1887

Chapter 6 : Next-Generation Sequencing

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Next-Generation Sequencing, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch6-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch6-2.gif

Abstract:

Next-generation sequencing (NGS), otherwise known as deep or massively parallel sequencing, refers to the technological advances in DNA sequencing instrumentation that enable the generation of hundreds of thousands to millions of sequence reads per run. Sequencing of the human genome, which was once a >10-year endeavor by the NIH at the cost of approximately $3 billion (1), can now be done routinely on a single instrument. Rapid advances in technology led to the first-ever FDA clearance of an NGS instrument, the Illumina MiSeq, in 2014 (2), and the development of rapid, miniaturized sequencing devices such as the Oxford Nanopore are ongoing (3). The applications of NGS are wide-ranging and include (i) whole-genome sequencing, (ii) pathogen discovery, (iii) metagenomic/microbiome analyses, (iv) transcriptome profiling, and (vi) infectious disease diagnosis. Here we will focus on NGS technology and the last three applications, because the first two topics are described in detail elsewhere.

Citation: Chiu C, Miller S. 2016. Next-Generation Sequencing, p 68-79. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Sequencing methods for currently available NGS platforms. (A) The sequencers manufactured by Roche/454 (left), SOLiD (middle), and Ion Torrent (right) all use bead-based emulsion PCR (rectangular inset) in the library generation process, followed by different approaches to fluorescent-based sequencing. (B) Illumina sequencing involves library generation on a flow cell via a sequencing-by-synthesis approach and the imaging of millions of fluorescent flow cell clusters. (C) PacBio sequencing is performed by a DNA polymerase enzyme affixed to a glass substrate in a zero-mode waveguide nanostructure. Each nanostructure generates an individual sequence. (D) Nanopore sequencing, as performed by the Oxford Nanopore MinION instrument, leverages the voltage conductance changes (left) that occur in response to passage of DNA through a nanopore (right), a protein in the lipid-bilayer membrane containing a single hole that allows a single molecule of DNA to pass through.

Citation: Chiu C, Miller S. 2016. Next-Generation Sequencing, p 68-79. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic overview of an NGS pipeline. Sample processing for NGS involves a stepwise process of nucleic acid extraction, library preparation, and sequencing on a dedicated instrument (left). Following generation of raw data, bioinformatics analysis of metagenomic or microbial NGS data includes preprocessing, assembly, host subtraction, pathogen identification, taxonomic classification, and results reporting/visualization (right). The asterisks denote optional steps in the procedure.

