1887

Chapter 9 : Resolution of Multimeric Forms of Circular Plasmids and Chromosomes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Resolution of Multimeric Forms of Circular Plasmids and Chromosomes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap09-2.gif

Abstract:

One of the serious disadvantages of circular plasmids and chromosomes is their high sensitivity to rearrangements caused by homologous recombination. Odd numbers of recombinational exchanges occurring during or after replication of a circular replicon result in the formation of a dimeric molecule in which the two copies of the replicon are fused in a head-to-tail configuration ( Fig. 1 ). If they are not converted back to monomers, the dimers of replicons may fail to correctly segregate at the time of cell division.

Citation: Crozat E, Fournes F, Cornet F, Hallet B, Rousseau P. 2015. Resolution of Multimeric Forms of Circular Plasmids and Chromosomes, p 157-173. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0025-2014

Key Concept Ranking

Mobile Genetic Elements
0.7621924
Bacteria and Archaea
0.66219944
Horizontal Gene Transfer
0.4190572
Proteins
0.41508317
Conjugative Plasmids
0.40928802
0.7621924
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Formation of plasmid dimers and their stability in the cell. Dimers of plasmids or chromosomes are formed by homologous recombination (HR) during replication and are later resolved by site-specific recombination (SSR). Origins are shown by a circle, and site-specific recombination sites by a black and white square. The accumulation of plasmid dimers in the cell leads to an increase in plasmid loss compared to monomeric plasmids. doi:10.1128/microbiolspec.PLAS-0025-2014.f1

Citation: Crozat E, Fournes F, Cornet F, Hallet B, Rousseau P. 2015. Resolution of Multimeric Forms of Circular Plasmids and Chromosomes, p 157-173. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0025-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Site-specific recombination by serine recombinases. Structure of the recombination sites of Tn3 and γδ recombinases (top) and the β recombinase and Sin family (bottom). Sequences are shown with arrows, and their length is (bp) indicated nearby. The genes coding for the recombinases are located downstream (rec). Hbsu (red) depicts a binding site for the accessory protein. The primary structure of a typical serine recombinase (top), showing the catalytic serine in a circle; other amino acids implicated in catalysis are also indicated (bottom). The scheme depicts the four principal steps of recombination by serine recombinase: four recombinases bind on their sites and form the synapse; the four strands are cut and bound covalently to the catalytic serines (red dot), which is followed by a 180° rotation of two of the subunits and rejoining of the DNA strands. doi:10.1128/microbiolspec.PLAS-0025-2014.f2

Citation: Crozat E, Fournes F, Cornet F, Hallet B, Rousseau P. 2015. Resolution of Multimeric Forms of Circular Plasmids and Chromosomes, p 157-173. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0025-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Site-specific recombination by tyrosine recombinases. Structure of principal recombination sites from tyrosine recombinase family. Symbols are the same as in Fig. 2 . The primary structure of a typical tyrosine recombinase (top), showing the catalytic tyrosine in a circle; other amino-acids implicated in catalysis are also indicated. Two distinct protein domains are shown: the DNA binding domain (DBD) and another DNA binding domain containing the catalytic domain (DBD + CD) (bottom). The scheme depicts the principal steps of recombination by tyrosine recombinase: four recombinases bind on their sites and form the synapse; cleavage occurs first on only two DNA strands, catalyzed by one active pair of recombinases in the teramer (XerC or XerD in the case of , , , and ). A transient Holliday junction is formed after a first strand exchange and is isomerized to allow the cleavage of the two other strands by the other pair of recombinases. The second strand exchange takes place, and the complex dissociates. doi:10.1128/microbiolspec.PLAS-0025-2014.f3

