1887

Chapter 26 : Malaria and Babesiosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Malaria and Babesiosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819002/9781555819002_ch26-1.gif /docserver/preview/fulltext/10.1128/9781555819002/9781555819002_ch26-2.gif

Abstract:

  • Malaria
  • Babesiosis

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 26.1
Figure 26.1

Countries where malaria is endemic; green indicates regions where only is endemic (courtesy of the CDC Public Health Image Library). doi:10.1128/9781555819002.ch26.f1

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.2
Figure 26.2

Life cycle of spp. (Illustration by Nobuko Kitamura; adapted from Wilcox A, , U.S. Public Health Service bulletin 180, National Institutes of Health, Bethesda, MD, 1951.) doi:10.1128/9781555819002.ch26.f2

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.3
Figure 26.3

Life cycle of malaria. doi:10.1128/9781555819002.ch26.f3

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 26.4
FIGURE 26.4

Morphology of malaria parasites. (reading down): ( ) early trophozoite (ring form); ( ) late trophozoite with Schüffner's dots (note enlarged RBC); ( ) late trophozoite with ameboid cytoplasm (very typical of ); ( ) late trophozoite with ameboid cytoplasm; ( ) mature schizont with 18 merozoites and clumped pigment; ( ) microgametocyte with dispersed chromatin; ( ) macrogametocyte with compact chromatin. : ( ) early trophozoite (ring form); ( ) early trophozoite with thick cytoplasm; ( ) early trophozoite (band form); ( ) late trophozoite (band form) with heavy pigment; ( ) mature schizont with nine merozoites arranged in a rosette; ( ) microgametocyte with dispersed chromatin; ( ) macrogametocyte with compact chromatin. : ( ) early trophozoite (ring form) with Schüffner's dots; ( ) early trophozoite (note enlarged RBC); ( ) late trophozoite in RBC with fimbriated edges; ( ) developing schizont with irregularly shaped RBC; ( ) mature schizont with eight merozoites arranged irregularly; ( ) microgametocyte with dispersed chromatin; ( ) macrogametocyte with compact chromatin. : ( ) early trophozoite (accolé or appliqué form); ( ) early trophozoite (one ring is in the headphone configuration with double chromatin dots); ( ) early trophozoite with Maurer's dots; ( ) late trophozoite with larger ring and Maurer's dots; ( ) mature schizont with 24 merozoites; ( ) microgametocyte with dispersed chromatin; ( ) macrogametocyte with compact chromatin. Note:Without the appliqué form, Schüffner's dots, multiple rings per cell, and other developing stages, differentiation among the species can be very difficult. It is obvious that the early rings of the four species shown in this figure can mimic one another very easily. . doi:10.1128/9781555819002.ch26.f4

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 26.5
FIGURE 26.5

Morphology of malaria parasites. Morphology of malaria parasites. Column 1 (top to bottom), (note enlarged infected RBCs): ( ) early trophozoite (ring form) (note one RBC contains two rings—not that uncommon); ( ) older ring, note ameboid nature of rings; ( ) late trophozoite with Schüffner's dots (note enlarged RBC); ( ) developing schizont; ( ) mature schizont with 18 merozoites and clumped pigment; ( ) microgametocyte with dispersed chromatin. Column 2 (top to bottom), (note enlarged infected RBCs): ( ) early trophozoite (ring form) with Schüffner's dots (RBC has fimbriated edges); ( ) early trophozoite (note enlarged RBC, Schüffner's dots, and RBC oval in shape); ( ) late trophozoite in RBC with fimbriated edges; ( ) developing schizont with irregular-shaped RBC; ( ) mature schizont with eight merozoites arranged irregularly; ( ) microgametocyte with dispersed chromatin. Column 3, (note normal or smaller than normal infected RBCs): ( ) early trophozoite (ring form); ( ) early trophozoite with thick cytoplasm; ( ) late trophozoite (band form); ( ) developing schizont; ( ) mature schizont with nine merozoites arranged in a rosette; ( ) macrogametocyte with compact chromatin. Column 4, : ( ) early trophozoites (the rings are in the headphone configuration with double chromatin dots); ( ) early trophozoite (accolé or appliqué form); ( ) early trophozoites (note the multiple rings per cell); ( ) late trophozoite with larger ring (accolé or appliqué form); ( ) crescent-shaped gametocyte; ( ) crescent-shaped gametocyte. Column 5, —with the exception of image 29, these were photographed at a higher magnification (note normal or smaller than normal infected RBCs) (courtesy of the CDC Public Health Image Library): ( ) early trophozoite (ring form); ( ) early trophozoite with slim band form; ( ) late trophozoite (band form); ( ) developing schizont; ( ) mature schizont with merozoites arranged in a rosette; ( ) microgametocyte with dispersed chromatin. Without the appliqué form, Schüffner's dots, multiple rings per cell, and other developing stages, differentiation among the species can be very difficult. It is obvious that the early rings of all four species can mimic one another very easily. Remember: one set of negative blood films cannot rule out a malaria infection. (Figure courtesy of Garcia LS, 30:93–128, 2010.) doi:10.1128/9781555819002.ch26.f5

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.6
Figure 26.6

Exflagellating male gametocytes. (Upper, left) Giemsa stain; (right) single organism that can mimic a treponeme. (Lower) Scanning electron micrograph of exflagellating male gametocyte (courtesy of Robert E. Sinden). doi:10.1128/9781555819002.ch26.f6

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.7
Figure 26.7

Malarial sporozoites from the mosquito vector. doi:10.1128/9781555819002.ch26.f7

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.8
Figure 26.8

Pathogenesis of malaria. (Adapted from Markell EK, Voge M, , 5th ed, WB Saunders Co, Philadelphia, PA, 1981.) doi:10.1128/9781555819002.ch26.f8

