1887

Chapter 4 : Digital PCR and Its Potential Application to Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Digital PCR and Its Potential Application to Microbiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch4-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch4-2.gif

Abstract:

A digital PCR (dPCR) takes a PCR and subdivides it across a large number of smaller reactions, termed partitions, so that a number of the partitions contain no template molecules. Many of the ideas that underpin dPCR were described in the late 1980s and early 1990s (1) and applied at that time using conventional or nested PCR. However, the procedure originally required partitioning of a single sample using individual tubes or a 96-well plate, followed by amplicon detection by agarose gel electrophoresis. This initial format represented a very unwieldy technique and an inefficient use of time and resources.

Citation: Huggett J, Garson J, Whale A. 2016. Digital PCR and Its Potential Application to Microbiology, p 49-57. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Influence of the number of positive partitions on the estimated copy calculations. Graph demonstrating the linear relationship between the number of positive partitions and estimated copies (red line) when a total of 10,000 partitions are measured. (A) When λ is low (<0.1), the number of positive partitions is almost equal to the number of molecules (blue dashed lines). (B) As λ increases, the total number of estimated copies exceeds the number of positive partitions (blue dashed lines), so the dynamic range is greater than the total number of partitions.

Citation: Huggett J, Garson J, Whale A. 2016. Digital PCR and Its Potential Application to Microbiology, p 49-57. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Influence of the number of positive partitions on precision. Graph demonstrating the correlation between the precision and the proportion of positive partitions observed. At very low or high λ, the precision is reduced. The highest precision is observed when 1.5 < λ < 1.6, where the number of positive partitions is between 7,700 and 8,000. Graph calculated using Ucount (https://dna.utah.edu/ucount/uc.html).

Citation: Huggett J, Garson J, Whale A. 2016. Digital PCR and Its Potential Application to Microbiology, p 49-57. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Detection of single nucleotide polymorphisms using droplet dPCR. Example of graphs produced with the QuantaSoft Software from the QX200 Droplet Digital PCR System (Bio-Rad). The horizontal and vertical pink lines represent the thresholds between negative and positive droplets. (A) One-dimensional plot illustrating positive and negative droplets using a uniplex reaction containing a mutant-specific probe only. The mutant-only sample (MT) gives two distinct droplet populations: positive (blue droplets) and negative (gray droplets). The presence of the wild type sequence in the wild type-only sample (WT) and mixed sample (MT & WT) generates a second population of droplets that falls between the negative and positive droplets due to the probe binding with lower affinity to the wild type sequence. (B) Two-dimensional plot of the mixed sample shown in (A) with a duplex reaction containing both the mutant and wild type probes. Each droplet has both a mutant and wild type signal, so four possible outcomes are observed: MT only (blue), WT only (green), MT & WT (orange), and negative (gray). (C) Two-dimensional plot of a mixed sample showing partition-specific competitive PCR. Droplets containing both MT and WT sequences (orange) merge with the MT only (blue) and WT only (green) droplets to form an “arc” across the plot with reduced amplitude of one or both signals, thus making confident positioning of the thresholds difficult.