Citation: Crozat E, Fournes F, Cornet F, Hallet B, Rousseau P. 2015. Resolution of Multimeric Forms of Circular Plasmids and Chromosomes, p 157-173. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0025-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Topology of various recombinational synapses. Examples of synapses formed during recombination by two main families of serine recombinase and one of tyrosine recombinase are shown. Main recombination sites are colored (blue and green/purple), and the accessory sequences are shown as a thick line. The precise configuration of the synapses are drawn below, with serine recombinase in blue, Hbsu in orange, XerC and Xer in green and purple, PepA in dark green, and ArgR in red. doi:10.1128/microbiolspec.PLAS-0025-2014.f4

Citation: Crozat E, Fournes F, Cornet F, Hallet B, Rousseau P. 2015. Resolution of Multimeric Forms of Circular Plasmids and Chromosomes, p 157-173. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0025-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Resolution of chromosome dimers. During chromosome replication, single- or double-strand breaks appear that necessitate homologous recombination to be repaired. This leads to the formation of dimers of chromosomes, which are resolved by XerC (green) and XerD (purple) after the activation of XerD by FtsK (orange), localized at the septum. Cell division can then take place and maintain two integrate copies of the chromosome. Origins of replication are represented as green and black dots, replication forks as black complexes with white arrows indicating replication direction, and the site as a green and purple square. doi:10.1128/microbiolspec.PLAS-0025-2014.f5

Citation: Crozat E, Fournes F, Cornet F, Hallet B, Rousseau P. 2015. Resolution of Multimeric Forms of Circular Plasmids and Chromosomes, p 157-173. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0025-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818982.chap9
1. Grindley NDF,, Whiteson KL,, Rice PA . 2006. Mechanisms of site-specific recombination. Annu Rev Genet 75 : 567605.[PubMed]
2. Hallet B,, Vanhooff V,, Cornet F, . 2004. DNA site-specific resolution systems, p 145178. In Funnel BE,, Phillips GJ (ed), Plasmid Biology. ASM Press, Washington, DC. [CrossRef]
3. James AA,, Morrison PT,, Kolodner R . 1982. Genetic recombination of bacterial plasmid DNA. Analysis of the effect of recombination-deficient mutations on plasmid recombination. J Mol Biol 160 : 411430.[PubMed] [CrossRef]
4. Summers DK,, Beton CW,, Withers HL . 1993. Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol Microbiol 8 : 10311038.[PubMed] [CrossRef]
5. Summers DK,, Sherratt DJ . 1984. Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36 : 10971103.[PubMed] [CrossRef]
6. Hodgman TC,, Griffiths H,, Summers DK . 1998. Nucleoprotein architecture and ColE1 dimer resolution: a hypothesis. Mol Microbiol 29 : 545558.[PubMed] [CrossRef]
7. Field CM,, Summers DK . 2011. Multicopy plasmid stability: revisiting the dimer catastrophe. J Theor Biol 291 : 119127.[PubMed] [CrossRef]
8. Salje J . 2010. Plasmid segregation: how to survive as an extra piece of DNA. Crit Rev Biochem Mol Biol 45 : 296317.[PubMed] [CrossRef]
9. Hallet B . 2001. Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr Opin Microbiol 4 : 570581.[PubMed] [CrossRef]
10. Cambray G,, Guerout A-M,, Mazel D . 2010. Integrons. Annu Rev Genet 44 : 141166.[PubMed] [CrossRef]
11. Wisniewski-Dyé F,, Vial L . 2008. Phase and antigenic variation mediated by genome modifications. Antonie Van Leeuwenhoek 94 : 493515.[PubMed] [CrossRef]
12. Wozniak RAF,, Waldor MK . 2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8 : 552563.[PubMed] [CrossRef]
13. Das B,, Martínez E,, Midonet C,, Barre F-X . 2013. Integrative mobile elements exploiting Xer recombination. Trends Microbiol 21 : 2330.[PubMed] [CrossRef]
14. Cortez D,, Quevillon-Cheruel S,, Gribaldo S,, Desnoues N,, Sezonov G,, Forterre P,, Serre M-C . 2010. Evidence for a Xer/dif system for chromosome resolution in archaea. PLoS Genet 6 : e1001166. [PubMed] [CrossRef]
15. Curcio MJ,, Derbyshire KM . 2003. The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4 : 865877.[PubMed] [CrossRef]