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.9
Figure 26.9

. (Top row) Ring forms (note that double rings are not limited to and that the RBC is beginning to enlarge as the rings grow). (Row 2) Early trophozoites. (Row 3) Developing trophozoites (note the ameboid nature of the trophozoites and the presence of Schüffner's dots). (Row 4) Developing schizonts (note the number of merozoites). (Bottom row) Male and female gametocytes. doi:10.1128/9781555819002.ch26.f9

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.10
Figure 26.10

. (Top three rows) Developing trophozoites (note the nonameboid trophozoites, presence of Schüffner's dots, oval RBCs, and fimbriated edges of infected red cells). (Row 4) Developing schizonts. (Bottom row) Gametocytes. doi:10.1128/9781555819002.ch26.f10

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.11
Figure 26.11

. (Top and row 2) Early ring form and band form developing trophozoites (note that the RBC is normal or slightly smaller than normal). (Row 3) Developing schizonts (note the small number of merozoites). (Row 4) Mature schizonts. (Bottom row) Gametocytes. doi:10.1128/9781555819002.ch26.f11

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.12
Figure 26.12

-parasitized blood cells plugging the capillaries in brain tissue; note the dark malarial pigment. (From : a cooperative collection prepared and/or edited by H. Zaiman.) doi:10.1128/9781555819002.ch26.f12

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.13
Figure 26.13

(Top and row 2) ring forms. Note the double rings per cell, appliqué or accolé form, and headphone appearance of some rings; also note Maurer's clefts in the RBCs (row 2, left). (Row 3) Ring forms and mature schizont (rarely seen in blood films). (Row 4) Crescent-shaped gametocytes. (Bottom, left) Immature gametocyte; (right) ookinete from mosquito cycle (found in thin blood film from EDTA-treated blood with lag time prior to film preparation). doi:10.1128/9781555819002.ch26.f13

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.14
Figure 26.14

(A) Scanning electron micrograph of a rosette consisting of a central parasitized RBC surrounded by several attached uninfected RBCs (original magnification, ×19,000; bar, 1 μm). (B) Scanning electron micrograph of the interaction of a parasitized RBC with an uninfected RBC that appears to be mediated by protrusion of knobs (original magnification, ×53,000; bar, 0.5 μm). (From with permission.) doi:10.1128/9781555819002.ch26.f14

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.15
Figure 26.15

infections reported in humans and macaques and limits of natural distribution of mosquito vectors and of macaques. The numbers in parentheses represent numbers of cases reported for each Southeast Asian country or region in Malaysia. (Courtesy of .) doi:10.1128/9781555819002.ch26.f15

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.16
Figure 26.16

(simian malaria). (Upper) Pig-tailed macaque (courtesy of https://www.flickr.com/photos/erwinb/2986619018/sizes/o/in/photostream/). (Lower) Long-tailed macaque (courtesy of http://www.ecosystem-guides.com/Bukit-Lawang.html). doi:10.1128/9781555819002.ch26.f16

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.17
Figure 26.17

. (Top three rows) Developing trophozoites (note the band forms which can mimic ; ring forms can mimic ). (Row 4) Mature schizonts. (Bottom) Gametocytes. (Courtesy of the CDC Public Health Image Library.) doi:10.1128/9781555819002.ch26.f17

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Algorithm 26.1
Algorithm 26.1

Malaria.

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.18
Figure 26.18

(Upper) Intracytoplasmic malaria pigment seen within a polymorphonuclear leukocyte in a specimen from a patient with malaria (courtesy of Loyda Oduber, Jaime LaRoche, Pitágoras Ureña, and Cinthia Batista, Clinical Hospital San Fernando, Panama). (Lower) Malaria pigment seen within a polymorphonuclear leukocyte (courtesy of George Healy, CDC). doi:10.1128/9781555819002.ch26.f18

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.19
Figure 26.19

ParaSight-F test kit showing a negative test strip with a reagent control mark (A) and a positive test strip with a reagent control mark above the positive test result (B). doi:10.1128/9781555819002.ch26.f19

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.20
Figure 26.20

BinaxNOW Malaria test kit showing examples of possible answers. C, control line; T1, specific line; T2, panspecific line for all species (Pf, ; Pv, ; Pm, ; Po, ). This test was not designed to detect the presence of ; the development of newer reagents for this species is under way. (Courtesy of Alere—FDA approved for use within the United States.) doi:10.1128/9781555819002.ch26.f20

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.21
Figure 26.21

Bed nets used in malaria prevention. (A) Nets being dipped in a suspension of insecticide following purchase. For people to appreciate the value of the insecticide treatment, it is important for them to see the process. The nets are wrung out, placed in a plastic bag, and returned to the owner. Later, in the house, the net is laid directly on the bed and allowed to dry out. This must be done indoors to avoid direct exposure to the sun, which degrades the insecticide. (B) Net in place in the home. The occupant of the house in the Bagamoyo BedNet Project, Tanzania, is preparing for rest. The net is a rectangular design, which provides a better ventilating effect than the conical variety. (C) Rectangular bed net being set up outdoors to enable the collection of mosquitoes by the Centers for Disease Control and Prevention Light Trap suspended on the left. Nets for this use are not treated with insecticide. Mosquitoes attracted to the person sleeping under the net are attracted to the light and enter the trap. In the morning, the trap is removed and the collection will indicate which mosquito species are hunting outdoors for blood meals. Similar collections can be made indoors. (Courtesy of Clive Shiff, Johns Hopkins University, with permission.) doi:10.1128/9781555819002.ch26.f21

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.22
Figure 26.22

Life cycle of spp. (Illustration by Gwen Gloege.) doi:10.1128/9781555819002.ch26.f22

