Chapter 10 : The Skin Microbiome: Insights into Potential Impact on Diagnostic Practice

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Skin Microbiome: Insights into Potential Impact on Diagnostic Practice, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch10-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch10-2.gif


No type of culture medium can exactly replicate the complex environment of the skin surface. Slightly cooler than body temperature, exposed to the external environment, and generally arid compared to other body habitats, the skin presents a formidable challenge for the colonization and growth of most microorganisms. To fully appreciate the microbial complexity of the skin, one must first be familiar with the unique features of the skin as a habitat. The outer layer of the skin, the epidermis, is composed of keratinocytes in various stages of differentiation. The most superficial layer of the epidermis, the stratum corneum, forms a semi-impenetrable barrier consisting of several layers of dead, flattened, enucleated, polyhedral, keratin-filled cells, termed corneocytes. Through the process of desquamation, corneocytes are continuously shed from the skin surface through terminal differentiation, providing a continuous supply of nutrients (i.e., keratins) to support the growth of microorganisms. Beneath the epidermis lies the dermis, a connective tissue layer rich in blood and lymphatic vessels. Subcutaneous connective tissue and fat separate the skin from the muscles and organs of the body.

Citation: Grice E. 2016. The Skin Microbiome: Insights into Potential Impact on Diagnostic Practice, p 117-125. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Roth RR, James WD. 1988. Microbial ecology of the skin. Annu Rev Microbiol 42:441464[CrossRef].[PubMed]
2. von Eiff C, Peters G, Heilmann C. 2002. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677685[CrossRef].[PubMed]
3. Leyden JJ, McGinley KJ, Mills OH, Kligman AM. 1975. Propionibacterium levels in patients with and without acne vulgaris. J Invest Dermatol 65:382384[CrossRef].[PubMed]
4. Marples RR, Downing DT, Kligman AM. 1971. Control of free fatty acids in human surface lipids by Corynebacterium acnes. J Invest Dermatol 56:127131[CrossRef].[PubMed]
5. Seifert KA. 2009. Progress towards DNA barcoding of fungi. Mol Ecol Resour 9(Suppl s1):8389[CrossRef].[PubMed]
6. Schoch CL, , et al, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:62416246[CrossRef].[PubMed]
7. Dollive S, Peterfreund GL, Sherrill-Mix S, Bittinger K, Sinha R, Hoffmann C, Nabel CS, Hill DA, Artis D, Bachman MA, Custers-Allen R, Grunberg S, Wu GD, Lewis JD, Bushman FD. 2012. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol 13:R60[CrossRef].[PubMed]
8. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, Kong HH, Segre JA, Blakesley R, Bouffard G, Brooks S, Coleman H, Dekhtyar M, Gregory M, Guan X, Gupta J, Han J, Hargrove A, Ho SL, Johnson T, Legaspi R, Lovett S, Maduro Q, Masiello C, Maskeri B, McDowell J, Montemayor C, Mullikin J, Park M, Riebow N, Schandler K, Schmidt B, Sison C, Stantripop M, Thomas J, Thomas P, Vemulapalli M, Young A, Kong HH, Segre JA, NIH Intramural Sequencing Center Comparative Sequencing Program. 2013. Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367370[CrossRef].[PubMed]
