1887

Chapter 8 : Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch8-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch8-2.gif

Abstract:

After several decades of limited progress, the practice of clinical microbiology is beginning to evolve on a more rapid scale. The introduction of immunological methods in the 1970s was followed by the introduction of automated biochemistry-based identification systems, automated antimicrobial susceptibility testing systems, and automated blood culture instruments in the 1980s and 1990s, and thereafter by the gradual adoption of nucleic acid amplification tests over the past 25 years. Today, there is an accelerated pace of introduction of novel technologies into clinical microbiology laboratories (1). Easy-to-use panel-based molecular testing and automated workflow are in the process of being adopted. Workflow optimization is being facilitated by the introduction of automated equipment, with rapid identification of microbial pathogens being a key component (2). A revolutionary new entry, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), has been introduced into clinical microbiology laboratories over the past 5 years as a tool for microbial identification (3–5). The quality of MALDI-TOF MS with respect to bacterial identification already seems to surpass that of more classical growth-based technologies (6). The reason for the rapid adoption of this technology is that it is simple, high speed, cost-effective, and at least as good as, if not better than, conventional identification strategies. Sometimes the combination of classical technologies such as Gram staining with MS is advocated, but most people agree that MS will be able to function as a stand-alone technology for bacterial identification (7).

Citation: van Belkum A, Girard V, Arsac M, Patel R. 2016. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology, p 92-101. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Dendrogram (Spearman correlation dissimilarity index, single linkage criteria) based on the MALDI-TOF MS spectra of some strains of species used for the VITEK MS knowledge base creation. For each strain, replicate measurements were summarized into a prototype spectrum by retaining only the peaks found in 50% or more of the spectra. , , , , and are clearly separated by MALDI-TOF MS.

Citation: van Belkum A, Girard V, Arsac M, Patel R. 2016. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology, p 92-101. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Dendrogram (Spearman correlation dissimilarity index, single linkage criteria) based on the MALDI-TOF MS spectra for strains of spp. used for the VITEK MS knowledge base creation. For each strain, replicate measurements were summarized into a prototype spectrum by retaining only the peaks found in 50% or more of the spectra. Most spp. are clearly separated by MALDI-TOF MS except and , at least with the VITEK MS system.

Citation: van Belkum A, Girard V, Arsac M, Patel R. 2016. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology, p 92-101. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Distribution of intraspecies pairwise dissimilarity compared to interspecies pairwise dissimilarity based on the MALDI-TOF MS spectra of some species of used for the VITEK MS knowledge base creation. For each strain, replicate measurements were summarized into a prototype spectrum by retaining only the peaks found in 50% or more of the spectra. For intraspecies pairwise dissimilarity, prototype spectra obtained from liquid cultures were compared to prototype spectra obtained from solid, agar-based cultures. For interspecies pairwise dissimilarity, prototypes from one species were compared to those from all other species. Despite the variability observed in spectral patterns in response to culture conditions, the intraspecific variability of spectra was found smaller than the interspecies variability.