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.23
Figure 26.23

(Top three rows) Nine examples of blood films containing the ring-like forms of spp. Shown are various ring forms, multiple rings per cell, some rings present outside of the red blood cells (circles), and the typical image of the Maltese cross configuration of the four rings (square). (Bottom) rings for comparison. Note: it is rare to see rings outside of the RBC. doi:10.1128/9781555819002.ch26.f23

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.24
Figure 26.24

(blacklegged or deer tick), which transmits sp. (Left) Adult female; (right) adult male. (Courtesy of the Department of Entomology, University of Wisconsin-Madison, Heriberto Verdugo M. and Darby S. Murphy; http://labs.russell.wisc.edu/wisconsin-ticks/wisconsin-ticks/ixodes-scapularis-black-legged-ticks/pictures-of-deer-ticks-and-other-ticks.) doi:10.1128/9781555819002.ch26.f24

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26.25
Figure 26.25

ticks. (Left) Female; (right) male. (Courtesy of Oklahoma State University, http://entoweb.okstate.edu/ddd/insects/blackleggedtick.htm.) doi:10.1128/9781555819002.ch26.f25

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819002.garcia.ch26
1. Cullen KA,, Arguin PM. 2013. Malaria Surveillance—United States, 2011. MMWR Surveill Summ 62(ss05):117.
2. Lou J,, Lucas R,, Grau GE. 2001. Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin Microbiol Rev 14:810820.
3. Robert LL,, Santos-Ciminera PD,, Andre RG,, Schultz GW,, Lawyer PG,, Nigro J,, Masuoka P,, Wirtz RA,, Neely J,, Gaines D,, Cannon CE,, Pettit D,, Garvey CW,, Goodfriend D,, Roberts DR. 2005. Plasmodium-infected anopheles mosquitoes collected in Virginia and Maryland following local transmission of Plasmodium vivax malaria in Loudoun County, Virginia. J Am Mosq Control Assoc 21:187193.
4. Petersen E. 2004. Malaria chemoprophylaxis: when should we use it and what are the options? Expert Rev Anti-Infect Ther 2:119132.
5. Krotoski WA,, Garnham PCC,, Bray RS,, Krotoski DM,, Killick-Kendrick R,, Draper CC,, Targett GAT,, Guy MW. 1982. Observations on early and late post sporozoite tissue stages in primate malaria. 1. Discovery of a new latent form of Plasmodium cynomolgi (the hypnozoite), and failure to detect hepatic forms within the first 24 hours after infection. Am J Trop Med Hyg 31:2435.
6. Baker DA. 2010. Malaria gametocytogenesis. Mol Biochem Parasitol 172:5765.
7. Berger SA,, David L. 2005. Pseudo-borreliosis in patients with malaria. Am J Trop Med Hyg 73:207209.
8. Spudick JM,, Garcia LS,, Graham DM,, Haake DA. 2005. Diagnostic and therapeutic pitfalls associated with primaquine-tolerant Plasmodium vivax. J Clin Microbiol 43:978981.
9. Baird JK. 2013. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev 26:3657.
10. Collins WE,, Jeffery GM. 2005. Plasmodium ovale: parasite and disease. Clin Microbiol Rev 18:570581.
11. Win TT,, Jalloh A,, Tantular IS,, Tsuboi T,, Ferreira MU,, Kimura M,, Kawamoto F. 2004. Molecular analysis of Plasmodium ovale variants. Emerg Infect Dis 10:12351240.
12. Collins WE,, Jeffery GM. 2007. Plasmodium malariae: parasite and disease. Clin Microbiol Rev 20:579592.
13. van Velthuysen MLF,, Florquin S. 2000. Glomerulopathy associated with parasitic infections. Clin Microbiol Rev 13:5566.
14. Kawai S,, Kano S,, Suzuki M. 1995. Rosette formation by Plasmodium coatneyi-infected erythrocytes of the Japanese macaque (Macaca fuscata). Am J Trop Med Hyg 53:295299.
15. Clark IA,, Alleva LM,, Mills AC,, Cowden WB. 2004. Pathogenesis of malaria and clinically similar conditions. Clin Microbiol Rev 17:509539.
16. Lee KS,, Cox-Singh J,, Singh B. 2009. Morphological features and differential counts of Plasmodium knowlesi parasites in naturally acquired human infections. Malar J 8:73.
17. Daneshvar C,, Davis TME,, Cox-Singh J,, Rafa'ee MZ,, Zakaria SK,, Divis PCS,, Singh B. 2009. Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis 49:852860.
18. Kantele A,, Jokiranta TRS. 2011. Review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi. Clin Infect Dis 52:13561362.
19. Purnomo,, Solihin A,, Gomez-Saladin E,, Bangs MJ. 1999. Rare quadruple malaria infection in Irian Jaya, Indonesia. J Parasitol 85:574579.
20. National Committee for Clinical Laboratory Standards. 2000. Laboratory Diagnosis of Blood-Borne Parasitic Diseases. Approved guideline M15-A. NCCLS, Wayne, PA.
21. Garcia LS (ed). 2010. Clinical Microbiology Procedures Handbook, 3rd ed. ASM Press, Washington, DC.
22. Lyke KE,, Diallo DA,, Dicko A,, Kone A,, Coulibaly D,, Guindo A,, Cissoko Y,, Sangare L,, Coulibaly S,, Dakouo B,, Taylor TE,, Doungo OK,, Plowe CV. 2003. Association of intraleukocytic Plasmodium falciparum malaria pigment with disease severity, clinical manifestations, and prognosis in severe malaria. Am J Trop Med Hyg 69:253259.
23. Garcia LS. 2010. Malaria. Clin Lab Med 30:93129.
24. De Monbrison F,, Gerome P,, Chaulet JF,, Wallon M,, Picot S,, Peyron F. 2004. Comparative diagnostic performance of two commercial rapid tests for malaria in a non-endemic area. Eur J Clin Microbiol Infect Dis 10:784786.
25. Forney JR,, Wongsrichanalai C,, Magill AJ,, Craig LG,, Sirichaisinthop J,, Bautista CT,, Miller RS,, Ockenhouse CF,, Kester KE,, Aronson NE,, Andersen EM,, Quino-Ascurra HA,, Vidal C,, Moran KA,, Murray CK,, DeWitt CC,, Heppner DG,, Kain KC,, Ballou WR,, Gasser RA Jr. 2003. Devices for rapid diagnosis of malaria: evaluation of prototype assays that detect Plasmodium falciparum histidine-rich protein 2 and a Plasmodium vivax-specific antigen. J Clin Microbiol 41:23582366.