9. Marples M.1965. The Ecology of the Human Skin. Charles C Thomas, Bannerstone House, Springfield, IL.
10. Gupta AK, Kohli Y. 2004. Prevalence of Malassezia species on various body sites in clinically healthy subjects representing different age groups. Med Mycol 42:3542[CrossRef].[PubMed]
11. Elston DM. 2010. Demodex mites: facts and controversies. Clin Dermatol 28:502504[CrossRef].[PubMed]
12. Jimenez-Acosta F, Planas L, Penneys N. 1989. Demodex mites contain immunoreactive lipase. Arch Dermatol 125:14361437[CrossRef].[PubMed]
13. Holmes AD. 2013. Potential role of microorganisms in the pathogenesis of rosacea. J Am Acad Dermatol 69:10251032[CrossRef].[PubMed]
14. Roihu T, Kariniemi AL. 1998. Demodex mites in acne rosacea. J Cutan Pathol 25:550552[CrossRef].[PubMed]
15. Casas C, Paul C, Lahfa M, Livideanu B, Lejeune O, Alvarez-Georges S, Saint-Martory C, Degouy A, Mengeaud V, Ginisty H, Durbise E, Schmitt AM, Redoulès D. 2012. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Exp Dermatol 21:906910[CrossRef].[PubMed]
16. Bonnar E, Eustace P, Powell FC. 1993. The Demodex mite population in rosacea. J Am Acad Dermatol 28:443448[CrossRef].[PubMed]
17. O'Reilly N, Bergin D, Reeves EP, McElvaney NG, Kavanagh K. 2012. Demodex-associated bacterial proteins induce neutrophil activation. Br J Dermatol 166:753760[CrossRef].[PubMed]
18. Jarmuda S, McMahon F, Zaba R, O'Reilly N, Jakubowicz O, Holland A, Szkaradkiewicz A, Kavanagh K. 2014. Correlation between serum reactivity to Demodex-associated Bacillus oleronius proteins, and altered sebum levels and Demodex populations in erythematotelangiectatic rosacea patients. J Med Microbiol 63:258262[CrossRef].[PubMed]
19. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL. 2007. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13:975980[CrossRef].[PubMed]
20. de Villiers EM, Lavergne D, McLaren K, Benton EC. 1997. Prevailing papillomavirus types in non-melanoma carcinomas of the skin in renal allograft recipients. Int J Cancer 73:356361[CrossRef].[PubMed]
21. Astori G, Lavergne D, Benton C, Höckmayr B, Egawa K, Garbe C, de Villiers EM. 1998. Human papillomaviruses are commonly found in normal skin of immunocompetent hosts. J Invest Dermatol 110:752755[CrossRef].[PubMed]
22. Antonsson A, Forslund O, Ekberg H, Sterner G, Hansson BG. 2000. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J Virol 74:1163611641[CrossRef].[PubMed]
23. Antonsson A, Erfurt C, Hazard K, Holmgren V, Simon M, Kataoka A, Hossain S, Håkangård C, Hansson BG. 2003. Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. J Gen Virol 84:18811886[CrossRef].[PubMed]
24. Antonsson A, Karanfilovska S, Lindqvist PG, Hansson BG. 2003. General acquisition of human papillomavirus infections of skin occurs in early infancy. J Clin Microbiol 41:25092514[CrossRef].[PubMed]
25. Forslund O. 2007. Genetic diversity of cutaneous human papillomaviruses. J Gen Virol 88:26622669[CrossRef].[PubMed]
26. Schowalter RM, Pastrana DV, Pumphrey KA, Moyer AL, Buck CB. 2010. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 7:509515[CrossRef].[PubMed]
27. Moens U, Ludvigsen M, Van Ghelue M. 2011. Human polyomaviruses in skin diseases. Pathol Res Int 2011:123491[CrossRef].[PubMed]
28. Foulongne V, Sauvage V, Hebert C, Dereure O, Cheval J, Gouilh MA, Pariente K, Segondy M, Burguière A, Manuguerra JC, Caro V, Eloit M. 2012. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS One 7:e38499[CrossRef].[PubMed]
29. Varga M, Kuntová L, Pantůček R, Mašlaňová I, Růžičková V, Doškař J. 2012. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiol Lett 332:146152[CrossRef].[PubMed]