16. Deleted in proof.
17. Eberl L,, Kristensen CS,, Givskov M,, Grohmann E,, Gerlitz M,, Schwab H . 1994. Analysis of the multimer resolution system encoded by the parCBA operon of broad-host-range plasmid RP4. Mol Microbiol 12 : 131141.[PubMed] [CrossRef]
18. Deleted in proof.
19. Gerdes K . 2000. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 182 : 561572.[PubMed] [CrossRef]
20. Roberts RC,, Ström AR,, Helinski DR . 1994. The parDE operon of the broad-host-range plasmid RK2 specifies growth inhibition associated with plasmid loss. J Mol Biol 237 : 3551.[PubMed] [CrossRef]
21. Sobecky PA,, Easter CL,, Bear PD,, Helinski DR . 1996. Characterization of the stable maintenance properties of the par region of broad-host-range plasmid RK2. J Bacteriol 178 : 20862093.[PubMed]
22. Easter CL,, Sobecky PA,, Helinski DR . 1997. Contribution of different segments of the par region to stable maintenance of the broad-host-range plasmid RK2. J Bacteriol 179 : 64726479.[PubMed]
23. Lioy VS,, Pratto F,, la Hoz de AB,, Ayora S,, Alonso JC . 2010. Plasmid pSM19035, a model to study stable maintenance in Firmicutes . Plasmid 64 : 117.[PubMed] [CrossRef]
24. Paulsen IT,, Gillespie MT,, Littlejohn TG,, Hanvivatvong O,, Rowland SJ,, Dyke KG,, Skurray RA . 1994. Characterisation of sin, a potential recombinase-encoding gene from Staphylococcus aureus . Gene 141 : 109114.[PubMed] [CrossRef]
25. Smith MCM,, Thorpe HM . 2002. Diversity in the serine recombinases. Mol Microbiol 44 : 299307.[PubMed] [CrossRef]
26. Rojo F,, Alonso JC . 1995. The beta recombinase of plasmid pSM19035 binds to two adjacent sites, making different contacts at each of them. Nucleic Acids Res 23 : 31813188.[PubMed] [CrossRef]
27. Mouw KW,, Steiner AM,, Ghirlando R,, Li N-S,, Rowland S-J,, Boocock MR,, Stark WM,, Piccirilli JA,, Rice PA . 2010. Sin resolvase catalytic activity and oligomerization state are tightly coupled. J Mol Biol 404 : 1633.[PubMed] [CrossRef]
28. Stemmer C,, Fernández S,, López G,, Alonso JC,, Grasser KD . 2002. Plant chromosomal HMGB proteins efficiently promote the bacterial site-specific beta-mediated recombination in vitro and in vivo . Biochemistry 41 : 77637770.[PubMed] [CrossRef]
29. Burke ME,, Arnold PH,, He J,, Wenwieser SVCT,, Rowland S-J,, Boocock MR,, Stark WM . 2004. Activating mutations of Tn3 resolvase marking interfaces important in recombination catalysis and its regulation. Mol Microbiol 51 : 937948.[PubMed] [CrossRef]
30. Sarkis GJ,, Murley LL,, Leschziner AE,, Boocock MR,, Stark WM,, Grindley ND . 2001. A model for the gamma delta resolvase synaptic complex. Mol Cell 8 : 623631.[PubMed] [CrossRef]
31. Rowland S-J,, Stark WM,, Boocock MR . 2002. Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol 44 : 607619.[PubMed] [CrossRef]
32. Yang W,, Steitz TA . 1995. Crystal structure of the site-specific recombinase gamma delta resolvase complexed with a 34 bp cleavage site. Cell 82 : 193207.[PubMed] [CrossRef]
33. Boocock MR,, Zhu X,, Grindley ND . 1995. Catalytic residues of gamma delta resolvase act in cis. EMBO J 14 : 51295140.[PubMed]
34. Merickel SK,, Haykinson MJ,, Johnson RC . 1998. Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev 12 : 28032816.[PubMed] [CrossRef]
35. Mouw KW,, Rowland S-J,, Gajjar MM,, Boocock MR,, Stark WM,, Rice PA . 2008. Architecture of a serine recombinase-DNA regulatory complex. Mol Cell 30 : 145155.[PubMed] [CrossRef]
