : 2642426429.[PubMed] [CrossRef]
34. Hiasa H,, Marians KJ . 1994. Topoisomerase III, but not topoisomerase I, can support nascent chain elongation during theta-type DNA replication. J Biol Chem 269 : 3265532659.[PubMed]
35. Schofield M,, Agbunag R,, Miller J . 1992. DNA inversions between short inverted repeats in Escherichia coli . Genetics 132 : 295302.[PubMed]
36. Gangloff S,, McDonald JP,, Bendixen C,, Arthur L,, Rothstein R . 1994. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14 : 83918398.[PubMed]
37. Kim RA,, Caron PR,, Wang JC . 1995. Effects of yeast DNA topoisomerase III on telomere structure. Proc Natl Acad Sci USA 92 : 26672671.[PubMed] [CrossRef]
38. Kato J,, Nishimura Y,, Imamura R,, Niki H,, Hiraga S,, Suzuki H . 1990. New topoisomerase essential for chromosome segregation in E. coli . Cell 63 : 393404.[PubMed] [CrossRef]
39. Luttinger AL,, Springer AL,, Schmid MB . 1991. A cluster of genes that affects nucleoid segregation in Salmonella typhimurium . New Biol 3 : 687697.[PubMed]
40. Crisona NJ,, Strick TR,, Bensimon D,, Croquette V,, Cozzarelli NR . 2000. Preferential relaxation of positively supercoiled DNA by Escherichia coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev 14 : 28812892.[PubMed] [CrossRef]
41. Khodursky AB,, Zechiedrich EL,, Cozzarelli NR . 1995. Topoisomerase IV is a target of quinolones in Escherichia coli . Proc Natl Acad Sci USA 92 : 1180111805.[PubMed] [CrossRef]
42. Hardy CD,, Cozzarelli NR . 2003. Alteration of Escherichia coli topoisomerase IV to novobiocin resistance. Antimicrob Agents Chemother 47 : 941947.[CrossRef]
43. Yamamoto N,, Droffner ML . 1985. Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium . Proc Natl Acad Sci USA 82 : 20772081.[CrossRef]
44. Dorman CJ,, Barr GC,, Bhriain NN,, Higgins CF . 1988. DNA supercoiling and the anaerobic growth phase regulation of tonB gene expression. J Bacteriol 170 : 28162826.[PubMed]
45. Menzel R,, Gellert M . 1983. Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34 : 105113.[PubMed] [CrossRef]
46. Zechiedrich EL,, Khodursky AB,, Bachellier S,, Schneider R,, Chen D,, Lilley DM,, Cozzarelli NR . 2000. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli . J Biol Chem 275 : 81038113.[PubMed] [CrossRef]
47. Khodursky AB,, Peter BJ,, Schmid MB,, DeRisi J,, Botstein D,, Brown PO,, Cozzarelli NR . 2000. Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. Proc Natl Acad Sci USA 97 : 94199424.[PubMed] [CrossRef]
48. Rovinskiy N,, Agbleke AA,, Chesnokova O,, Pang Z,, Higgins NP . 2012. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet 8 : e1002845. doi:10.1371/journal.pgen.1002845. [PubMed] [CrossRef]
49. Broccoli S,, Phoenix P,, Drolet M . 2000. Isolation of the topB gene encoding DNA topoisomerase III as a multicopy suppressor of topA null mutations in Escherichia coli . Mol Microbiol 35 : 5868.[PubMed] [CrossRef]
50. Hsieh LS,, Burger RM,, Drlica K . 1991. Bacterial DNA supercoiling and ATP/ADP. Changes associated with a transition to anaerobic growth. J Mol Biol 219 : 443450.[PubMed] [CrossRef]
51. Hatfield GW,, Benham CJ . 2002. DNA topology-mediated control of global gene expression in Escherichia coli . Annu Rev Genet 36 : 175203.[PubMed] [CrossRef]
52. Snoep JL,, van der Weijden CC,, Andersen HW,, Westerhoff HV,, Jensen PR . 2002. DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase. Eur J Biochem 269 : 16621669.[PubMed] [CrossRef]