Citation: van Belkum A, Girard V, Arsac M, Patel R. 2016. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology, p 92-101. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819071.ch08
1. Fournier PE, Drancourt M, Colson P, Rolain JM, La Scola B, Raoult D. 2013. Modern clinical microbiology: new challenges and solutions. Nat Rev Microbiol 11:574585[CrossRef].[PubMed]
2. Mutters NT, Hodiamont CJ, de Jong MD, Overmeijer HP, van den Boogaard M, Visser CE. 2014. Performance of Kiestra total laboratory automation combined with MS in clinical microbiology practice. Ann Lab Med 34:111117[CrossRef].[PubMed]
3. Patel R. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis 57:564572[CrossRef].[PubMed]
4. Clark AE, Kaleta EJ, Arora A, Wolk DM. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 26:547603[CrossRef].[PubMed]
5. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D. 2009. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543551[CrossRef].[PubMed]
6. Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y. 2014. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis 6:534538.[PubMed]
7. Burillo A, Rodríguez-Sánchez B, Ramiro A, Cercenado E, Rodríguez-Créixems M, Bouza E. 2014. Gram-stain plus MALDI-TOF MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) for a rapid diagnosis of urinary tract infection. PLoS One 9:e86915[CrossRef].[PubMed]
8. Anderson NW, Buchan BW, Riebe KM, Parsons LN, Gnacinski S, Ledeboer NA. 2012. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:10081013[CrossRef].[PubMed]
9. Syrmis MW, Moser RJ, Kidd TJ, Hunt P, Ramsay KA, Bell SC, Wainwright CE, Grimwood K, Nissen MD, Sloots TP, Whiley DM. 2013. High-throughput single-nucleotide polymorphism-based typing of shared Pseudomonas aeruginosa strains in cystic fibrosis patients using the Sequenom iPLEX platform. J Med Microbiol 62:734740[CrossRef].[PubMed]
10. Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Peterson LE, Musser JM. 2014. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J Infect 69:216225[CrossRef].[PubMed]
11. Goyer M, Lucchi G, Ducoroy P, Vagner O, Bonnin A, Dalle F. 2012. Optimization of the preanalytical steps of matrix-assisted laser desorption ionization-time of flight mass spectrometry identification provides a flexible and efficient tool for identification of clinical yeast isolates in medical laboratories. J Clin Microbiol 50:30663068[CrossRef].[PubMed]
12. Vlek A, Kolecka A, Khayhan K, Theelen B, Groenewald M, Boel E, Boekhout T, Multicenter Study Group. 2014. Interlaboratory comparison of sample preparation methods, database expansions, and cutoff values for identification of yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a yeast test panel. J Clin Microbiol 52:30233029[CrossRef].[PubMed]
13. Gorton RL, Seaton S, Ramnarain P, McHugh TD, Kibbler CC. 2014. Evaluation of a short, on-plate formic acid extraction method for matrix-assisted laser desorption ionization-time of flight mass spectrometry-based identification of clinically relevant yeast isolates. J Clin Microbiol 52:12531255[CrossRef].[PubMed]
14. Loonen AJ, Jansz AR, Stalpers J, Wolffs PF, van den Brule AJ. 2012. An evaluation of three processing methods and the effect of reduced culture times for faster direct identification of pathogens from BacT/ALERT blood cultures by MALDI-TOF MS. Eur J Clin Microbiol Infect Dis 31:15751583[CrossRef].[PubMed]
15. Lagacé-Wiens PR, Adam HJ, Karlowsky JA, Nichol KA, Pang PF, Guenther J, Webb AA, Miller C, Alfa MJ. 2012. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time. J Clin Microbiol 50:33243328[CrossRef].[PubMed]
16. Fothergill A, Kasinathan V, Hyman J, Walsh J, Drake T, Wang YF. 2013. Rapid identification of bacteria and yeasts from positive-blood-culture bottles by using a lysis-filtration method and matrix-assisted laser desorption ionization-time of flight mass spectrum analysis with the SARAMIS database. J Clin Microbiol 51:805809[CrossRef].[PubMed]
17. Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA, Peterson LE, Musser JM. 2013. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 137:12471254[CrossRef].[PubMed]
18. Balada-Llasat JM, Kamboj K, Pancholi P. 2013. Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. J Clin Microbiol 51:28752879[CrossRef].[PubMed]
19. Paolucci M, Foschi C, Tamburini MV, Ambretti S, Lazzarotto T, Landini MP. 2014. Comparison between MALDI-TOF MS and FilmArray Blood Culture Identification panel for rapid identification of yeast from positive blood culture. J Microbiol Methods 104:9293[CrossRef].[PubMed]
20. Konnerth S, Rademacher G, Suerbaum S, Ziesing S, Sedlacek L, Vonberg RP. 2014. Identification of pathogens from blood culture bottles in spiked and clinical samples using matrix-assisted laser desorption ionization time-of-flight mass-spectrometry analysis. BMC Res Notes 7:405[CrossRef].[PubMed]
21. Fiori B, D'Inzeo T, Di Florio V, De Maio F, De Angelis G, Giaquinto A, Campana L, Tanzarella E, Tumbarello M, Antonelli M, Sanguinetti M, Spanu T. 2014. Performance of two resin-containing blood culture media in detection of bloodstream infections and in direct matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) broth assays for isolate identification: clinical comparison of the BacT/Alert Plus and Bactec Plus systems. J Clin Microbiol 52:35583567[CrossRef].[PubMed]
22. Köhling HL, Bittner A, Müller KD, Buer J, Becker M, Rübben H, Rettenmeier AW, Mosel F. 2012. Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J Med Microbiol 61:339344[CrossRef].[PubMed]
23. Lee TF, Lee H, Chen CM, Du SH, Cheng YC, Hsu CC, Chung MY, Teng SH, Teng LJ, Hsueh PR. 2013. Comparison of the accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry with that of other commercial identification systems for identifying Staphylococcus saprophyticus in urine. J Clin Microbiol 51:15631566[CrossRef].[PubMed]
24. Wang XH, Zhang G, Fan YY, Yang X, Sui WJ, Lu XX. 2013. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J Microbiol Methods 92:231235[CrossRef].[PubMed]
25. Mahé P, Arsac M, Chatellier S, Monnin V, Perrot N, Mailler S, Girard V, Ramjeet M, Surre J, Lacroix B, van Belkum A, Veyrieras JB. 2014. Automatic identification of mixed bacterial species fingerprints in a MALDI-TOF mass-spectrum. Bioinformatics 30:12801286[CrossRef].[PubMed]
26. March Rosselló GA, Gutiérrez Rodríguez MP, Ortiz de Lejarazu Leonardo R, Orduña Domingo A, Bratos Pérez . 2015. New procedure for rapid identification of microorganisms causing urinary tract infection from urine samples by mass spectrometry (MALDI-TOF). Enferm Infecc Microbiol Clin 33:8994[CrossRef].[PubMed]
27. March Rosselló GA, Gutiérrez Rodríguez MP, de Lejarazu Leonardo RO, Orduña Domingo A, Bratos Pérez MA. 2014. Procedure for microbial identification based on Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry from screening-positive urine samples. APMIS 122:790795[CrossRef].[PubMed]
28. Demarco ML, Burnham CA. 2014. Diafiltration MALDI-TOF mass spectrometry method for culture-independent detection and identification of pathogens directly from urine specimens. Am J Clin Pathol 141:204212[CrossRef].[PubMed]
29. Yssouf A, Flaudrops C, Drali R, Kernif T, Socolovschi C, Berenger JM, Raoult D, Parola P. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of tick vectors. J Clin Microbiol 51:522528[CrossRef].[PubMed]
30. Steinmann IC, Pflüger V, Schaffner F, Mathis A, Kaufmann C. 2013. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae. Parasitology 140:318327[CrossRef].[PubMed]
31. Kaufmann C, Ziegler D, Schaffner F, Carpenter S, Pflüger V, Mathis A. 2011. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Med Vet Entomol 25:3238[CrossRef].[PubMed]
32. Zhu B, Xiao D, Zhang H, Zhang Y, Gao Y, Xu L, Lv J, Wang Y, Zhang J, Shao Z. 2013. MALDI-TOF MS distinctly differentiates nontypable Haemophilus influenzae from Haemophilus haemolyticus. PLoS One 8:e56139[CrossRef].[PubMed]