36. Rice PA,, Mouw KW,, Montaño SP,, Boocock MR,, Rowland S-J,, Stark WM . 2010. Orchestrating serine resolvases. Biochem Soc Trans 38 : 384387.[PubMed] [CrossRef]
37. Keenholtz RA,, Rowland S-J,, Boocock MR,, Stark WM,, Rice PA . 2011. Structural basis for catalytic activation of a serine recombinase. Structure 19 : 799809.[PubMed] [CrossRef]
38. Dhar G,, Heiss JK,, Johnson RC . 2009. Mechanical constraints on Hin subunit rotation imposed by the Fis/enhancer system and DNA supercoiling during site-specific recombination. Mol Cell 34 : 746759.[PubMed] [CrossRef]
39. Li W,, Kamtekar S,, Xiong Y,, Sarkis GJ,, Grindley NDF,, Steitz TA . 2005. Structure of a synaptic gammadelta resolvase tetramer covalently linked to two cleaved DNAs. Science 309 : 12101215.[PubMed] [CrossRef]
40. Yang W . 2010. Topoisomerases and site-specific recombinases: similarities in structure and mechanism. Crit Rev Biochem Mol Biol 45 : 520534.[PubMed] [CrossRef]
41. Colloms SD,, Sykora P,, Szatmari G,, Sherratt DJ . 1990. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol 172 : 69736980.[PubMed]
42. Blakely G,, May G,, McCulloch R,, Arciszewska LK,, Burke M,, Lovett ST,, Sherratt DJ . 1993. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75 : 351361.[PubMed] [CrossRef]
43. Kono N,, Arakawa K,, Tomita M . 2011. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genomics 12 : 19. [PubMed] [CrossRef]
44. Carnoy C,, Roten C-A . 2009. The dif/Xer recombination systems in proteobacteria. PLoS One 4 : e6531. [PubMed] [CrossRef]
45. Cortez D,, Quevillon-Cheruel S,, Gribaldo S,, Desnoues N,, Sezonov G,, Forterre P,, Serre M-C . 2010. Evidence for a Xer/dif system for chromosome resolution in archaea. PLoS Genet 6 : e1001166. [PubMed] [CrossRef]
46. Duggin IG,, Dubarry N,, Bell SD . 2011. Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus . EMBO J 30 : 145153.[PubMed] [CrossRef]
47. Recchia GD,, Sherratt DJ . 1999. Conservation of xer site-specific recombination genes in bacteria. Mol Microbiol 34 : 11461148.[PubMed] [CrossRef]
48. Hakkaart MJ,, van den Elzen PJ,, Veltkamp E,, Nijkamp HJ . 1984. Maintenance of multicopy plasmid Clo DF13 in E. coli cells: evidence for site-specific recombination at parB. Cell 36 : 203209.[PubMed] [CrossRef]
49. Hiraga S,, Sugiyama T,, Itoh T . 1994. Comparative analysis of the replicon regions of eleven ColE2-related plasmids. J Bacteriol 176 : 72337243.[PubMed]
50. Cornet F,, Mortier I,, Patte J,, Louarn JM . 1994. Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif. J Bacteriol 176 : 31883195.[PubMed]
51. Tolmasky ME,, Colloms S,, Blakely G,, Sherratt DJ . 2000. Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system. Microbiology 146(Pt 3): 581589.[PubMed]
52. Pham H,, Dery KJ,, Sherratt DJ,, Tolmasky ME . 2002. Osmoregulation of dimer resolution at the plasmid pJHCMW1 mwr locus by Escherichia coli XerCD recombination. J Bacteriol 184 : 16071616.[PubMed] [CrossRef]
53. Blakely G,, Colloms S,, May G,, Burke M,, Sherratt D . 1991. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3 : 789798.[PubMed]
54. Clerget M . 1991. Site-specific recombination promoted by a short DNA segment of plasmid R1 and by a homologous segment in the terminus region of the Escherichia coli chromosome. New Biol 3 : 780788.[PubMed]
55. Kuempel PL,, Henson JM,, Dircks L,, Tecklenburg M,, Lim DF . 1991. dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli . New Biol 3 : 799811.[PubMed]