Citation: Huggett J, Garson J, Whale A. 2016. Digital PCR and Its Potential Application to Microbiology, p 49-57. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819071.ch04
1. Morley AA. 2014. Digital PCR: a brief history. Biomol Detect Quant 1:13.[CrossRef]
2. Vogelstein B, Kinzler KW. 1999. Digital PCR. Proc Natl Acad Sci USA 96:92369241.[CrossRef][PubMed]
3. Huggett JF, Cowen S, Foy CA. 2015. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem 61:7988.[CrossRef][PubMed]
4. Higuchi R, Dollinger G, Walsh PS, Griffith R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10:413417.[CrossRef][PubMed]
5. Garson JA, Grant PR, Ayliffe U, Ferns RB, Tedder RS. 2005. Real-time PCR quantitation of hepatitis B virus DNA using automated sample preparation and murine cytomegalovirus internal control. J Virol Methods 126:207213.[CrossRef][PubMed]
6. Gullett JC, Nolte FS. 2015. Quantitative nucleic acid amplification methods for viral infections. Clin Chem 61:7278.[CrossRef][PubMed]
7. Gunson RN, Collins TC, Carman WF. 2006. Practical experience of high throughput real time PCR in the routine diagnostic virology setting. J Clin Virol 35:355367.[CrossRef][PubMed]
8. Niemz A, Boyle DS, Ferguson TM,. 2014. Point-of-care nucleic acid testing: clinical applications and current technologies, p 163213. In Huggett JF, O'Grady J (ed), Molecular Diagnostics: Current Research and Applications. Caister Academic Press, Norfolk, UK.
9. Niemz A, Ferguson TM, Boyle DS. 2011. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240250.[CrossRef][PubMed]
10. Devonshire AS, Sanders R, Wilkes TM, Taylor MS, Foy CA, Huggett JF. 2013. Application of next generation qPCR and sequencing platforms to mRNA biomarker analysis. Methods 59:89100.[CrossRef][PubMed]
11. Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA, Scott DJ. 2012. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40:e82.[CrossRef][PubMed]
12. Sanders R, Huggett JF, Bushell CA, Cowen S, Scott DJ, Foy CA. 2011. Evaluation of digital PCR for absolute DNA quantification. Anal Chem 83:64746484.[CrossRef][PubMed]
13. Sanders R, Mason DJ, Foy CA, Huggett JF. 2013. Evaluation of digital PCR for absolute RNA quantification. PLoS One 8:e75296.[CrossRef][PubMed]
14. Dube S, Qin J, Ramakrishnan R. 2008. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3:e2876.[CrossRef][PubMed]
15. Devonshire AS, Honeyborne I, Gutteridge A, Whale AS, Nixon G, Wilson P, Jones G, McHugh TD, Foy CA, Huggett JF. 2015. Highly reproducible absolute quantification of Mycobacterium tuberculosis complex by digital PCR. Anal Chem 87:37063713.[CrossRef][PubMed]
16. Haynes RJ, Kline MC, Toman B, Scott C, Wallace P, Butler JM, Holden MJ. 2013. Standard reference material 2366 for measurement of human cytomegalovirus DNA. J Mol Diagn 15:177185.[CrossRef][PubMed]
17. Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW. 2011. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 11:21672174.[CrossRef][PubMed]
18. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouche O, Landi B, Hutchison JB, Laurent-Puig P. 2013. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59:17221731.[CrossRef][PubMed]
19. Fryer JF, Baylis SA, Gottlieb AL, Ferguson M, Vincini GA, Bevan VM, Carman WF, Minor PD. 2008. Development of working reference materials for clinical virology. J Clin Virol 43:367371.[CrossRef][PubMed]
20. Weaver S, Dube S, Mir A, Qin J, Sun G, Ramakrishnan R, Jones RC, Livak KJ. 2010. Taking qPCR to a higher level: analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods 50:271276.[CrossRef][PubMed]
21. Tichopad A, Kitchen R, Riedmaier I, Becker C, Stahlberg A, Kubista M. 2009. Design and optimization of reverse-transcription quantitative PCR experiments. Clin Chem 55:18161823.[CrossRef][PubMed]
22. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611622.[CrossRef][PubMed]
23. Bhat S, McLaughlin JL, Emslie KR. 2011. Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction. Analyst 136:724732.[CrossRef][PubMed]
24. Dingle TC, Sedlak RH, Cook L, Jerome KR. 2013. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem 59:16701672.[CrossRef][PubMed]