26. Grobusch MP,, Hanscheid T,, Gobels K,, Slevogt H,, Zoller T,, Rogler G,, Teichmann D. 2003. Comparison of three antigen detection tests for diagnosis and follow-up of falciparum malaria in travelers returning to Berlin, Germany. Parasitol Res 89:354357.
27. Calderaro A,, Piccolo G,, Gorrini C,, Rossi S,, Montecchini S,, Dell'Anna ML,, De Conto F,, Medici MC,, Chezzi C,, Arcangeletti MC. 2013. Accurate identification of the six human Plasmodium spp. causing imported malaria, including Plasmodium ovale wallikeri and Plasmodium knowlesi. Malar J 12:321.
28. Hanscheid T. 1999. Diagnosis of malaria: a review of alternatives to conventional microscopy. Clin Lab Haematol 21:235245.
29. Iqbal J,, Khalid N,, Hira PR. 2002. Comparison of two commercial assays with expert microscopy for confirmation of symptomatically diagnosed malaria. J Clin Microbiol 40:46754678.
30. Iqbal J,, Muneer A,, Khalid N,, Ahmed MA. 2003. Performance of the OptiMAL test for malaria diagnosis among suspected malaria patients at the rural health centers. Am J Trop Med Hyg 68:624628.
31. Iqbal J,, Siddique A,, Jameel M,, Hira PR. 2004. Persistent histidine-rich protein 2, parasite lactate dehydrogenase, and panmalarial antigen reactivity after clearance of Plasmodium falciparum monoinfection. J Clin Microbiol 42:42374241.
32. Mayxay M,, Pukrittayakamee S,, Chotivanich K,, Imwong M,, Looareesuwan S,, White NJ. 2001. Identification of cryptic coinfection with Plasmodium falciparum in patients presenting with vivax malaria. Am J Trop Med Hyg 65:588592.
33. Moody A. 2002. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 15:6678.
34. Palmer CJ,, Bonilla JA,, Bruckner DA,, Barnett ED,, Miller NS,, Haseeb MA,, Masci JR,, Stauffer WM. 2003. Multicenter study to evaluate the OptiMAL test for rapid diagnosis of malaria in U.S. hospitals. J Clin Microbiol 41:51785182.
35. Playford EG,, Walker J. 2002. Evaluation of the ICT malaria P.f/P.v and the OptiMAL rapid diagnostic tests for malaria in febrile returned travelers. J Clin Microbiol 40:41664171.
36. Schneider P,, Wolters L,, Schoone G,, Schallig H,, Sillekens P,, Hermsen R,, Sauerwein R. 2005. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J Clin Microbiol 43:402405.
37. Wever PC,, Henskens YMC,, Kager PA,, Dankert J,, van Gool T. 2002. Detection of imported malaria with the Cell-Dyn 4000 hematology analyzer. J Clin Microbiol 40:47294731.
38. Grigg MJ,, William T,, Barber BE,, Parameswaran U,, Bird E,, Piera K,, Aziz A,, Dhanaraj P,, Yeo TW,, Anstey NM. 2014. Combining parasite lactate dehydrogenase-based and histidine rich protein-2 rapid tests to improve specificity for the diagnosis of malaria due to Plasmodium knowlesi and other Plasmodium species in Sabah, Malaysia. J Clin Microbiol 52:20532060.
39. Barber BE,, William T,, Grigg MJ,, Piera K,, Yeo TW,, Anstey NM. 2013. Evaluation of the sensitivity of a pLDH-based and an aldolase-based rapid diagnostic test for diagnosis of uncomplicated and severe malaria caused by PCR-confirmed Plasmodium knowlesi, Plasmodium falciparum, and Plasmodium vivax. J Clin Microbiol 5:11181123.
40. Berry A,, Fabre R,, Benoit-Vical F,, Cassaing S,, Magnaval JF. 2005. Contribution of PCR-based methods to diagnosis and management of imported malaria. Med Trop 65:176–183.
41. Bourgeois N,, Boutet A,, Bousquet PJ,, Basset D,, Douard-Enault C,, Charachon S,, Lachaud L. 2010. Comparison of three real-time PCR methods with blood smears and rapid diagnostic test in Plasmodium sp. infection. Clin Microbiol Infect 16:13051311.
42. Kersting S,, Rausch V,, Bier FF,, von Nickisch-Rosenegk M. 2014. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 13:99.
43. Reller ME,, Chen WH,, Dalton J,, Lichay MA,, Dumler JS. 2013. Multiplex 5′ nuclease quantitative real-time PCR for clinical diagnosis of malaria and species-level identification and epidemiologic evaluation of malaria-causing parasites, including Plasmodium knowlesi. J Clin Microbiol 51:29312938.
44. Polley SD,, Gonzalez IJ,, Mohamed D,, Daly R,, Bowers K,, Watson J,, Mewse E,, Armstrong M,, Gray C,, Perkins MD,, Bell D,, Kanda H,, Tomita N,, Kubota Y,, Mori Y,, Chiodini PL,, Sutherland CJ. 2013. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. J Infect Dis 208:637644.
45. Hopkins H,, Gonzalez IJ,, Polley SD,, Angutoko P,, Ategeka J,, Asiimwe C,, Agaba B,, Kyabayinze DJ,, Sutherland CJ,, Perkins MD,, Bell D. 2013. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis 208:645652.
46. Garcia LS,, Shimizu RY,, Bruckner DA. 1986. Blood parasites: problems in diagnosis using automated differential instrumentation. Diagn Microbiol Infect Dis 4:173176.
47. Schlagenhauf P,, Petersen E. 2008. Malaria chemoprophylaxis: strategies for risk groups. Clin Microbiol Rev 21:466472.
48. Beaver PC,, Jung RC,, Cupp EW. 1984. Clinical Parasitology, 9th ed. Lea & Febiger, Philadelphia, PA.
49. The Medical Letter. 2013. Drugs for Parasitic Infections, 3rd ed, Supplement. The Medical Letter, medicalletter.org.
50. Powell VI,, Grima K. 2002. Exchange transfusion for malaria and Babesia infection. Transfus Med Rev 16:239250.
51. Mwenesi HA. 2005. Social science research in malaria prevention, management and control in the last two decades: an overview. Acta Trop 95:292297.