53. Liu LF,, Wang JC . 1987. Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84 : 70247027.[PubMed] [CrossRef]
54. Wu H-Y,, Shyy S,, Wang JC,, Liu LF . 1988. Transcription generates positively and negatively supercoiled domains in the template. Cell 53 : 433440.[PubMed] [CrossRef]
55. Booker BM,, Deng S,, Higgins NP . 2010. DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium. Mol Microbiol 78 : 13481364.[PubMed] [CrossRef]
56. Deng S,, Stein RA,, Higgins NP . 2004. Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. Proc Natl Acad Sci USA 101 : 33983403.[PubMed] [CrossRef]
57. Deng S,, Stein RA,, Higgins NP . 2005. Organization of supercoil domains and their reorganization by transcription. Mol Microbiol 57 : 15111521.[PubMed] [CrossRef]
58. Champion K,, Higgins NP . 2007. Growth rate toxicity phenotypes and homeostatic supercoil control differentiate Escherichia coli from Salmonella enterica serovar Typhimurium. J Bacteriol 189 : 58395849.[PubMed] [CrossRef]
59. Tretter EM,, Berger JM . 2012. Mechanisms for defining supercoiling set point of DNA gyrase orthologs. I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity. J Biol Chem 287 : 1863618644.[PubMed] [CrossRef]
60. Higgins NP . 2014. RNA polymerase: chromosome domain boundary maker and regulator of supercoil density. Curr Opion Microbiol 22 : 138143.[PubMed] [CrossRef]
61. Depew RE,, Wang JC . 1975. Conformational fluctuations of DNA helix. Proc Natl Acad Sci USA 72 : 42754279.[PubMed] [CrossRef]
62. Mirkin SM,, Lyamichev VI,, Kumarev VP,, Kobzev VF,, Nosikov VV,, Vologodskii AV . 1987. The energetics of the B-Z transition in DNA. J Biomol Struct Dyn 5 : 7988.[PubMed] [CrossRef]
63. Kang DS,, Wells RD . 1985. B-Z DNA junctions contain few, if any, nonpaired bases at physiological superhelical densities. J Biol Chem 260 : 77837790.[PubMed]
64. Klysik J,, Stirdivant SM,, Wells RD . 1982. Left-handed DNA. Cloning, characterization, and instability of inserts containing different lengths of (dC-dG) in Escherichia coli . J Biol Chem 257 : 1015210158.[PubMed]
65. Peck LJ,, Nordheim A,, Rich A,, Wang JC . 1982. Flipping of cloned d(pCpG)n.d(pCpG)n DNA sequences from right- to left-handed helical structure by salt, Co(III), or negative supercoiling. Proc Natl Acad Sci USA 79 : 45604564.[PubMed] [CrossRef]
66. Murchie AIH,, Lilley DMJ . 1987. The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion. Nucleic Acids Res 15 : 96419654.[PubMed] [CrossRef]
67. McClellan JA,, Boublikova P,, Palecek E,, Lilley DM . 1990. Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc Natl Acad Sci USA 87 : 83738377.[PubMed] [CrossRef]
68. Dayn A,, Malkhosyan S,, Duzhy D,, Lyamichev V,, Panchenko Y,, Mirkin S . 1991. Formation of (dA-dT) n cruciforms in Escherichia coli cells under different environmental conditions. J Bacteriol 173 : 26582664.[PubMed]
69. Chalker AF,, Leach DR,, Lloyd RG . 1988. Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome. Gene 71 : 201205.[PubMed] [CrossRef]
70. Connelly JC,, Leach DR . 1996. The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes Cells 1 : 285291.[PubMed] [CrossRef]
71. Leach D,, Lindsey J,, Okely E . 1987. Genome interactions which influence DNA palindrome mediated instability and inviability in Escherichia coli . J Cell Sci 7 : 3340.[PubMed] [CrossRef]
72. Leach DR,, Okely EA,, Pinder DJ . 1997. Repair by recombination of DNA containing a palindromic sequence. Mol Microbiol 26 : 597606.[PubMed] [CrossRef]