33. Dubois D, Segonds C, Prere MF, Marty N, Oswald E. 2013. Identification of clinical Streptococcus pneumoniae isolates among other alpha and nonhemolytic streptococci by use of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J Clin Microbiol 51:18611867[CrossRef].[PubMed]
34. Pedersen RM, Marmolin ES, Justesen US. 2013. Species differentiation of Bacteroides dorei from Bacteroides vulgatus and Bacteroides ovatus from Bacteroides xylanisolvens - back to basics. Anaerobe 24:13[CrossRef].[PubMed]
35. Branda JA, Markham RP, Garner CD, Rychert JA, Ferraro MJ. 2013. Performance of the Vitek MS v2.0 system in distinguishing Streptococcus pneumoniae from nonpneumococcal species of the Streptococcus mitis group. J Clin Microbiol 51:30793082[CrossRef].[PubMed]
36. Calderaro A, Piccolo G, Gorrini C, Montecchini S, Buttrini M, Rossi S, Piergianni M, De Conto F, Arcangeletti MC, Chezzi C, Medici MC. 2014. Leptospira species and serovars identified by MALDI-TOF mass spectrometry after database implementation. BMC Res Notes 7:330[CrossRef].[PubMed]
37. Fangous MS, Mougari F, Gouriou S, Calvez E, Raskine L, Cambau E, Payan C, Héry-Arnaud G. 2014. Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 52:33623369[CrossRef].[PubMed]
38. Nagy E, Urbán E, Becker S, Kostrzewa M, Vörös A, Hunyadkürti J, Nagy I. 2013. MALDI-TOF MS fingerprinting facilitates rapid discrimination of phylotypes I, II and III of Propionibacterium acnes. Anaerobe 20:2026[CrossRef].[PubMed]
39. Cunningham SA, Patel R. 2013. Importance of using Bruker's security-relevant library for Biotyper identification of Burkholderia pseudomallei, Brucella species, and Francisella tularensis. J Clin Microbiol 51:16391640[CrossRef].[PubMed]
40. Lau SK, Tang BS, Curreem SO, Chan TM, Martelli P, Tse CW, Wu AK, Yuen KY, Woo PC. 2012. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of Burkholderia pseudomallei: importance of expanding databases with pathogens endemic to different localities. J Clin Microbiol 50:31423143[CrossRef].[PubMed]
41. Dybwad M, van der Laaken AL, Blatny JM, Paauw A. 2013. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Appl Environ Microbiol 79:53725383[CrossRef].[PubMed]
42. Buchan BW, Ledeboer NA. 2013. Advances in identification of clinical yeast isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:13591366[CrossRef].[PubMed]
43. Alshawa K, Beretti JL, Lacroix C, Feuilhade M, Dauphin B, Quesne G, Hassouni N, Nassif X, Bougnoux ME. 2012. Successful identification of clinical dermatophyte and Neoscytalidium species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:22772281[CrossRef].[PubMed]
44. Spanu T, Posteraro B, Fiori B, D'Inzeo T, Campoli S, Ruggeri A, Tumbarello M, Canu G, Trecarichi EM, Parisi G, Tronci M, Sanguinetti M, Fadda G. 2012. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol 50:176179[CrossRef].[PubMed]
45. Lohmann C, Sabou M, Moussaoui W, Prévost G, Delarbre JM, Candolfi E, Gravet A, Letscher-Bru V. 2013. Comparison between the Biflex III-Biotyper and the Axima-SARAMIS systems for yeast identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:12311236[CrossRef].[PubMed]
46. Packeu A, De Bel A, l'Ollivier C, Ranque S, Detandt M, Hendrickx M. 2014. Fast and accurate identification of dermatophytes by matrix-assisted laser desorption ionization-time of flight mass spectrometry: validation in the clinical laboratory. J Clin Microbiol 52:34403443[CrossRef].[PubMed]
47. van Belkum A, Dunne WM Jr. 2013. Next-generation antimicrobial susceptibility testing. J Clin Microbiol 51:20182024[CrossRef].[PubMed]
48. van Belkum A, Durand G, Peyret M, Chatellier S, Zambardi G, Schrenzel J, Shortridge D, Engelhardt A, Dunne WM Jr. 2013. Rapid clinical bacteriology and its future impact. Ann Lab Med 33:1427[CrossRef].[PubMed]
49. Schulthess B, Brodner K, Bloemberg GV, Zbinden R, Böttger EC, Hombach M. 2013. Identification of Gram-positive cocci by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry: comparison of different preparation methods and implementation of a practical algorithm for routine diagnostics. J Clin Microbiol 51:18341840[CrossRef].[PubMed]