Citation: Chiu C, Miller S. 2016. Next-Generation Sequencing, p 68-79. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819071.ch06
1. Hayden EC. 2014. Technology: The $1,000 genome. Nature 507:294295[CrossRef].[PubMed]
2. Collins FS, Hamburg MA. 2013. First FDA authorization for next-generation sequencer. N Engl J Med 369:23692371[CrossRef].[PubMed]
3. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, O'Grady J. 2015. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33:296300[CrossRef].[PubMed]
4. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M. 1977. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687695[CrossRef].[PubMed]
5. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P. 2014. Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56:6164, 66, 68 passim.[PubMed]
6. Ronaghi M. 2001. Pyrosequencing sheds light on DNA sequencing. Genome Res 11:311[CrossRef].[PubMed]
7. Mardis ER. 2008. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387402[CrossRef].[PubMed]
8. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. 2012. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341[CrossRef].[PubMed]
9. Schneider GF, Dekker C. 2012. DNA sequencing with nanopores. Nat Biotechnol 30:326328[CrossRef].[PubMed]
10. Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD. 2006. Amplification of complex gene libraries by emulsion PCR. Nat Methods 3:545550[CrossRef].[PubMed]
11. Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T, Huang X, Jovanovich SB, Nelson JR, Schloss JA, Schwartz DC, Vezenov DV. 2009. The challenges of sequencing by synthesis. Nat Biotechnol 27:10131023[CrossRef].[PubMed]
12. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM. 2005. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:17281732[CrossRef].[PubMed]
13. Arnaud CH. 2013. DNA sequencing: zero-mode waveguides turn 10. Chem Eng News 91:34
14. McNally B, Singer A, Yu Z, Sun Y, Weng Z, Meller A. 2010. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett 10:22372244[CrossRef].[PubMed]
15. Maitra RD, Kim J, Dunbar WB. 2012. Recent advances in nanopore sequencing. Electrophoresis 33:34183428[CrossRef].[PubMed]
16. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR. 2015. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25:17501756.[CrossRef]
17. Chiu CY. 2013. Viral pathogen discovery. Curr Opin Microbiol 16:468478[CrossRef].[PubMed]
18. Koren S, Phillippy AM. 2015. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110120[CrossRef].[PubMed]
19. Quick J, Quinlan AR, Loman NJ. 2014. A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer. Gigascience 3:22[CrossRef].[PubMed]
20. Rousseaux S, Khochbin S (ed). 2011. Epigenetics and Human Reproduction, p. 1. Springer, Berlin, Germany.
21. Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E, Bouquet J, Greninger AL, Luk KC, Enge B, Wadford DA, Messenger SL, Genrich GL, Pellegrino K, Grard G, Leroy E, Schneider BS, Fair JN, Martínez MA, Isa P, Crump JA, DeRisi JL, Sittler T, Hackett J Jr, Miller S, Chiu CY. 2014. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res 24:11801192[CrossRef].[PubMed]
22. Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW. 2013. Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLOS Comput Biol 9:e1003031[CrossRef].[PubMed]
23. Margulies M, , et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376380.[PubMed]
24. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW. 2010. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38:e159[CrossRef].[PubMed]
25. Chaisson MJ, Brinza D, Pevzner PA. 2009. De novo fragment assembly with short mate-paired reads: does the read length matter? Genome Res 19:336346[CrossRef].[PubMed]
26. Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S, Nordentoft I, Birkenkamp-Demtröder K, Kruhøffer M, Hager H, Knudsen B, Andersen CL, Sørensen KD, Pedersen JS, Ørntoft TF, Dyrskjøt L. 2014. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One 9:e98187[CrossRef].[PubMed]
27. Chai V, Vassilakos A, Lee Y, Wright JA, Young AH. 2005. Optimization of the PAXgene blood RNA extraction system for gene expression analysis of clinical samples. J Clin Lab Anal 19:182188[CrossRef].[PubMed]