30. Nakaminami H, Noguchi N, Nishijima S, Kurokawa I, So H, Sasatsu M. 2007. Transduction of the plasmid encoding antiseptic resistance gene qacB in Staphylococcus aureus. Biol Pharm Bull 30:14121415[CrossRef].[PubMed]
31. Marinelli LJ, Fitz-Gibbon S, Hayes C, Bowman C, Inkeles M, Loncaric A, Russell DA, Jacobs-Sera D, Cokus S, Pellegrini M, Kim J, Miller JF, Hatfull GF, Modlin RL. 2012. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates. MBio 3:e00279e12[CrossRef].[PubMed]
32. Kwan T, Liu J, DuBow M, Gros P, Pelletier J. 2005. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102:51745179[CrossRef].[PubMed]
33. Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, Bröker BM, Doskar J, Wolz C. 2009. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 191:34623468[CrossRef].[PubMed]
34. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:1197111975[CrossRef].[PubMed]
35. Chiou YB, Blume-Peytavi U. 2004. Stratum corneum maturation. A review of neonatal skin function. Skin Pharmacol Physiol 17:5766[CrossRef].[PubMed]
36. Capone KA, Dowd SE, Stamatas GN, Nikolovski J. 2011. Diversity of the human skin microbiome early in life. J Invest Dermatol 131:20262032[CrossRef].[PubMed]
37. Hannigan GD, Grice EA. 2013. Microbial ecology of the skin in the era of metagenomics and molecular microbiology. Cold Spring Harb Perspect Med 3:a015362[CrossRef].[PubMed]
38. Huttenhower C, , et al, Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207214[CrossRef].[PubMed]
39. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial community variation in human body habitats across space and time. Science 326:16941697[CrossRef].[PubMed]
40. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA, NISC Comparative Sequencing Program. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:11901192[CrossRef].[PubMed]
41. Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL. 2013. The microbiome extends to subepidermal compartments of normal skin. Nat Commun 4:1431[CrossRef].[PubMed]
42. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA, NISC Comparative Sequencing Program. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:11901192[CrossRef].[PubMed]
43. Oh J, Conlan S, Polley EC, Segre JA, Kong HH. 2012. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med 4:77[CrossRef].[PubMed]
44. Decréau RA, Marson CM, Smith KE, Behan JM. 2003. Production of malodorous steroids from androsta-5,16-dienes and androsta-4,16-dienes by Corynebacteria and other human axillary bacteria. J Steroid Biochem Mol Biol 87:327336[CrossRef].[PubMed]
45. Emter R, Natsch A. 2008. The sequential action of a dipeptidase and a beta-lyase is required for the release of the human body odorant 3-methyl-3-sulfanylhexan-1-ol from a secreted Cys-Gly-(S) conjugate by Corynebacteria. J Biol Chem 283:2064520652[CrossRef].[PubMed]
46. Leyden JJ, McGinley KJ, Hölzle E, Labows JN, Kligman AM. 1981. The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol 77:413416[CrossRef].[PubMed]
47. James AG, Austin CJ, Cox DS, Taylor D, Calvert R. 2013. Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 83:527540[CrossRef].[PubMed]
48. Callewaert C, Kerckhof FM, Granitsiotis MS, Van Gele M, Van de Wiele T, Boon N. 2013. Characterization of Staphylococcus and Corynebacterium clusters in the human axillary region. PLoS One 8:e70538[CrossRef].[PubMed]
49. Gao Z, Tseng CH, Pei Z, Blaser MJ. 2007. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA 104:29272932[CrossRef].[PubMed]
50. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA, NISC Comparative Sequencing Program. 2008. A diversity profile of the human skin microbiota. Genome Res 18:10431050[CrossRef].[PubMed]