73. Lyamichev VI,, Mirkin SM,, Frank-Kamenetskii MD . 1986. Structures of homopurine-homopyrimidine tract in superhelical DNA. J Biomol Struct Dyn 3 : 667669.[PubMed] [CrossRef]
74. Mirkin SM,, Frank-Kamenetskii MD . 1994. H-DNA and related structures. Annu Rev Biophys Biomol Struct 23 : 541576.[PubMed] [CrossRef]
75. Frank-Kamenetskii MD,, Mirkin SM . 1995. Triplex DNA structures. Annu Rev Biochem 64 : 6596.[PubMed] [CrossRef]
76. Jinek M,, Chylinski K,, Fonfara I,, Hauer M,, Doudna JA,, Charpentier E . 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 : 816821.[PubMed] [CrossRef]
77. Vasquez KM,, Wilson JH . 1998. Triplex-directed modification of genes and gene activity. Trends Biochem Sci 23 : 49.[PubMed] [CrossRef]
78. Trigueros S,, Tran T,, Sorto N,, Newmark J,, Colloms SD,, Sherratt DJ,, Tolmasky ME . 2009. mwr Xer site-specific recombination is hypersensitive to DNA supercoiling. Nucleic Acids Res 37 : 35803587.[PubMed] [CrossRef]
79. Benjamin KR,, Abola AP,, Kanaar R,, Cozzarelli NR . 1996. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. J Mol Biol 256 : 5065.[PubMed] [CrossRef]
80. Higgins NP,, Yang X,, Fu Q,, Roth JR . 1996. Surveying a supercoil domain by using the gd resolution system in Salmonella typhimurium . J Bacteriol 178 : 28252835.[PubMed]
81. Stein R,, Deng S,, Higgins NP . 2005. Measuring chromosome dynamics on different timescales using resolvases with varying half-lives. Mol Microbiol 56 : 10491061.[PubMed] [CrossRef]
82. Vinograd J,, Lebowitz J . 1966. Physical and topological properties of circular DNA. J Gen Phys 49 : 103125.[PubMed] [CrossRef]
83. Luger K,, Mader AW,, Richmond RK . 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389 : 251260.[PubMed] [CrossRef]
84. Pettijohn DE,, Pfenninger O . 1980. Supercoils in prokaryotic DNA restrained in vivo . Proc Natl Acad Sci USA 77 : 13311335.[PubMed] [CrossRef]
85. Bliska JB,, Cozzarelli NR . 1987. Use of site-specific recombination as a probe of DNA structure and metabolism in vivo . J Mol Biol 194 : 205218.[PubMed] [CrossRef]
86. Jaworski A,, Higgins NP,, Wells RD,, Zacharias W . 1991. Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo . J Biol Chem 266 : 25762581.[PubMed]
87. Rajagopalan M,, Rahmouni AR,, Wells RD . 1990. Flanking AT-rich tracts cause a structural distortion in Z-DNA in plasmids. J Biol Chem 265 : 1729417299.[PubMed]
88. Jaworski A,, Hsieh W-T,, Blaho JA,, Larson JE,, Wells RD . 1987. Left handed DNA in vivo . Science 238 : 773777.[PubMed] [CrossRef]
89. Zacharias W,, Jaworski A,, Larson JE,, Wells RD . 1988. The B- to Z-DNA equilibrium in vivo is perturbed by biological processes. Proc Natl Acad Sci USA 85 : 70697073.[PubMed] [CrossRef]
90. Blattner FR,, Plunkett G,, Bloch CA,, Perna NT,, Burland V,, Riley M,, Collado-Vides J,, Glasner JD,, Rode CK,, Mayhew GF,, Gregor J,, Davis NW,, Kirkpatrick HA,, Goeden MA,, Rose DJ,, Mau B,, Shao Y . 1997. The complete genome sequence of Escherichia coli K-12. Science 277 : 14531474.[PubMed] [CrossRef]
91. Skarstad K,, Steen HB,, Boye E . 1983. Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry. J Bacteriol 154 : 656662.[PubMed]
92. Skarstad K,, Steen HB,, Boye E . 1985. Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations. J Bacteriol 163 : 661668.[PubMed]
93. Johnson RC,, Johnson LM,, Schmidt JW,, Gardner JF, . 2005. The major nucleoid proteins in the structure and function of the E. coli chromosome, p 65132. In Higgins NP (ed), The Bacterial Chromosome. ASM Press, Washington, DC.