50. Romero-Gómez MP, Gómez-Gil R, Paño-Pardo JR, Mingorance J. 2012. Identification and susceptibility testing of microorganism by direct inoculation from positive blood culture bottles by combining MALDI-TOF and Vitek-2 Compact is rapid and effective. J Infect 65:513520[CrossRef].[PubMed]
51. Wimmer JL, Long SW, Cernoch P, Land GA, Davis JR, Musser JM, Olsen RJ. 2012. Strategy for rapid identification and antibiotic susceptibility testing of gram-negative bacteria directly recovered from positive blood cultures using the Bruker MALDI Biotyper and the BD Phoenix system. J Clin Microbiol 50:24522454[CrossRef].[PubMed]
52. Hrabák J, Chudácková E, Walková R. 2013. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev 26:103114[CrossRef].[PubMed]
53. Hrabák J, Studentová V, Walková R, Zemlicková H, Jakubu V, Chudácková E, Gniadkowski M, Pfeifer Y, Perry JD, Wilkinson K, Bergerová T. 2012. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:24412443[CrossRef].[PubMed]
54. Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. 2012. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol 50:927937[CrossRef].[PubMed]
55. Hooff GP, van Kampen JJ, Meesters RJ, van Belkum A, Goessens WH, Luider TM. 2012. Characterization of β-lactamase enzyme activity in bacterial lysates using MALDI-mass spectrometry. J Proteome Res 11:7984[CrossRef].[PubMed]
56. Álvarez-Buylla A, Picazo JJ, Culebras E. 2013. Optimized method for Acinetobacter species carbapenemase detection and identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:15891592[CrossRef].[PubMed]
57. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, Posteraro B. 2012. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol 50:24792483[CrossRef].[PubMed]
58. Grundt A, Findeisen P, Miethke T, Jäger E, Ahmad-Nejad P, Neumaier M. 2012. Rapid detection of ampicillin resistance in Escherichia coli by quantitative mass spectrometry. J Clin Microbiol 50:17271729[CrossRef].[PubMed]
59. DeMarco ML, Ford BA. 2013. Beyond identification: emerging and future uses for MALDI-TOF mass spectrometry in the clinical microbiology laboratory. Clin Lab Med 33:611628[CrossRef].[PubMed]
60. Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, Kostrzewa M, Posteraro B, Sanguinetti M. 2013. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol 51:29642969[CrossRef].[PubMed]
61. Spinali S, van Belkum A, Goering RV, Girard V, Welker M, Van Nuenen M, Pincus DH, Arsac M, Durand G. 2015. Microbial typing by MALDI TOF MS: do we need guidance for data interpretation? J Clin Microbiol 53:760765[CrossRef].[PubMed]
62. Mencacci A, Monari C, Leli C, Merlini L, De Carolis E, Vella A, Cacioni M, Buzi S, Nardelli E, Bistoni F, Sanguinetti M, Vecchiarelli A. 2013. Typing of nosocomial outbreaks of Acinetobacter baumannii by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:603606[CrossRef].[PubMed]
63. Josten M, Reif M, Szekat C, Al-Sabti N, Roemer T, Sparbier K, Kostrzewa M, Rohde H, Sahl HG, Bierbaum G. 2013. Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J Clin Microbiol 51:18091817[CrossRef].[PubMed]
64. Clark CG, Kruczkiewicz P, Guan C, McCorrister SJ, Chong P, Wylie J, van Caeseele P, Tabor HA, Snarr P, Gilmour MW, Taboada EN, Westmacott GR. 2013. Evaluation of MALDI-TOF mass spectroscopy methods for determination of Escherichia coli pathotypes. J Microbiol Methods 94:180191[CrossRef].[PubMed]
65. Madhava Charyulu E, Gnanamani A, Mandal AB. 2012. Identification and discrimination of methicillin resistant Staphylococcus aureus strains isolated from burn wound sites using PCR and authentication with MALDI TOF-MS. Indian J Microbiol 52:337345[CrossRef].[PubMed]
66. Christner M, Trusch M, Rohde H, Kwiatkowski M, Schlüter H, Wolters M, Aepfelbacher M, Hentschke M. 2013. Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic Escherichia coli. Open Virol J 7:8490.[PubMed]