52. Ambroise-Thomas P. 2012. The tragedy caused by fake antimalarial drugs. Mediterr J Hematol Infect Dis 4:e2012027.
53. Trigg PI,,, Kondrachine AV,. 1998. The current global malaria situation, p 1122. In Sherman IW (ed), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, DC.
54. Lindblade KA,, Eisele TP,, Gimnig JE,, Alaii JA,, Odhiambo F,, ter Kuile FO,, Hawley WA,, Wannemuehler KA,, Phillips-Howard PA,, Rosen DH,, Nahlen BL,, Terlouw DJ,, Adazu K,, Vulule JM,, Slutsker L. 2004. Sustainability of reductions in malaria transmission and infant mortality in western Kenya with use of insecticide-treated bednets: 4 to 6 years of follow-up. JAMA 291:26392641.
55. Shiff C. 2002. Integrated approach to malaria control. Clin Microbiol Rev 15:278293.
56. World Health Organization. 2005. World Malaria Report, 2005. World Health Organization, Geneva, Switzerland. http://rbm.who.int/wmr2005/html/exsummary_en.htm
57. Soto J,, Medina F,, Dember N,, Berman J. 1995. Efficacy of permethrin-impregnated uniforms in the prevention of malaria and leishmaniasis in Colombian soldiers. Clin Infect Dis 21:599602.
58. Good MF. 2005. Genetically modified Plasmodium highlights the potential of whole parasite vaccine strategies. Trends Immunol 26:295297.
59. Heppner DGJr,, Kester KE,, Ockenhouse CF,, Tornieporth N,, Ofori O,, Lyon JA,, Stewart VA,, Dubois P,, Lanar DE,, Krzych U,, Moris P,, Angov E,, Cummings JF,, Leach A,, Hall BT,, Dutta S,, Schwenk R,, Hillier C,, Barbosa A,, Ware LA,, Nair L,, Darko CA,, Withers MR,, Ogutu B,, Polnemus ME,, Fukuda M,, Pichyangkul S,, Gettyacamin M,, Diggs C,, Soisson L,, Milman J,, Dubois MC,, Garcon N,, Tucker K,, Wittes J,, Plowe CV,, Thera MA,, Duombo OK,, Pau MG,, Goudsmit J,, Ballou WR,, Cohen J. 2005. Towards an RTS,S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute for Research. Vaccine 23:22432250.
60. Schmunis GA,, Cruz JR. 2005. Safety of the blood supply in Latin America. Clin Microbiol Rev 18:1229.
61. Homer MJ,, Aguilar-Delfin I,, Telford SRIII,, Krause PJ,, Persing DH. 2000. Babesiosis. Clin Microbiol Rev 13:451469.
62. Hilton E,, DeVoti J,, Benach JL,, Halluska ML,, White DJ,, Paxton H,, Dumler JS. 1999. Seroprevalence and seroconversion for tickborne diseases in a high-risk population in the northeast United States. Am J Med 106:404409.
63. Dobroszycki J,, Herwaldt BL,, Boctor F,, Miller JR,, Linden J,, Eberhard ML,, Yoon JJ,, Ali NM,, Tanowitz HB,, Graham F,, Weiss LM,, Wittner M. 1999. A cluster of transfusion-associated babesiosis cases traced to a single asymptomatic donor. JAMA 281:927930.
64. Herwaldt BL,, Springs FE,, Roberts PP,, Eberhard ML,, Case K,, Persing DH,, Agger WA. 1995. Babesiosis in Wisconsin: a potentially fatal disease. Am J Trop Med Hyg 53:146151.
65. Sweeney CJ,, Ghassemi M,, Agger WA,, Persing DH. 1998. Coinfection with Babesia microti and Borrelia burgdorferi in a western Wisconsin resident. Mayo Clin Proc 73:338341.
66. Herwaldt BL,, deBruyn G,, Pieniazek NJ,, Homer M,, Lofy KH,, Slemenda SB,, Fritsche TR,, Persing DH,, Limaye AP. 2004. Babesia divergens-like infection, Washington state. Emerg Infect Dis 10:622629.
67. Joseph JT,, Purtill K,, Wong SJ,, Munoz J,, Teal A,, Madison-Antenucci S,, Horowitz HW,, Aguero-Rosenfeld ME,, Moore JM,, Abramowsky C,, Wormser GP. 2012. Vertical transmission of Babesia microti, United States. Emerg Infect Dis 18:13181321.
68. Lobo CA,, Cursino-Santos JR,, Alhassan A,, Rodrigues M. 2013. Babesia: an emerging infectious threat in transfusion medicine. PLoS Pathog 9:e1003387.
69. Herwaldt BL,, Caccio S,, Gherlinzoni F,, Aspock H,, Slemenda SB,, Piccaluga P,, Martinelli G,, Edelhofer R,, Hollenstein U,, Poletti G,, Pampiglione S,, Loschenberger K,, Tura S,, Pieniazek NJ. 2003. Molecular characterization of a non-Babesia divergens organism causing zoonotic babesiosis in Europe. Emerg Infect Dis 9:942948.
70. Herwaldt BL,, McGovern PC,, Gerwel MP,, Easton RM,, MacGregor RR. 2003. Endemic babesiosis in another eastern state: New Jersey. Emerg Infect Dis 9:184188.
71. Conrad PA,, Kjemtrup AM,, Carreno RA,, Thomford J,, Wainwright K,, Eberhard M,, Quick R,, Herwaldt SRBL. 2006. B duncani n.sp. is a distinct species from other known Babesia spp. for which morphologic and sequence information are available. Int J Parasitol 36:779789.
72. Prince HE,, Lape-Nixon M,, Patel H,, Yeh C. 3010. Comparison of the Babesia duncani (WA1) IgG detection rates among clinical sera submitted to a reference laboratory for WA1 IgG testing and blood donor specimens from diverse geographic areas of the United States. Clin Vaccine Immunol 17:17291733.
73. Teal A,, Haura AE,, Ennis J,, Keithly JS,, Madison-Antenucci S. 2012. A new real-time PCR assay for improved detection of the parasite Babesia microti. J Clin Microbiol 50:903908.
74. Bloch EM,, Lee TH,, Krause PJ,, Telford SRIII,, Montalvo L,, Chafets D,, Usmani-Brown S,, Lepore TJ,, Busch MP. 2013. Development of a real-time polymerase chain reaction assay for sensitive detection and quantitation of Babesia microti infection. Transfusion 53:22992306.
75. Singh B,, Daneshvar C. 2013. Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev 26:165184.
76. Bousema T,, Drakeley C. 2011. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 24:377410.
77. Chen Q,, Schlichtherle M,, Wahlgren M. 2001. Molecular aspects of severe malaria. Clin Microbiol Rev 13:439450.