94. Dillon SC,, Dorman CJ . 2010. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8 : 185195.[PubMed] [CrossRef]
95. Gamper HB,, Hearst JE . 1982. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell 29 : 8190.[PubMed] [CrossRef]
96. Drlica K,, Rouviere-Yaniv J . 1987. Histonelike proteins of bacteria. Microbiol Rev 51 : 301319.[PubMed]
97. Claret L,, Rouviere-Yaniv J . 1996. Regulation of HU alpha and HU beta by CRP and Fis in Excherichia coli . J Mol Biol 263 : 126139.[PubMed] [CrossRef]
98. Claret L,, Rouviere-Yaniv J . 1997. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J Mol Biol 273 : 93104.[PubMed] [CrossRef]
99. Ali Azam TA,, Iwata A,, Nishimura A,, Ueda S,, Ishihama A . 1999. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181 : 63616370.[PubMed]
100. Huisman O,, Faelen M,, Girard D,, Jaffe A,, Toussaint A,, Rouviere-Yaniv J . 1989. Multiple defects in Escherichia coli mutants lacking HU protein. J Bacteriol 171 : 37043712.[PubMed]
101. Hillyard DR,, Edlund M,, Hughes KT,, Marsh M,, Higgins NP . 1990. Subunit-specific phenotypes of Salmonella typhimurium HU mutants. J Bacteriol 172 : 54025407.[PubMed]
102. Broyles SS,, Pettijohn DE . 1986. Interaction of the Escherichia coli HU protein with DNA: evidence for the formation of nucleosome-like structures with altered DNA helical pitch. J Mol Biol 187 : 4760.[PubMed] [CrossRef]
103. Hodges-Garcia Y,, Hagerman PJ,, Pettijohn DE . 1989. DNA ring closure mediated by protein HU. J Biol Chem 264 : 1462114623.[PubMed]
104. Boubrik F,, Rouviere-Yaniv J . 1995. Increased sensitivity to gamma irradiation in bacterial lacking protein HU. Proc Natl Acad Sci USA 92 : 39583962.[PubMed] [CrossRef]
105. Goodrich JA,, Schwartz ML,, McClure WR . 1990. Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). Nucleic Acids Res 17 : 49935000.[PubMed] [CrossRef]
106. Higgins NP,, Collier DA,, Kilpatrick MW,, Krause HM . 1989. Supercoiling and integration host factor change the DNA conformation and alter the flow of convergent transcription in phage Mu. J Biol Chem 264 : 30353042.[PubMed]
107. Thompson RJ,, Mosig G . 1988. Integration host factor (IHF) represses a Chlamydomonas chloroplast promoter in E. coli . Nucleic Acids Res 16 : 33133326.[PubMed] [CrossRef]
108. Rice PA,, Yang S,, Mizuuchi K,, Nash HA . 1996. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87 : 12951306.[PubMed] [CrossRef]
109. Hillisch A,, Lorenz M,, Diekmann S . 2001. Recent advances in FRET: distance determination in protein-DNA complexes. Curr Opin Struct Biol 11 : 201207.[PubMed] [CrossRef]
110. Arfin SM,, Long AD,, Ito ET,, Tolleri L,, Riehle MM,, Paegle ES,, Hatfield GW . 2000. Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J Biol Chem 275 : 2967229684.[PubMed] [CrossRef]
111. Ali BM,, Amit R,, Braslavsky I,, Oppenheim BA,, Gileadi O,, Stavans J . 2001. Compaction of single DNA molecules induced by binding of integration host factor (IHF). Proc Natl Acad Sci USA 98 : 1065810663.[PubMed] [CrossRef]
112. Ball CA,, Osuna R,, Ferguson KC,, Johnson RC . 1992. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli . J Bacteriol 174 : 80438056.[PubMed]
113. Hirvonen CA,, Ross W,, Wozniak CE,, Marasco E,, Anthony JR,, Aiyar SE,, Newburn VH,, Gourse RL . 2001. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli . J Bacteriol 183 : 63056314.[PubMed] [CrossRef]