25. Nixon G, Garson JA, Grant P, Nastouli E, Foy CA, Huggett JF. 2014. Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus. Anal Chem 86:43874394[CrossRef][PubMed]
26. Whale AS, Cowen S, Foy CA, Huggett JF. 2013. Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS One 8:e58177.[CrossRef][PubMed]
27. Stahlberg A, Kubista M, Pfaffl M. 2004. Comparison of reverse transcriptases in gene expression analysis. Clin Chem 50:16781680.[CrossRef][PubMed]
28. Pholwat S, Stroup S, Foongladda S, Houpt E. 2013. Digital PCR to detect and quantify heteroresistance in drug resistant Mycobacterium tuberculosis. PLoS One 8:e57238.[CrossRef][PubMed]
29. Bhat S, Curach N, Mostyn T, Bains GS, Griffiths KR, Emslie KR. 2010. Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units. Anal Chem 82:71857192.[CrossRef][PubMed]
30. Burke DG, Dong L, Bhat S, Forbes-Smith M, Fu S, Pinheiro L, Jing W, Emslie KR. 2013. Digital polymerase chain reaction measured pUC19 marker as calibrant for HPLC measurement of DNA quantity. Anal Chem 85:16571664.[CrossRef][PubMed]
31. Bhat S, Herrmann J, Armishaw P, Corbisier P, Emslie KR. 2009. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem 394:457467.[CrossRef][PubMed]
32. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:10031011.[CrossRef][PubMed]
33. Jacobs BK, Goetghebeur E, Clement L. 2014. Impact of variance components on reliability of absolute quantification using digital PCR. BMC Bioinformatics 15:283.[CrossRef][PubMed]
34. Huggett JF, Laver T, Tamisak S, Nixon G, O'Sullivan DM, Elaswarapu R, Studholme DJ, Foy CA. 2013. Considerations for the development and application of control materials to improve metagenomic microbial community profiling. Accred Qual Assur 18:7783.[CrossRef]
35. O'Sullivan DM, Laver T, Temisak S, Redshaw N, Harris KA, Foy CA, Studholme DJ, Huggett JF. 2014. Assessing the accuracy of quantitative molecular microbial profiling. Int J Mol Sci 15:2147621491.[CrossRef][PubMed]
36. Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, Caliendo AM. 2013. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol 51:540546.[CrossRef][PubMed]
37. Sedlak RH, Cook L, Cheng A, Magaret A, Jerome KR. 2014. Clinical utility of droplet digital PCR for human cytomegalovirus. J Clin Microbiol 52:28442848.[CrossRef][PubMed]
38. Henrich TJ, Gallien S, Li JZ, Pereyra F, Kuritzkes DR. 2012. Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR. J Virol Methods 186:6872.[CrossRef][PubMed]
39. Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, Spina CA, Woelk CH, Richman DD. 2013. Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One 8:e55943.[CrossRef][PubMed]
40. Leibovitch EC, Brunetto GS, Caruso B, Fenton K, Ohayon J, Reich DS, Jacobson S. 2014. Coinfection of human herpesviruses 6A (HHV-6A) and HHV-6B as demonstrated by novel digital droplet PCR assay. PLoS One 9:e92328.[CrossRef][PubMed]
41. Sedlak RH, Cook L, Huang ML, Magaret A, Zerr DM, Boeckh M, Jerome KR. 2014. Identification of chromosomally integrated human herpesvirus 6 by droplet digital PCR. Clin Chem 60:765772.[CrossRef][PubMed]
42. Boizeau L, Laperche S, Desire N, Jourdain C, Thibault V, Servant-Delmas A. 2014. Could droplet digital PCR be used instead of real-time PCR for quantitative detection of the hepatitis B virus genome in plasma? J Clin Microbiol 52:34973498.[CrossRef][PubMed]
43. Shen F, Davydova EK, Du W, Kreutz JE, Piepenburg O, Ismagilov RF. 2011. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip. Anal Chem 83:35333540.[CrossRef][PubMed]
44. Kelley K, Cosman A, Belgrader P, Chapman B, Sullivan DC. 2013. Detection of methicillin-resistant Staphylococcus aureus by a duplex droplet digital PCR assay. J Clin Microbiol 51:20332039.[CrossRef][PubMed]
45. Roberts CH, Last A, Molina-Gonzalez S, Cassama E, Butcher R, Nabicassa M, McCarthy E, Burr SE, Mabey DC, Bailey RL, Holland MJ. 2013. Development and evaluation of a next-generation digital PCR diagnostic assay for ocular Chlamydia trachomatis infections. J Clin Microbiol 51:21952203.[CrossRef][PubMed]
46. Last AR, Roberts C, Cassama E, Nabicassa M, Molina-Gonzalez S, Burr SE, Mabey DC, Bailey RL, Holland MJ. 2014. Plasmid copy number and disease severity in naturally occurring ocular Chlamydia trachomatis infection. J Clin Microbiol 52:324327.[CrossRef][PubMed]