67. Lau AF, Wang H, Weingarten RA, Drake SK, Suffredini AF, Garfield MK, Chen Y, Gucek M, Youn JH, Stock F, Tso H, DeLeo J, Cimino JJ, Frank KM, Dekker JP. 2014. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 52:28042812[CrossRef].[PubMed]
68. Baldwin CD, Howe GB, Sampath R, Blyn LB, Matthews H, Harpin V, Hall TA, Drader JJ, Hofstadler SA, Eshoo MW, Rudnick K, Studarus K, Moore D, Abbott S, Janda JM, Whitehouse CA. 2009. Usefulness of multilocus polymerase chain reaction followed by electrospray ionization mass spectrometry to identify a diverse panel of bacterial isolates. Diagn Microbiol Infect Dis 63:403408[CrossRef].[PubMed]
69. Sampath R, Mulholland N, Blyn LB, Massire C, Whitehouse CA, Waybright N, Harter C, Bogan J, Miranda MS, Smith D, Baldwin C, Wolcott M, Norwood D, Kreft R, Frinder M, Lovari R, Yasuda I, Matthews H, Toleno D, Housley R, Duncan D, Li F, Warren R, Eshoo MW, Hall TA, Hofstadler SA, Ecker DJ. 2012. Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry. PLoS One 7:e36528[CrossRef].[PubMed]
70. Jacob D, Sauer U, Housley R, Washington C, Sannes-Lowery K, Ecker DJ, Sampath R, Grunow R. 2012. Rapid and high-throughput detection of highly pathogenic bacteria by Ibis PLEX-ID technology. PLoS One 7:e39928[CrossRef].[PubMed]
71. Massire C, Buelow DR, Zhang SX, Lovari R, Matthews HE, Toleno DM, Ranken RR, Hall TA, Metzgar D, Sampath R, Blyn LB, Ecker DJ, Gu Z, Walsh TJ, Hayden RT. 2013. PCR followed by electrospray ionization mass spectrometry for broad-range identification of fungal pathogens. J Clin Microbiol 51:959966[CrossRef].[PubMed]
72. Bacconi A, Richmond GS, Baroldi MA, Laffler TG, Blyn LB, Carolan HE, Frinder MR, Toleno DM, Metzgar D, Gutierrez JR, Massire C, Rounds M, Kennel NJ, Rothman RE, Peterson S, Carroll KC, Wakefield T, Ecker DJ, Sampath R. 2014. Improved sensitivity for molecular detection of bacterial and Candida infections in blood. J Clin Microbiol 52:31643174[CrossRef].[PubMed]
73. Farrell JJ, Sampath R, Ecker DJ, Bonomo RA. 2013. “Salvage microbiology”: detection of bacteria directly from clinical specimens following initiation of antimicrobial treatment. PLoS One 8:e66349[CrossRef].[PubMed]
74. Taliaferro LP, Galvin TA, Ma H, Shaheduzzaman S, Williams DK, Glasner DR, Khan AS. 2014. Evaluation of the broad-range PCR-electrospray ionization mass spectrometry (PCR/ESI-MS) system and virus microarrays for virus detection. Viruses 6:18761896[CrossRef].[PubMed]
75. Hardick J, Sadiq S, Perelstein E, Peterson S, Rothman R, Gaydos CA. 2014. A case-control study evaluating RT-PCR/ESI-MS technology compared to direct fluorescent antibody and xTAG RVP PCR. Diagn Microbiol Infect Dis 79:187189[CrossRef].[PubMed]
76. Kecojevic A, Ranken R, Ecker DJ, Massire C, Sampath R, Blyn LB, Hsieh YH, Rothman RE, Gaydos CA. 2014. Rapid PCR/ESI-MS-based molecular genotyping of Staphylococcus aureus from nasal swabs of emergency department patients. BMC Infect Dis 14:16[CrossRef].[PubMed]
77. Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC. 2012. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:33013308[CrossRef].[PubMed]
78. Gaillot O, Blondiaux N, Loïez C, Wallet F, Lemaître N, Herwegh S, Courcol RJ. 2011. Cost-effectiveness of switch to matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine bacterial identification. J Clin Microbiol 49:4412[CrossRef].[PubMed]
79. Nori P, Ostrowsky B, Dorokhova O, Gialanella P, Moy M, Muggia V, Grossberg R, Kornblum J, Lin Y, Levi MH. 2013. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to resolve complex clinical cases of patients with recurrent bacteremias. J Clin Microbiol 51:19831986[CrossRef].[PubMed]
80. Vlek AL, Bonten MJ, Boel CH. 2012. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One 7:e32589[CrossRef].[PubMed]
81. Schneiderhan W, Grundt A, Wörner S, Findeisen P, Neumaier M. 2013. Work flow analysis of around-the-clock processing of blood culture samples and integrated MALDI-TOF mass spectrometry analysis for the diagnosis of bloodstream infections. Clin Chem 59:16491656[CrossRef].[PubMed]