56. Hayes F,, Sherratt DJ . 1997. Recombinase binding specificity at the chromosome dimer resolution site dif of Escherichia coli . J Mol Biol 266 : 525537.[PubMed] [CrossRef]
57. Colloms SD . 2013. The topology of plasmid-monomerizing Xer site-specific recombination. Biochem Soc Trans 41 : 589594.[PubMed] [CrossRef]
58. Sternberg N,, Hamilton D,, Austin S,, Yarmolinsky M,, Hoess R . 1981. Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harbor Symp Quant Biol 45(Pt 1): 297309.[PubMed] [CrossRef]
59. Segev N,, Cohen G . 1981. Control of circularization of bacteriophage P1 DNA in Escherichia coli . Virology 114 : 333342.[PubMed] [CrossRef]
60. Hochman L,, Segev N,, Sternberg N,, Cohen G . 1983. Site-specific recombinational circularization of bacteriophage P1 DNA. Virology 131 : 1117.[PubMed] [CrossRef]
61. Abremski K,, Hoess R,, Sternberg N . 1983. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32 : 13011311.[PubMed] [CrossRef]
62. Ghosh K,, Van Duyne GD . 2002. Cre-loxP biochemistry. Methods 28 : 374383.[PubMed] [CrossRef]
63. Paul S,, Summers D . 2004. ArgR and PepA, accessory proteins for XerCD-mediated resolution of ColE1 dimers, are also required for stable maintenance of the P1 prophage. Plasmid 52 : 6368.[PubMed] [CrossRef]
64. MacDonald AI,, Lu Y,, Kilbride EA,, Akopian A,, Colloms SD . 2008. PepA and ArgR do not regulate Cre recombination at the bacteriophage P1 loxP site. Plasmid 59 : 119126.[PubMed] [CrossRef]
65. Ghosh K,, Lau C-K,, Gupta K,, Van Duyne GD . 2005. Preferential synapsis of loxP sites drives ordered strand exchange in Cre-loxP site-specific recombination. Nat Chem Biol 1 : 275282.[PubMed] [CrossRef]
66. Ghosh K,, Guo F,, Van Duyne GD . 2007. Synapsis of loxP sites by Cre recombinase. J Biol Chem 282 : 2400424016.[PubMed] [CrossRef]
67. Bouet J-Y,, Bouvier M,, Lane D . 2006. Concerted action of plasmid maintenance functions: partition complexes create a requirement for dimer resolution. Mol Microbiol 62 : 14471459.[PubMed] [CrossRef]
68. Disqué-Kochem C,, Eichenlaub R . 1993. Purification and DNA binding of the D protein, a putative resolvase of the F-factor of Escherichia coli . Mol Gen Genet 237 : 206214.[PubMed]
69. Lane D,, de Feyter R,, Kennedy M,, Phua SH,, Semon D . 1986. D protein of miniF plasmid acts as a repressor of transcription and as a site-specific resolvase. Nucleic Acids Res 14 : 97139728.[PubMed]
70. Chen Y,, Narendra U,, Iype LE,, Cox MM,, Rice PA . 2000. Crystal structure of a Flp recombinase-Holliday junction complex: assembly of an active oligomer by helix swapping. Mol Cell 6 : 885897.[PubMed]
71. Guo F,, Gopaul DN,, Van Duyne GD . 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389 : 4046.[PubMed] [CrossRef]
72. Guo F,, Gopaul DN,, Van Duyne GD . 1999. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc Natl Acad Sci USA 96 : 71437148.[PubMed] [CrossRef]
73. Gopaul DN,, Guo F,, Van GD . 1998. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J 17 : 41754187.[PubMed] [CrossRef]
74. Hickman AB,, Waninger S,, Scocca JJ,, Dyda F . 1997. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell 89 : 227237.[PubMed] [CrossRef]
75. Subramanya HS,, Arciszewska LK,, Baker RA,, Bird LE,, Sherratt DJ,, Wigley DB . 1997. Crystal structure of the site-specific recombinase, XerD. EMBO J 16 : 51785187.[PubMed] [CrossRef]