114. Skoko D,, Yoo D,, Bai H,, Schnurr B,, Yan J,, McLeod SM,, Marko JF,, Johnson RC . 2006. Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis. J Mol Biol 364 : 777798.[PubMed] [CrossRef]
115. Falconi M,, Gualtieri MT,, La Teana A,, Losso MA,, Pon CL . 1988. Proteins from the prokaryotic nucleoid: primary and quaternary structure of the 15kD Escherichia coli DNA binding protein H-NS. Mol Microbiol 2 : 323329.[PubMed] [CrossRef]
116. Williams RM,, Rimsky S,, Buc H . 1996. Probing the structure, function, and interactions of Escheerichia coli H-NS and StpA proteins by using dominant negative derivatives. J Bacteriol 178 : 43354343.[PubMed]
117. Atlung T,, Ingmer H . 1997. H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24 : 717.[PubMed] [CrossRef]
118. Spurio R,, Falconi M,, Brandi A,, Pon CL,, Gualerzi CO . 1997. The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J 16 : 17951805.[PubMed] [CrossRef]
119. Williams RM,, Rimsky S . 1997. Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks. FEMS Microbiol Lett 156 : 175185.[PubMed] [CrossRef]
120. Lucht JM,, Dersch P,, Kempf B,, Bremer E . 1994. Interactions of the nucleotide-associated DNA-binding protein H-NS with the regulatory region of the osmotically controled proU operon of Escherichia coli . J Biol Chem 269 : 65786586.[PubMed]
121. Spassky A,, Rimsky S,, Garreau H,, Buc H . 1984. H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro. Nucleic Acids Res 12 : 53215340.[PubMed] [CrossRef]
122. Tupper AE,, Owen-Hughes TA,, Ussery DW,, Santos DS,, Ferguson DJP,, Sidebotham JM,, Hinton JCD,, Higgins CF . 1994. The chromatin-associated protein H-NS alters DNA topology in vitro . EMBO J 13 : 258268.[PubMed]
123. Zhang A,, Rimsky S,, Reaban ME,, Buc H,, Belfort M . 1996. Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J 15 : 13401349.[PubMed]
124. Bertin P,, Lejeune P,, Laurent-Winter C,, Danchin A . 1990. Mutations in bglY, the structural gene for the DNA-binding protein H1, affect expression of several Escherichia coli genes. Biochimie 72 : 889891.[PubMed] [CrossRef]
125. Hommais F,, Krin E,, Laurent-Winter C,, Soutourina O,, Malpertuy A,, Le Caer JP,, Danchin A,, Bertin P . 2001. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40 : 2036.[PubMed] [CrossRef]
126. May G,, Dersch P,, Haardt M,, Middendorf A,, Bremer E . 1990. The osmZ (bglY) gene encodes the DNA-binding protein H-NS, a component of the Escherichia coli K12 nucleoid. Mol Gen Genet 224 : 8190.[PubMed] [CrossRef]
127. Rajkumari K,, Kusano S,, Ishihama A,, Mizuno T,, Gowrishankar J . 1996. Effects of H-NS and potassium glutamate on ss- and s70- directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli . J Bacteriol 178 : 41764181.[PubMed]
128. Falconi M,, McGovern V,, Gualerzi C,, Hillyard D,, Higgins NP . 1991. Mutations altering chromosomal protein H-NS induce mini-Mu transposition. New Biologist 3 : 615625.[PubMed]
129. Hengge-Aronis R . 1999. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli . Curr Opin Microbiol 2 : 148152.[PubMed] [CrossRef]
130. Afflerbach H,, Schroder O,, Wagner R . 1999. Conformational changes of the upstream DNA mediated by H-NS and FIS regulate E. coli RrnB P1 promoter activity. J Mol Biol 286 : 339353.[PubMed] [CrossRef]
131. Falconi M,, Higgins NP,, Spurio R,, Pon CL,, Gualerzi CO . 1993. Expression of the gene encoding the major bacterial nucleoid protein H-NS is subject to transcriptional auto-repression. Mol Microbiol 10 : 273282.[PubMed] [CrossRef]