47. Straub T, Baird C, Bartholomew RA, Colburn H, Seiner D, Victry K, Zhang L, Bruckner-Lea CJ. 2013. Estimated copy number of Bacillus anthracis plasmids pXO1 and pXO2 using digital PCR. J Microbiol Methods 92:910.[CrossRef][PubMed]
48. Lui YL, Tan EL. 2014. Droplet digital PCR as a useful tool for the quantitative detection of Enterovirus 71. J Virol Methods 207:200203.[CrossRef][PubMed]
49. Mukaide M, Sugiyama M, Korenaga M, Murata K, Kanto T, Masaki N, Mizokami M. 2014. High-throughput and sensitive next-generation droplet digital PCR assay for the quantitation of the hepatitis C virus mutation at core amino acid 70. J Virol Methods 207:169177.[CrossRef][PubMed]
50. Shen F, Sun B, Kreutz JE, Davydova EK, Du W, Reddy PL, Joseph LJ, Ismagilov RF. 2011. Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load. J Am Chem Soc 133:177057712.[CrossRef][PubMed]
51. Tamayo E, Almansa R, Carrasco E, Avila-Alonso A, Rodriguez-Fernandez A, Wain J, Heredia M, Gomez-Sanchez E, Soria S, Rico L, Iglesias V, Martinez-Martinez A, Andaluz-Ojeda D, Herreras JI, Eiros JM, Bermejo-Martin JF. 2014. Quantification of IgM molecular response by droplet digital PCR as a potential tool for the early diagnosis of sepsis. Crit Care 18:433.[CrossRef][PubMed]
52. Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley G, Wittwer CT, Schjerling P, Day PJ, Abreu M, Aguado B, Beaulieu JF, Beckers A, Bogaert S, Browne JA, Carrasco-Ramiro F, Ceelen L, Ciborowski K, Cornillie P, Coulon S, Cuypers A, De Brouwer S, De Ceuninck L, De Craene J, De Naeyer H, De Spiegelaere W, Deckers K, Dheedene A, Durinck K, Ferreira-Teixeira M, Fieuw A, Gallup JM, Gonzalo-Flores S, Goossens K, Heindryckx F, Herring E, Hoenicka H, Icardi L, Jaggi R, Javad F, Karampelias M, Kibenge F, Kibenge M, Kumps C, Lambertz I, Lammens T, Markey A, Messiaen P, Mets E, Morais S, Mudarra-Rubio A, Nakiwala J, Nelis H, Olsvik PA, Perez-Novo C, Plusquin M, Remans T, Rihani A, Rodrigues-Santos P, Rondou P, Sanders R, Schmidt-Bleek K, Skovgaard K, Smeets K, Tabera L, Toegel S, Van Acker T, Van den Broeck W, Van der Meulen J, Van Gele M, Van Peer G, Van Poucke M, Van Roy N, Vergult S, Wauman J, Tshuikina-Wiklander M, Willems E, Zaccara S,, Z eka F, Vandesompele J. 2013. The need for transparency and good practices in the qPCR literature. Nat Methods 10:10631067.[CrossRef][PubMed]
53. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, Hellemans J, Kubista M, Mueller RD, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, Bustin SA. 2013. The digital MIQE guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clin Chem 59:892902.[CrossRef][PubMed]
54. Corbisier P, Bhat S, Partis L, Xie VR, Emslie KR. 2010. Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction. Anal Bioanal Chem 396:21432150.[CrossRef][PubMed]
55. White H, Deprez L, Corbisier P, Hall V, Lin F, Mazoua S, Trapmann S, Aggerholm A, Andrikovics H, Akiki S, Barbany G, Boeckx N, Bench A, Catherwood M, Cayuela JM, Chudleigh S, Clench T, Colomer D, Daraio F, Dulucq S, Farrugia J, Fletcher L, Foroni L, Ganderton R, Gerrard G, Gineikiene E, Hayette S, El Housni H, Izzo B, Jansson M, Johnels P, Jurcek T, Kairisto V, Kizilors A, Kim DW, Lange T, Lion T, Polakova KM, Martinelli G, McCarron S, Merle PA, Milner B, Mitterbauer-Hohendanner G, Nagar M, Nickless G, Nomdedeu J, Nymoen DA, Leibundgut EO, Ozbek U, Pajic T, Pfeifer H, Preudhomme C, Raudsepp K, Romeo G, Sacha T, Talmaci R, Touloumenidou T, Van der Velden VH, Waits P, Wang L, Wilkinson E, Wilson G, Wren D, Zadro R, Ziermann J, Zoi K, Muller MC, Hochhaus A, Schimmel H, Cross NC, Emons H. 2015. A certified plasmid reference material for the standardisation of BCR-ABL1 mRNA quantification by real-time quantitative PCR. Leukemia 29:369376[CrossRef].[PubMed]

Tables

Generic image for table
TABLE 1

Details of the currently available dPCR instruments

Citation: Huggett J, Garson J, Whale A. 2016. Digital PCR and Its Potential Application to Microbiology, p 49-57. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error