76. Gibb B,, Gupta K,, Ghosh K,, Sharp R,, Chen J,, Van Duyne GD . 2010. Requirements for catalysis in the Cre recombinase active site. Nucleic Acids Res 38 : 58175832.[PubMed] [CrossRef]
77. Rajeev L,, Malanowska K,, Gardner JF . 2009. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 73 : 300309.[PubMed] [CrossRef]
78. Lee L,, Chu LCH,, Sadowski PD . 2003. Cre induces an asymmetric DNA bend in its target loxP site. J Biol Chem 278 : 2311823129.[PubMed] [CrossRef]
79. Fan H-F . 2012. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination. Nucleic Acids Res 40 : 62086222.[PubMed] [CrossRef]
80. Pinkney JNM,, Zawadzki P,, Mazuryk J,, Arciszewska LK,, Sherratt DJ,, Kapanidis AN . 2012. Capturing reaction paths and intermediates in Cre-loxP recombination using single-molecule fluorescence. Proc Natl Acad Sci USA 109 : 2087120876.[PubMed] [CrossRef]
81. Zawadzki P,, May PFJ,, Baker RA,, Pinkney JNM,, Kapanidis AN,, Sherratt DJ,, Arciszewska LK . 2013. Conformational transitions during FtsK translocase activation of individual XerCD-dif recombination complexes. Proc Natl Acad Sci USA 110 : 1730217307.[PubMed] [CrossRef]
82. Fan H-F,, Ma C-H,, Jayaram M . 2013. Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ Int. Nucleic Acids Res 41 : 70317047.[PubMed] [CrossRef]
83. McCulloch R,, Coggins LW,, Colloms SD,, Sherratt DJ . 1994. Xer-mediated site-specific recombination at cer generates Holliday junctions in vivo . EMBO J 13 : 18441855.[PubMed]
84. Hallet B,, Arciszewska LK,, Sherratt DJ . 1999. Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: an enzymatic switch in site-specific recombination. Mol Cell 4 : 949959.[PubMed] [CrossRef]
85. Diagne CT,, Salhi M,, Crozat E,, Salomé L,, Cornet F,, Rousseau P,, Tardin C . 2014. TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse. Nucleic Acids Res 42 : 17211732.[PubMed] [CrossRef]
86. Arciszewska LK,, Baker RA,, Hallet B,, Sherratt DJ . 2000. Coordinated control of XerC and XerD catalytic activities during Holliday junction resolution. J Mol Biol 299 : 391403.[PubMed] [CrossRef]
87. Chen Y,, Rice PA . 2003. New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32 : 135159.[PubMed] [CrossRef]
88. Olorunniji FJ,, Stark WM . 2010. Catalysis of site-specific recombination by Tn3 resolvase. Biochem Soc Trans 38 : 417421.[PubMed] [CrossRef]
89. Rowland S-J,, Boocock MR,, Stark WM . 2006. DNA bending in the Sin recombination synapse: functional replacement of HU by IHF. Mol Microbiol 59 : 17301743.[PubMed] [CrossRef]
90. Canosa I,, López G,, Rojo F,, Boocock MR,, Alonso JC . 2003. Synapsis and strand exchange in the resolution and DNA inversion reactions catalysed by the beta recombinase. Nucleic Acids Res 31 : 10381044.[PubMed] [CrossRef]
91. Reijns M,, Lu Y,, Leach S,, Colloms SD . 2005. Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol 57 : 927941.[PubMed] [CrossRef]
92. Vazquez M,, Colloms SD,, Sumners DW . 2005. Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single three-dimensional topological pathway. J Mol Biol 346 : 493504.[PubMed] [CrossRef]
93. Sträter N,, Sherratt DJ,, Colloms SD . 1999. X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. EMBO J 18 : 45134522.[PubMed] [CrossRef]
94. Bregu M,, Sherratt DJ,, Colloms SD . 2002. Accessory factors determine the order of strand exchange in Xer recombination at psi. EMBO J 21 : 38883897.[PubMed] [CrossRef]