132. Rimsky S,, Zuber F,, Buckle M,, Buc H . 2001. A molecular mechanism for the repression of transcription by the H-NS protein. Mol Microbiol 42 : 13111323.[PubMed] [CrossRef]
133. Schnetz K . 1995. Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J 14 : 25452550.[PubMed]
134. Zhang A,, Belfort M . 1992. Nucleotide sequence of a newly-identified Escherichia coli gene, stpA, encoding an H-NS-like protein. Nucleic Acids Res 20 : 6735. [PubMed] [CrossRef]
135. Dorman CJ,, Bhriain NN,, Higgins CF . 1990. DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri . Nature 344 : 789792.[PubMed] [CrossRef]
136. Higgins CF,, Dorman CJ,, Stirling DA,, Waddell L,, Booth IR,, May G,, Bremer E . 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli . Cell 52 : 569584.[CrossRef]
137. Hulton CSJ,, Seirafi A,, Hinton JCD,, Sidebotham JM,, Waddell L,, Pavitt GD,, Owen-Hughes T,, Spassky A,, Buc H,, Higgins CF . 1990. Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. Cell 63 : 631642.[PubMed] [CrossRef]
138. McGovern V,, Higgins NP,, Chiz S,, Jaworski A . 1994. H-NS over-expression induces an artificial stationary phase by silencing global transcription. Biochimie 76 : 10301040.[CrossRef]
139. Nieto JM,, Mourino M,, Balsalobre C,, Madrid C,, Prenafeta A,, Munoa FJ,, Juarez A . 1997. Construction of a double hha hns mutant of Escherichia coli: effect on DNA supercoiling and alpha-haemolysin production. FEMS Microbiol Lett 155 : 3944.[PubMed] [CrossRef]
140. Ordnorff PE,, Kawula TH . 1991. Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS. J Bacteriol 173 : 41164123.[PubMed]
141. Dame RT,, Wyman C,, Goosen N . 2000. H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res 28 : 35043510.[PubMed] [CrossRef]
142. Arold ST,, Leonard PG,, Parkinson GN,, Ladbury JE . 2010. H-NS forms a superhelical protein scaffold for DNA condensation. Proc Natl Acad Sci USA 107 : 1572815732.[PubMed] [CrossRef]
143. Brackley CA,, Taylor S,, Papantonis A,, Cook PR,, Marenduzzo D . 2013. Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proc Natl Acad Sci USA 110 : E3605E3611.[PubMed] [CrossRef]
144. Wang W,, Li GW,, Chen C,, Xie XS,, Zhuang X . 2011. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333 : 14451449.[PubMed] [CrossRef]
145. Liu Y,, Chen H,, Kenney LJ,, Yan J . 2010. A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev 24 : 339344.[PubMed] [CrossRef]
146. Leonard PG,, Parkinson GN,, Gor J,, Perkins SJ,, Ladbury JE . 2010. The absence of inorganic salt is required for the crystallization of the complete oligomerization domain of Salmonella typhimurium histone-like nucleoid-structuring protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 : 421425.[PubMed] [CrossRef]
147. Lim CJ,, Lee SY,, Kenney LJ,, Yan J . 2012. Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci Rep 2 : 509. [PubMed] [CrossRef]
148. Mojica FJM,, Higgins CF . 1997. In vivo supercoiling of plasmid and chromosomal DNA in an Escherichia coli hns mutant. J Bacteriol 179 : 35283533.[PubMed]
149. Lim CJ,, Whang YR,, Kenney LJ,, Yan J . 2012. Gene silencing H-NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 40 : 33163328.[PubMed] [CrossRef]
150. Thompson RJ,, Davies JP,, Lin G,, Mosig G, . 1990. Modulation of transcription by altered torsional stress, upstream silencers, and DNA-binding proteins, p 227240. In Drlica K,, Riley M (ed), The Bacterial Chromosome. American Society for Microbiology, Washington, DC.