28. Wylie KM, Weinstock GM, Storch GA. 2012. Emerging view of the human virome. Transl Res 160:283290[CrossRef].[PubMed]
29. Petti CA. 2007. Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis 44:11081114[CrossRef].[PubMed]
30. Zwirglmaier K, Ludwig W, Schleifer KH. 2004. Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization—RING-FISH. Mol Microbiol 51:8996[CrossRef].[PubMed]
31. Strong MJ, Xu G, Morici L, Splinter Bon-Durant S, Baddoo M, Lin Z, Fewell C, Taylor CM, Flemington EK. 2014. Microbial contamination in next generation sequencing: implications for sequence-based analysis of clinical samples. PLoS Pathog 10:e1004437[CrossRef].[PubMed]
32. Towner JS, Rollin PE, Bausch DG, Sanchez A, Crary SM, Vincent M, Lee WF, Spiropoulou CF, Ksiazek TG, Lukwiya M, Kaducu F, Downing R, Nichol ST. 2004. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J Virol 78:43304341[CrossRef].[PubMed]
33. Kohl C, Brinkmann A, Dabrowski PW, Radonić A, Nitsche A, Kurth A. 2015. Protocol for metagenomic virus detection in clinical specimens. Emerg Infect Dis 21:4857[CrossRef].[PubMed]
34. Marston DA, McElhinney LM, Ellis RJ, Horton DL, Wise EL, Leech SL, David D, de Lamballerie X, Fooks AR. 2013. Next generation sequencing of viral RNA genomes. BMC Genomics 14:444[CrossRef].[PubMed]
35. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ. 2010. Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111118[CrossRef].[PubMed]
36. Bystrykh LV. 2012. Generalized DNA barcode design based on Hamming codes. PLoS One 7:e36852[CrossRef].[PubMed]
37. Naccache SN, Greninger AL, Lee D, Coffey LL, Phan T, Rein-Weston A, Aronsohn A, Hackett J Jr, Delwart EL, Chiu CY. 2013. The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns. J Virol 87:1196611977[CrossRef].[PubMed]
38. Motley ST, Picuri JM, Crowder CD, Minich JJ, Hofstadler SA, Eshoo MW. 2014. Improved multiple displacement amplification (iMDA) and ultraclean reagents. BMC Genomics 15:443[CrossRef].[PubMed]
39. Laurence M, Hatzis C, Brash DE. 2014. Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS One 9:e97876[CrossRef].[PubMed]
40. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87[CrossRef].[PubMed]
41. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:16471649[CrossRef].[PubMed]
42. Blankenberg D, Hillman-Jackson J. 2014. Analysis of next-generation sequencing data using Galaxy. Methods Mol Biol 1150:2143[CrossRef].[PubMed]
43. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621628[CrossRef].[PubMed]
44. Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:5763[CrossRef].[PubMed]
45. Weber G, Shendure J, Tanenbaum DM, Church GM, Meyerson M. 2002. Identification of foreign gene sequences by transcript filtering against the human genome. Nat Genet 30:141142.[PubMed]
46. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(D1):D633D642[CrossRef].[PubMed]
47. Miller JR, Koren S, Sutton G. 2010. Assembly algorithms for next-generation sequencing data. Genomics 95:315327[CrossRef].[PubMed]
48. Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, Delwart EL. 2015. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res 43:e46[CrossRef].[PubMed]
49. Skewes-Cox P, Sharpton TJ, Pollard KS, DeRisi JL. 2014. Profile hidden Markov models for the detection of viruses within metagenomic sequence data. PLoS One 9:e105067[CrossRef].[PubMed]
50. Huson DH, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of metagenomic data. Genome Res 17:377386[CrossRef].[PubMed]
51. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811814[CrossRef].[PubMed]
52. Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46[CrossRef].[PubMed]
53. Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, Hambuch T, Lu F, Lyon E, Voelkerding KV, Zehnbauer BA, Agarwala R, Bennett SF, Chen B, Chin EL, Compton JG, Das S, Farkas DH, Ferber MJ, Funke BH, Furtado MR, Ganova-Raeva LM, Geigenmüller U, Gunselman SJ, Hegde MR, Johnson PL, Kasarskis A, Kulkarni S, Lenk T, Liu CS, Manion M, Manolio TA, Mardis ER, Merker JD, Rajeevan MS, Reese MG, Rehm HL, Simen BB, Yeakley JM, Zook JM, Lubin IM. 2012. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 30:10331036[CrossRef].[PubMed]