78. White NJ,. 1998. Malaria pathophysiology, p 371385. In Sherman IW (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, DC.
79. Bates I,, Beduaddo G. 1998. Chronic malaria and splenic lymphoma: clues to understanding lymphoma evolution. Leukemia 11:21622167.
80. Fischer PR,, Boone P. 1998. Short report: severe malaria associated with blood group. Am J Trop Med Hyg 58:122123.
81. Giha HA,, Theander TG,, Staalso T,, Roper C,, Elhassan IM,, Babiker H,, Satti GMH,, Arnot DE,, Hviid L. 1998. Seasonal variation in agglutination of Plasmodium falciparum-infected erythrocytes. Am J Trop Med Hyg 58:399405.
82. Varney NR,, Roberts RJ,, Springer JA,, Connell SK,, Wood PS. 1997. Neuropsychiatric sequelae of cerebral malaria in Vietnam veterans. J Nerv Ment Dis 185:695703.
83. Canavese M,, Spaccapelo R. 2014. Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria. Pathog Glob Health 108:6775.
84. Adhikari B,, Tangpukdee N,, Krudsood S,, Wilairatana P. 2013. Factors associated with cerebral malaria. Southeast Asian J Trop Med Public Health 44:941949.
85. Tran VB,, Tran VB,, Lin KH. 1997. Malaria infection after allogeneic bone marrow transplantation in a child with thalassemia. Bone Marrow Transplant 19:12591260.
86. Turkmen A,, Sever MS,, Ecder T,, Yildiz A,, Aydin AE,, Erkoc R,, Eraksoy H,, Eldegez U,, Ark E. 1997. Posttransplant malaria. Transplantation 62:15211523.
87. Lefere F,, Besson C,, Datry A,, Chaibi P,, Leblond V,, Binet JL,, Sutton L. 1996. Transmission of Plasmodium falciparum by allogeneic bone marrow transplantation. Bone Marrow Transplant 18:473474.
88. Mejia R,, Booth GS,, Fedorko DP,, Hsieh MM,, Khuu HM,, Klein HG,, Mu J,, Fahle Nutman G,, TB,, Su XZ,, Williams EC,, Flegel WA,, Klion A. 2012. Peripheral blood stem cell transplant-related Plasmodium falciparum infection in a patient with sickle cell disease. Transfusion 52:26772682.
89. O'Donnell J,, Goldman JM,, Wagner K,, Ehinger G,, Martin N,, Leahy M,, Kariuki N,, Roberts I. 1998. Donor-derived Plasmodium vivax infection following volunteer unrelated bone marrow transplantation. Bone Marrow Transplant 21:313314.
90. Salutari P,, Sica S,, Chiusolo P,, Micciulli G,, Plaisant P,, Nacci A,, Antinori A,, Leone G. 1996. Plasmodium vivax malaria after autologous bone marrow transplantation: an unusual complication. Bone Marrow Transplant 18:805806.
91. Raina V,, Sharma A,, Gujral S,, Kumar R. 1998. Plasmodium vivax causing pancytopenia after allogeneic blood stem cell transplantation in CML. Bone Marrow Transplant 22:205206.
92. Dondorp AM,, Angus BJ,, Chotivanich K,, Silamut K,, Ruangveerayuth R,, Hardeman MR,, Kager PA,, Vreeken J,, White NJ. 1999. Red blood cell deformability as a predictor of anemia in severe falciparum malaria. Am J Trop Med Hyg 60:733737.
93. Dondorp AM,, Planche T,, Debel EE,, Angus BJ,, Chotivanich KT,, Silamut K,, Romjn JA,, Ruangveerayuth R,, Hoek FJ,, Kager PA,, Vreeken J,, White NJ. 1998. Nitric oxides in plasma, urine, and cerebrospinal fluid in patients with severe falciparum malaria. Am J Trop Med Hyg 59:497502.
94. Anstey NM,, Weinberg JB,, Wang Z,, Mwaikambo ED,, Duffy PE,, Granger DL. 1999. Effects of age and parasitemia on nitric oxide production/leukocyte nitric oxide synthase type 2 expression in asymptomatic, malaria-exposed children. Am J Trop Med Hyg 61:253258.
95. Anstey NM,, Granger DL,, Hassanali MY,, Mwaikambo ED,, Duffy PE,, Weinberg JB. 1999. Nitric oxide, malaria, and anemia: inverse relationship between nitri oxide production and hemoglobin concentration in asymptomatic, malaria-exposed children. Am J Trop Med Hyg 61:249252.
96. Fernandez V,, Treutiger CJ,, Nash GB,, Wahlgren M. 1998. Multiple adhesive phenotypes linked to rosetting binding of erythrocytes in Plasmodium falciparum malaria. Infect Immun 66:29692975.
97. Siano JP,, Grady KK,, Mellet P,, Wick TM. 1998. Short report. Plasmodium falciparum: cytoadherence to αvβ3 on human microvascular endothelial cells. Am J Trop Med Hyg 59:7779.
98. Brown H,, Hien TT,, Day N,, Mai NTH,, Chuong LV,, Chau TTH,, Loc PP,, Phu NH,, Bethell D,, Farrar J,, Gatter K,, White N,, Turner G. 1999. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 25:331341.
99. Treutiger CJ,, Carlson J,, Scholander C,, Wahlgren M. 1998. The time course of cytoadhesion, immunoglobulin binding, rosette formation, and serum-induced agglutination of Plasmodium falciparum-infected erythrocytes. Am J Trop Med Hyg 59:202207.
100. Ho M,, White NJ. 1999. Molecular mechanisms of cytoadherence in malaria. Am J Physiol 45C:12311242.
101. Rogerson SJ,, Tembenu R,, Dobano C,, Plitt S,, Taylor TE,, Molyneux ME. 1999. Cytoadherence characteristics of Plasmodium falciparum-infected erythrocytes from Malawian children with severe and uncomplicated malaria. Am J Trop Med Hyg 61:467472.
102. Kurthals JAL,, Reimert CM,, Tette E,, Dunyo SK,, Koran KA,, Akanmori BD,, Nkrumah FK,, Hviid L. 1998. Increased eosinophil activity in acute Plasmodium falciparum infection—association with cerebral malaria. Clin Exp Immunol 112:303307.
103. Newton CRJC,, Taylor TE,, Whitten RO. 1998. Pathophysiology of fatal falciparum malaria in African children. Am J Trop Med Hyg 58:673683.
104. Farnert A,, Rooth I,, Svensson A,, Snounou G,, Bjorkman A. 1999. Complexity of Plasmodium falciparum infections is consistent over time and protects against clinical disease in Tanzanian children. J Infect Dis 179:989995.