95. Bregu M,, Sherratt DJ,, Colloms SD . 2002. Accessory factors determine the order of strand exchange in Xer recombination at psi. EMBO J 21 : 38883897.[PubMed] [CrossRef]
96. Vanhooff V,, Normand C,, Galloy C,, Segall AM,, Hallet B . 2010. Control of directionality in the DNA strand-exchange reaction catalysed by the tyrosine recombinase TnpI. Nucleic Acids Res 38 : 20442056.[PubMed] [CrossRef]
97. Pérals K,, Cornet F,, Merlet Y,, Delon I,, Louarn JM . 2000. Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 36 : 3343.[PubMed] [CrossRef]
98. Steiner WW,, Kuempel PL . 1998. Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli . Mol Microbiol 27 : 257268.[PubMed] [CrossRef]
99. Barre FX,, Søballe B,, Michel B,, Aroyo M,, Robertson M,, Sherratt D . 2001. Circles: the replication-recombination-chromosome segregation connection. Proc Natl Acad Sci USA 98 : 81898195.[PubMed] [CrossRef]
100. Cox MM,, Goodman MF,, Kreuzer KN,, Sherratt DJ,, Sandler SJ,, Marians KJ . 2000. The importance of repairing stalled replication forks. Nature 404 : 3741.[PubMed] [CrossRef]
101. Lesterlin C,, Barre F-X,, Cornet F . 2004. Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol Microbiol 54 : 11511160.[PubMed] [CrossRef]
102. Bigot S,, Sivanathan V,, Possoz C,, Barre F-X,, Cornet F . 2007. FtsK, a literate chromosome segregation machine. Mol Microbiol 64 : 14341441.[PubMed] [CrossRef]
103. Dubarry N,, Possoz C,, Barre F-X . 2010. Multiple regions along the Escherichia coli FtsK protein are implicated in cell division. Mol Microbiol 78 : 10881100.[PubMed] [CrossRef]
104. Iyer LM,, Makarova KS,, Koonin EV,, Aravind L . 2004. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 32 : 52605279.[PubMed] [CrossRef]
105. Ptacin JL,, Nöllmann M,, Becker EC,, Cozzarelli NR,, Pogliano K,, Bustamante C . 2008. Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis . Nat Struct Mol Biol 15 : 485493.[PubMed] [CrossRef]
106. Marquis KA,, Burton BM,, Nöllmann M,, Ptacin JL,, Bustamante C,, Ben-Yehuda S,, Rudner DZ . 2008. SpoIIIE strips proteins off the DNA during chromosome translocation. Genes Dev 22 : 17861795.[PubMed] [CrossRef]
107. Kaimer C,, Schenk K,, Graumann PL . 2011. Two DNA translocases synergistically affect chromosome dimer resolution in Bacillus subtilis . J Bacteriol 193 : 13341340.[PubMed] [CrossRef]
108. Aussel L,, Barre F-X,, Aroyo M,, Stasiak A,, Stasiak AZ,, Sherratt D . 2002. FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108 : 195205.[PubMed] [CrossRef]
109. Yates J,, Aroyo M,, Sherratt DJ,, Barre F-X . 2003. Species specificity in the activation of Xer recombination at dif by FtsK. Mol Microbiol 49 : 241249.[PubMed] [CrossRef]
110. Grainge I,, Lesterlin C,, Sherratt DJ . 2011. Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Res 39 : 51405148.[PubMed] [CrossRef]
111. Grainge I,, Lesterlin C,, Sherratt DJ . 2011. Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Res 39 : 51405148.[PubMed] [CrossRef]
112. Grainge I,, Lesterlin C,, Sherratt DJ . 2011. Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Res 39 : 51405148.[PubMed] [CrossRef]
113. Lee JY,, Finkelstein IJ,, Crozat E,, Sherratt DJ,, Greene EC . 2012. Single-molecule imaging of DNA curtains reveals mechanisms of KOPS sequence targeting by the DNA translocase FtsK. Proc Natl Acad Sci USA 109 : 65316536.[PubMed] [CrossRef]
114. Graham JE,, Sherratt DJ,, Szczelkun MD . 2010. Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA. Proc Natl Acad Sci USA 107 : 2026320268.[PubMed] [CrossRef]