151. Dubnau E,, Margolin P . 1972. Suppression of promoter mutations by the pleiotropic supX mutations. Mol Gen Genet 117 : 91112.[CrossRef]
152. Pruss GJ,, Manes SH,, Drlica K . 1982. Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 31 : 3542.[PubMed] [CrossRef]
153. Margolin P,, Zumstein L,, Sternglanz R,, Wang JC . 1985. The Escherichia coli supX locus is topA, the structural gene for DNA topoisomerase I. Proc Natl Acad Sci USA 82 : 54375441.[PubMed] [CrossRef]
154. Staczek P,, Higgins NP . 1998. DNA gyrase and topoisomerase IV modulate chromosome domain size in vivo . Mol Micro 29 : 14351448.[PubMed] [CrossRef]
155. Tahirov TH,, Temiakov D,, Anikin M,, Patlan V,, McAllister WT,, Vassylyev DG,, Yokoyama S . 2002. Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 420 : 4350.[PubMed] [CrossRef]
156. Itoh T,, Tomizawa J . 1980. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci USA 77 : 24502454.[PubMed] [CrossRef]
157. Masukata H,, Tomizawa J . 1990. A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell 62 : 331338.[PubMed] [CrossRef]
158. Reaban ME,, Griffin JA . 1990. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348 : 342344.[PubMed] [CrossRef]
159. Reaban ME,, Lebowitz J,, Griffin JA . 1994. Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. J Biol Chem 269 : 2185021857.[PubMed]
160. Albert AC,, Spirito F,, Figueroa-Bossi N,, Bossi L,, Rahmouni AR . 1996. Hyper-negative template DNA supercoiling during transcription of the tetracycline-resistance gene in topA mutants is largely constrained in vivo . Nucleic Acids Res 24 : 30933099.[PubMed] [CrossRef]
161. Wojciechowska M,, Bacolla A,, Larson JE,, Wells RD . 2004. The myotonic dystrophy type 1 triplet repeat sequence induces gross deletions and inversions. J Biol Chem 280 : 280.
162. Lin Y,, Dent SY,, Wilson JH,, Wells RD,, Napierala M . 2010. R loops stimulate genetic instability of CTG.CAG repeats. Proc Natl Acad Sci USA 107 : 692697.[PubMed] [CrossRef]
163. Iyer RI,, Pluciennik A,, Napierala M,, Wells RD . 2015. DNA triplet repeat expansion and mismatch repair. Annu Rev Biochem. [Epub ahead of print.] doi:10.1146/annurev-biochem-060614-034010. [PubMed] [CrossRef]
164. Pruss G,, Drlica K . 1986. Topoisomerase I mutants: the gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl Acad Sci USA 83 : 89528956.[PubMed] [CrossRef]
165. Lynch AS,, Wang JC . 1993. Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J Bacteriol 175 : 16451655.[PubMed]
166. Wu H-Y,, Liu LF . 1991. DNA looping alters local DNA conformation during transcription. J Mol Biol 219 : 615622.[PubMed] [CrossRef]
167. Masse E,, Drolet M . 1999. R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition. J Mol Biol 294 : 321332.[PubMed] [CrossRef]
168. Masse E,, Drolet M . 1999. Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem 274 : 1665916664.[PubMed] [CrossRef]
169. Li T,, Panchenko YA,, Drolet M,, Liu LF . 1997. Incompatibility of the Escherichia coli rho mutants with plasmids is mediated by plasmid-specific transcription. J Bacteriol 179 : 57895794.[PubMed]
170. Alfano C,, McMacken R . 1989. Ordered assembly of nucleoprotein structures at the bacteriophage l replication origin during the initiation of DNA replication. J Biol Chem 264 : 1069910708.[PubMed]