82. Clerc O, Prod'hom G, Vogne C, Bizzini A, Calandra T, Greub G. 2013. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis 56:11011107[CrossRef].[PubMed]
83. Martiny D, Debaugnies F, Gateff D, Gérard M, Aoun M, Martin C, Konopnicki D, Loizidou A, Georgala A, Hainaut M, Chantrenne M, Dediste A, Vandenberg O, Van Praet S. 2013. Impact of rapid microbial identification directly from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on patient management. Clin Microbiol Infect 19:E568E581[CrossRef].[PubMed]
84. Dubois D, Grare M, Prere MF, Segonds C, Marty N, Oswald E. 2012. Performances of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology. J Clin Microbiol 50:25682576[CrossRef].[PubMed]
85. Marko DC, Saffert RT, Cunningham SA, Hyman J, Walsh J, Arbefeville S, Howard W, Pruessner J, Safwat N, Cockerill FR, Bossler AD, Patel R, Richter SS. 2012. Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of nonfermenting gram-negative bacilli isolated from cultures from cystic fibrosis patients. J Clin Microbiol 50:20342039[CrossRef].[PubMed]
86. Alby K, Gilligan PH, Miller MB. 2013. Comparison of MALDI TOF mass spectrometry platforms for the identification of Gram negative rods from cystic fibrosis patients. J Clin Microbiol 51:38523844[CrossRef].[PubMed]
87. Mancini N, De Carolis E, Infurnari L, Vella A, Clementi N, Vaccaro L, Ruggeri A, Posteraro B, Burioni R, Clementi M, Sanguinetti M. 2013. Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry systems for identification of yeasts of medical importance. J Clin Microbiol 51:24532457[CrossRef].[PubMed]
88. Martiny D, Busson L, Wybo I, El Haj RA, Dediste A, Vandenberg O. 2012. Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:13131325[CrossRef].[PubMed]
89. Karger A, Melzer F, Timke M, Bettin B, Kostrzewa M, Nöckler K, Hohmann A, Tomaso H, Neubauer H, Al Dahouk S. 2013. Interlaboratory comparison of intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry results for identification and differentiation of Brucella spp. J Clin Microbiol 51:31233126[CrossRef].[PubMed]
90. Won EJ, Shin JH, Lee K, Kim MN, Lee HS, Park YJ, Joo MY, Kim SH, Shin MG, Suh SP, Ryang DW. 2013. Accuracy of species-level identification of yeast isolates from blood cultures from 10 university hospitals in South Korea by use of the matrix-assisted laser desorption ionization-time of flight mass spectrometry-based Vitek MS system. J Clin Microbiol 51:30633065[CrossRef].[PubMed]
91. Mather CA, Rivera SF, Butler-Wu SM. 2014. Comparison of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. J Clin Microbiol 52:130138[CrossRef].[PubMed]
92. Dunne WM Jr, Doing K, Miller E, Miller E, Moreno E, Baghli M, Mailler S, Girard V, van Belkum A, Deol P. 2014. Rapid inactivation of Mycobacterium and Nocardia species before identification using MALDI TOF mass spectrometry. J Clin Microbiol 52:36543659[CrossRef].[PubMed]
93. Manji R, Bythrow M, Branda JA, Burnham CA, Ferraro MJ, Garner OB, Jennemann R, Lewinski MA, Mochon AB, Procop GW, Richter SS, Rychert JA, Sercia L, Westblade LF, Ginocchio CC. 2014. Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur J Clin Microbiol Infect Dis 33:337346[CrossRef].[PubMed]
94. Branda JA, Rychert J, Burnham CA, Bythrow M, Garner OB, Ginocchio CC, Jennemann R, Lewinski MA, Manji R, Mochon AB, Procop GW, Richter SS, Sercia LF, Westblade LF, Ferraro MJ. 2014. Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria. Diagn Microbiol Infect Dis 78:129131[CrossRef].[PubMed]
95. Christie-Oleza JA, Piña-Villalonga JM, Guerin P, Miotello G, Bosch R, Nogales B, Armengaud J. 2013. Shotgun nanoLC-MS/MS proteogenomics to document MALDI-TOF biomarkers for screening new members of the Ruegeria genus. Environ Microbiol 15:133147[CrossRef].[PubMed]
96. Cobo F. 2014. Application of MALDI-TOF mass spectrometry in clinical virology: a review. PLoS One 9:e101924.[PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error