105. Beeson JG,, Brown GV,, Molyneux ME,, Mhango C,, Dzinjalamala F,, Rogerson SJ. 1999. Plasmodium falciparum isolates from infected pregnant women and children are associated with distinct adhesive and antigenic properties. J Infect Dis 180:464–472.
106. Chotivanich KT,, Pukrittayakamee S,, Simpson JA,, White NJ,, Udomsangpetch R. 1998. Characteristics of Plasmodium vivax-infected erythrocyte rosettes. Am J Trop Med Hyg 59:7376.
107. Hommel M,,, Gilles HM,. 1998. Malaria, p 361409. In Cox FEG,, Krier JP,, Wakelin D (ed), Topley & Wilson's Microbiology and Microbial Infections, 9th ed. Arnold, London, United Kingdom.
108. Hommel B,, Charuel JL,, Jaureguiberry S,, Arnaud L,, Courtin R,, Kassab P,, Prendki V,, Paris L,, Ghillani-Dalbin P,, Thellier M,, Caumes E,, Amoura Z,, Mazier D,, Musset L,, Buffet P,, Miyara M. 2014. Chronic malaria revealed by a new fluorescence pattern on the antinuclear autoantibodies test. PLoS One 9:e88548.
109. Wilkinson RJ,, Brown JL,, Pasvol JLG,, Chiodini PL,, Davidson RN. 1994. Severe falciparum malaria: predicting the effect of exchange transfusion. Q J Med 87:553557.
110. World Health Organization. 2012. Malaria rapid diagnostic test performance. Summary results of WHO product testing of malaria RDTs: Round 1-4 (2008-2012). http://apps.who.int/iris/bitstream/10665/77748/1/9789241504720_eng.pdf?ua=1
111. Talisuna AO,, Bloland P,, D'Alessandro U. 2004. History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev 17:235254.
112. Winstanley P,, Ward S,, Snow R,, Breckenridge A. 2004. Therapy of falciparum malaria in sub-Saharan Africa: from molecule to policy. Clin Microbiol Rev 17:612637.
113. Yeung S,, Pingtavornpinyo W,, Hastings IM,, Mills AJ,, White NJ. 2004. Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices. Am J Trop Med Hyg 71:179186.
114. Kappagoda S,, Singh U,, Blackburn BG. 2011. Antiparasitic therapy. Mayo Clin Proc 86:561583.
115. Buckling A,, Ranford-Cartwright LC,, Miles A,, Read AF. 1999. Chloroquine increases Plasmodium falciparum gametocytogenesis in vitro. Parasitology 118:339346.
116. Milhous WK,,, Kyle DE,. 1998. Introduction to the modes of action of and mechanisms of resistance to antimalarials, p 303316. In Sherman IW (ed), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, DC.
117. Ringwald P,, Meche FS,, Basco LK. 1999. Short report: effects of pyronaridine on gametocytes in patients with acute uncomplicated falciparum malaria. Am J Trop Med Hyg 61:446448.
118. Bloland PB. 2001. Drug Resistance in Malaria. WHO/CDS/CSR/DRS/2001.4. World Health Organization, Geneva, Switzerland.
119. Jongwutiwes S,, Putaporntip C,, Iwasaki T,, Sata T,, Kanbara H. 2004. Naturally acquired Plasmodium knowlesi malaria in human, Thailand. Emerg Infect Dis 10:22112213.
120. Ayisi JG,, van Eijk AM,, Newman RD,, ter Kuile FO,, Shi YP,, Yang C,, Kolszak MS,, Otieno JA,, Misore AO,, Kager PA,, Lal RB,, Steketee RW,, Nahlen BL. 2004. Maternal malaria and perinatal HIV transmission, Western Kenya. Emerg Infect Dis 10:643652.
121. Baird JK. 2004. Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother 48:40754083.
122. Farooq U,, Mahajan RC. 2004. Drug resistance in malaria. J Vector Borne Dis 41:4553.
123. Hugosson E,, Tarimo D,, Troye-Blomberg M,, Montgomery SM,, Premji Z,, Björkman A. 2003. Antipyretic, parasitologic, and immunologic effects of combining sulfadoxine/pyrimethamine with chloroquine or paracetamol for treating uncomplicated Plasmodium falciparum malaria. Am J Trop Med Hyg 69:366371.
124. Kuhn S,, Gill MJ,, Kain KC. 2005. Emergence of atovaquone-proguanil resistance during treatment of Plasmodium falciparum malaria acquired by a non-immune North American traveler to West Africa. Am J Trop Med Hyg 72:407409.
125. Suputtamongkol Y,, Chindarat S,, Silpasakorn S,, Chaikachonpatd S,, Lim K,, Chanthapakajee K,, Kaewkaukul N,, Thamlikitkul V. 2003. The efficacy of combined mefloquine-artesunate versus mefloquine-primaquine on subsequent development of Plasmodium falciparum gametocytemia. Am J Trop Med Hyg 68:620623.
126. Magesa SM,, Mdira KY,, Färnert A,, Simonsen PE,, Bygbjerg IC,, Jakobsen PH. 2001. Distinguishing Plasmodium falciparum treatment failures from re-infections by using polymerase chain reaction genotyping in a holoendemic area in northeastern Tanzania. Am J Trop Med Hyg 65:477483.
127. Dondorp AM,, Newton PN,, Mayxay M,, Van Damme W,, Smithuis FM,, Yeung S,, Petit A,, Lynam AJ,, Johnson A,, Hien TT,, McGready R,, Farrar JJ,, Looareesuwan S,, Day NP,, Green MD,, White NJ. 2004. Fake antimalarials in Southeast Asia are a major impediment to malaria control: multinational cross-sectional survey on the prevalence of fake antimalarials. Trop Med Int Health 9:12411246.
128. Ittarat W,, Pickard AL,, Rattanasinganchan P,, Wilai-ratana P,, Looareesuwan S,, Emery K,, Low J,, Udon-sangpetch R,, Meshnick SR. 2003. Recrudescence in artesunate-treated patients with falciparum malaria is dependent on parasite burden, not on parasite factors. Am J Trop Med Hyg 68:147152.
129. Hill AVS,,, Weatherall DJ,. 1998. Host genetic factors in resistance to malaria, p 445455. In Sherman IW (ed), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, DC.
130. Beier JC,,, Vanderberg JP,. 1998. Sporogonic development in the mosquito, p 4961. In Sherman IW (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, DC.
131. Yabsley MJ,, Shock BC. 2013. Natural history of zoonotic Babesia: role of wildlife reservoirs. Int J Parasites Wildl 2:1831.