115. Crozat E,, Grainge I . 2010. FtsK DNA translocase: the fast motor that knows where it’s going. Chembiochem 11 : 22322243.[PubMed] [CrossRef]
116. Stouf M,, Meile J-C,, Cornet F . 2013. FtsK actively segregates sister chromosomes in Escherichia coli . Proc Natl Acad Sci USA 110 : 1115711162.[PubMed] [CrossRef]
117. Grainge I,, Bregu M,, Vazquez M,, Sivanathan V,, Ip SCY,, Sherratt DJ . 2007. Unlinking chromosome catenanes in vivo by site-specific recombination. EMBO J 26 : 42284238.[PubMed] [CrossRef]
118. Shimokawa K,, Ishihara K,, Grainge I,, Sherratt DJ,, Vazquez M . 2013. FtsK-dependent XerCD-dif recombination unlinks replication catenanes in a stepwise manner. Proc Natl Acad Sci USA 110 : 2090620911.[PubMed] [CrossRef]
119. Val M-E,, Kennedy SP,, Karoui El M,, Bonné L,, Chevalier F,, Barre F-X . 2008. FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae . PLoS Genet 4 : e1000201. [PubMed] [CrossRef]
120. Val M-E,, Kennedy SP,, Soler-Bistué AJ,, Barbe V,, Bouchier C,, Ducos-Galand M,, Skovgaard O,, Mazel D . 2014. Fuse or die: how to survive the loss of Dam in Vibrio cholerae . Mol Microbiol 91 : 665678.[PubMed] [CrossRef]
121. Le Bourgeois P,, Bugarel M,, Campo N,, Daveran-Mingot M-L,, Labonté J,, Lanfranchi D,, Lautier T,, Pages C,, Ritzenthaler P . 2007. The unconventional Xer recombination machinery of Streptococci/Lactococci . PLoS Genet 3 : e117. [PubMed] [CrossRef]
122. Debowski AW,, Gauntlett JC,, Li H,, Liao T,, Sehnal M,, Nilsson H-O,, Marshall BJ,, Benghezal M . 2012. Xer-cise in Helicobacter pylori: one-step transformation for the construction of markerless gene deletions. Helicobacter 17 : 435443.[PubMed] [CrossRef]
123. Nolivos S,, Pages C,, Rousseau P,, Le Bourgeois P,, Cornet F . 2010. Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase. Nucleic Acids Res 38 : 64776489.[PubMed] [CrossRef]
124. Nolivos S,, Touzain F,, Pages C,, Coddeville M,, Rousseau P,, El Karoui M,, Le Bourgeois P,, Cornet F . 2012. Co-evolution of segregation guide DNA motifs and the FtsK translocase in bacteria: identification of the atypical Lactococcus lactis KOPS motif. Nucleic Acids Res 40 : 55355545.[PubMed] [CrossRef]
125. Serre M-C,, El Arnaout T,, Brooks MA,, Durand D,, Lisboa J,, Lazar N,, Raynal B,, van Tilbeurgh H,, Quevillon-Cheruel S . 2013. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination. PLoS One 8 : e63010. [PubMed] [CrossRef]
126. Yano H,, Genka H,, Ohtsubo Y,, Nagata Y,, Top EM,, Tsuda M . 2013. Cointegrate-resolution of toluene-catabolic transposon Tn4651: determination of crossover site and the segment required for full resolution activity. Plasmid 69 : 2435.[PubMed] [CrossRef]
127. Val M-E,, Bouvier M,, Campos J,, Sherratt D,, Cornet F,, Mazel D,, Barre F-X . 2005. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae . Mol Cell 19 : 559566.[PubMed] [CrossRef]
128. Das B,, Bischerour J,, Barre F-X . 2011. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA 108 : 25162521.[PubMed] [CrossRef]
129. Bischerour J,, Spangenberg C,, Barre F-X . 2012. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 31 : 37573767.[PubMed] [CrossRef]
130. Domínguez NM,, Hackett KT,, Dillard JP . 2011. XerCD-mediated site-specific recombination leads to loss of the 57-kilobase gonococcal genetic island. J Bacteriol 193 : 377388.[PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error