171. Kaguni JM,, Kornberg A . 1984. Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes. Cell 38 : 183190.[PubMed] [CrossRef]
172. Hill TM,, Tecklenburg ML,, Pelletier AJ,, Kuempel PL . 1989. tus, the trans-acting gene required for termination of DNA replication in Escherichia coli, encodes a DNA-binding protein. Proc Natl Acad Sci USA 86 : 15931597.[PubMed] [CrossRef]
173. Cox MM . 2001. Historical overview: searching for replication help in all of the rec places. Proc Natl Acad Sci USA 98 : 81738180.[PubMed] [CrossRef]
174. Higgins NP,, Kato KH,, Strauss BS . 1976. A model for replication repair in mammalian cells. J Mol Biol 101 : 417425.[PubMed] [CrossRef]
175. Michel B,, Grompone G,, Flores MJ,, Bidnenko V . 2004. Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA 101 : 1278312788.[PubMed] [CrossRef]
176. Postow L,, Ullsperger C,, Keller RW,, Bustamante C,, Vologodskii AV,, Cozzarelli NR . 2001. Positive torsional strain causes the formation of a four-way junction at replication forks. J Biol Chem 276 : 27902796.[PubMed] [CrossRef]
177. Postow L,, Crisona NJ,, Peter BJ,, Hardy CD,, Cozzarelli NR . 2001. Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci USA 98 : 82198226.[PubMed] [CrossRef]
178. Courcelle J,, Donaldson JR,, Chow K-H,, Courcelle CT . 2003. DNA damage-induced replication fork regression and processing in Escherichia coli . Science 299 : 10641067.[PubMed] [CrossRef]
179. Joshi MC,, Bourniquel A,, Fisher J,, Ho BT,, Magnan D,, Kleckner N,, Bates D . 2011. Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps. Proc Natl Acad Sci USA 108 : 27652770.[PubMed] [CrossRef]
180. Sherratt D . 2013. Plasmid partition: sisters drifting apart. EMBO J 32 : 12081210.[PubMed] [CrossRef]
181. Podtelezhnikov AA,, Cozzarelli NR,, Vologodskii AV . 1999. Equilibrium distributions of topological states in circular DNA: interplay of supercoiling and knotting. Proc Natl Acad Sci USA 96 : 1297412979.[PubMed] [CrossRef]
182. Peter BJ,, Ullsperger C,, Hiasa H,, Marians KJ,, Cozzarelli NR . 1998. The structure of supercoiled intermediates in DNA replication. Cell 94 : 819827.[CrossRef]
183. Lee SH,, Siaw GE,, Willcox S,, Griffith JD,, Hsieh TS . 2013. Synthesis and dissolution of hemicatenanes by type IA DNA topoisomerases. Proc Natl Acad Sci USA 110 : E3587E3594.[PubMed] [CrossRef]
184. Olavarrieta L,, Martínez-Robles ML,, Hernández P,, Krimer DB,, Schvartzman JB . 2002. Knotting dynamics during DNA replication. Mol Microbiol 46 : 699707.[PubMed] [CrossRef]
185. Pang Z,, Chen R,, Manna D,, Higgins NP . 2005. A gyrase mutant with low activity disrupts supercoiling at the replication terminus. J Bacteriol 187 : 77737783.[PubMed] [CrossRef]
186. Spirito F,, Figueroa-Bossi N,, Bossi L . 1994. The relative contributions of transcription and translation to plasmid DNA supercoiling in Salmonella typhimurium . Mol Microbiol 11 : 111122.[PubMed] [CrossRef]

Tables

Generic image for table
Table 1

Constrained and unconstrained supercoiling in K12-derived strains

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014
Generic image for table
Table 2

Nucleoid-associated proteins

Citation: Higgins N, Vologodskii A. 2015. Topological Behavior of Plasmid DNA, p 105-131. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0036-2014

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error