54. Chakravorty S, Helb D, Burday M, Connell N, Alland D. 2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69:330339[CrossRef].[PubMed]
55. Salipante SJ, Sengupta DJ, Rosenthal C, Costa G, Spangler J, Sims EH, Jacobs MA, Miller SI, Hoogestraat DR, Cookson BT, McCoy C, Matsen FA, Shendure J, Lee CC, Harkins TT, Hoffman NG. 2013. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLoS One 8:e65226[CrossRef].[PubMed]
56. Huson DH, Mitra S. 2012. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol Biol 856:415429[CrossRef].[PubMed]
57. Gürtler V, Stanisich VA. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:316[CrossRef].[PubMed]
58. Liu D.2011. Molecular Detection of Human Fungal Pathogens. CRC Press, Boca Raton, FL.
59. Grice EA, Segre JA. 2011. The skin microbiome. Nat Rev Microbiol 9:244253[CrossRef].[PubMed]
60. Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260270.[PubMed]
61. Huttenhower C , et al. , Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207214[CrossRef].[PubMed]
62. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R.2012. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protocols Microbiol Chapter 10:Unit 10.7.
63. Ahn SH, Tsalik EL, Cyr DD, Zhang Y, van Velkinburgh JC, Langley RJ, Glickman SW, Cairns CB, Zaas AK, Rivers EP, Otero RM, Veldman T, Kingsmore SF, Lucas J, Woods CW, Ginsburg GS, Fowler VG Jr. 2013. Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans. PLoS One 8:e48979[CrossRef].[PubMed]
64. Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G, Crampin AC, Dockrell HM, French N, Hamilton MS, Hibberd ML, Kern F, Langford PR, Ling L, Mlotha R, Ottenhoff TH, Pienaar S, Pillay V, Scott JA, Twahir H, Wilkinson RJ, Coin LJ, Heyderman RS, Levin M, Eley B, ILULU Consortium, KIDS TB Study Group. 2014. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med 370:17121723[CrossRef].[PubMed]
65. Woods CW, McClain MT, Chen M, Zaas AK, Nicholson BP, Varkey J, Veldman T, Kingsmore SF, Huang Y, Lambkin-Williams R, Gilbert AG, Hero AO III, Ramsburg E, Glickman S, Lucas JE, Carin L, Ginsburg GS. 2013. A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2. PLoS One 8:e52198[CrossRef].[PubMed]
66. Guo Y, Sheng Q, Li J, Ye F, Samuels DC, Shyr Y. 2013. Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS One 8:e71462[CrossRef].[PubMed]
67. Mejias A, Ramilo O. 2014. Transcriptional profiling in infectious diseases: ready for prime time? J Infect 68(Suppl 1):S94S99[CrossRef].[PubMed]
68. Croucher NJ, Thomson NR. 2010. Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619624[CrossRef].[PubMed]
69. Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, Yu G, Salamat SM, Somasekar S, Federman S, Miller S, Sokolic R, Garabedian E, Candotti F, Buckley RH, Reed KD, Meyer TL, Seroogy CM, Galloway R, Henderson SL, Gern JE, DeRisi JL, Chiu CY. 2014. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med 370:24082417[CrossRef].[PubMed]
70. Burd EM. 2010. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev 23:550576[CrossRef].[PubMed]
71. Weiss RL. 2012. The long and winding regulatory road for laboratory-developed tests. Am J Clin Pathol 138:2026[CrossRef].[PubMed]
72. Tripp HJ, Hewson I, Boyarsky S, Stuart JM, Zehr JP. 2011. Misannotations of rRNA can now generate 90% false positive protein matches in metatranscriptomic studies. Nucleic Acids Res 39:87928802[CrossRef].[PubMed]
73. Zook JM, Samarov D, McDaniel J, Sen SK, Salit M. 2012. Synthetic spike-in standards improve run-specific systematic error analysis for DNA and RNA sequencing. PLoS One 7:e41356[CrossRef].[PubMed]
74. Schtig H. 2014. Development of FDA MicroDB: A Regulatory-Grade Microbial Reference Database. http://www.slideshare.net/NathanOlson/sichtig-h-tallonlmicrodbniststandards.
75. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, Stryke D, Bouquet J, Somasekar S, Linnen JM, Dodd R, Mulembakani P, Schneider BS, Muyembe-Tamfum J-J, Stramer SL, Chiu CY. 2015. Rapid metagenomics identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 7:99.

Tables

Generic image for table
TABLE 1

Comparison of NGS platforms

Citation: Chiu C, Miller S. 2016. Next-Generation Sequencing, p 68-79. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error