Tables

Generic image for table
TABLE 26.1

Countries reported by the Centers for Disease Control and Prevention to have areas of endemic malaria (2013)

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.2

spp.: characteristics of the five infections

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.3

Malaria pathophysiology

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.4

pathogenesis and sequelae

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.5

Immunopathology of malaria

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.6

Parasitemia determined from conventional light microscopy: clinical correlation

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.7

Malaria characteristics

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.8

Plasmodia in Giemsa-stained thin blood films

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.9

Alternative approaches to malaria diagnosis

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.10

Antimalarial drugs and their actions

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.11

drugs and therapeutic use

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.12

Antimalarial drugs and associated problems

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.13

Malaria resistance

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.14

Areas with reported chloroquine-resistant

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.15

Drugs available in the United States for treatment of malaria

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.16

Drugs used for the prevention of malaria

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.17

Current issues related to maternal malaria, transmission, pathogenesis, and therapy options

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.18

Malaria epidemics in recent years: climatic change, population displacement, control policy failures, drug resistance

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.19

Host genetic factors in resistance to malaria

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.20

Epidemiology of malaria

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.21

Relevant concepts for the control of mosquito transmission of human malaria parasites

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.22

Global strategy for malaria control: constraints

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26
Generic image for table
TABLE 26.23

Similarities and differences in spp.

Citation: Garcia L. 2016. Malaria and Babesiosis, p 719-777. In Diagnostic Medical Parasitology, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819002.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error