51. Fitz-Gibbon S, Tomida S, Chiu BH, Nguyen L, Du C, Liu M, Elashoff D, Erfe MC, Loncaric A, Kim J, Modlin RL, Miller JF, Sodergren E, Craft N, Weinstock GM, Li H. 2013. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol 133:21522160[CrossRef].[PubMed]
52. Wang Y, Kuo S, Shu M, Yu J, Huang S, Dai A, Two A, Gallo RL, Huang CM. 2014. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol 98:411424[CrossRef].[PubMed]
53. Shu M, Wang Y, Yu J, Kuo S, Coda A, Jiang Y, Gallo RL, Huang CM. 2013. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One 8:e55380[CrossRef].[PubMed]
54. Nishijima S, Kurokawa I, Katoh N, Watanabe K. 2000. The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions. J Dermatol 27:318323[CrossRef].[PubMed]
55. Levy RM, Huang EY, Roling D, Leyden JJ, Margolis DJ. 2003. Effect of antibiotics on the oropharyngeal flora in patients with acne. Arch Dermatol 139:467471[CrossRef].[PubMed]
56. Fulton JE Jr, McGinley K, Leyden J, Marples R. 1968. Gram-negative folliculitis in acne vulgaris. Arch Dermatol 98:349353[CrossRef].[PubMed]
57. Margolis DJ, Fanelli M, Kupperman E, Papadopoulos M, Metlay JP, Xie SX, DiRienzo J, Edelstein PH. 2012. Association of pharyngitis with oral antibiotic use for the treatment of acne: a cross-sectional and prospective cohort study. Arch Dermatol 148:326332[CrossRef].[PubMed]
58. Shaw TE, Currie GP, Koudelka CW, Simpson EL. 2011. Eczema prevalence in the United States: data from the 2003 national survey of children's health. J Invest Dermatol 131:6773[CrossRef].[PubMed]
59. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Murray PR, Turner ML, Segre JA, NISC Comparative Sequence Program. 2012. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850859[CrossRef].[PubMed]
60. Tajima M, Sugita T, Nishikawa A, Tsuboi R. 2008. Molecular analysis of Malassezia microflora in seborrheic dermatitis patients: comparison with other diseases and healthy subjects. J Invest Dermatol 128:345351[CrossRef].[PubMed]
61. Eigenmann PA. 2013. Evidence of preventive effect of probiotics and prebiotics for infantile eczema. Curr Opin Allergy Clin Immunol 13:426431.[PubMed]
62. McGinley KJ, Leyden JJ, Marples RR, Kligman AM. 1975. Quantitative microbiology of the scalp in non-dandruff, dandruff, and seborrheic dermatitis. J Invest Dermatol 64:401405[CrossRef].[PubMed]
63. Park HK, Ha MH, Park SG, Kim MN, Kim BJ, Kim W. 2012. Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS One 7:e32847[CrossRef].[PubMed]
64. DeAngelis YM, Gemmer CM, Kaczvinsky JR, Kenneally DC, Schwartz JR, Dawson TL Jr. 2005. Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J Investig Dermatol Symp Proc 10:295297[CrossRef].[PubMed]
65. Walberg M, Mørk C, Sandven P, Jorde AT, Bjørås M, Gaustad P. 2006. 18S rDNA polymerase chain reaction and sequencing in onychomycosis diagnostics. Acta Derm Venereol 86:223226[CrossRef].[PubMed]
66. Gupta AK, Zaman M, Singh J. 2007. Fast and sensitive detection of Trichophyton rubrum DNA from the nail samples of patients with onychomycosis by a double-round polymerase chain reaction-based assay. Br J Dermatol 157:698703[CrossRef].[PubMed]
67. Ebihara M, Makimura K, Sato K, Abe S, Tsuboi R. 2009. Molecular detection of dermatophytes and nondermatophytes in onychomycosis by nested polymerase chain reaction based on 28S ribosomal RNA gene sequences. Br J Dermatol 161:10381044[CrossRef].[PubMed]
68. Elavarashi E, Kindo AJ, Kalyani J. 2013. Optimization of PCR-RFLP directly from the skin and nails in cases of dermatophytosis, targeting the ITS and the 18s ribosomal DNA regions. J Clin Diagn Res 7:646651.[PubMed]
69. Ghannoum MA, Mukherjee PK, Warshaw EM, Evans S, Korman NJ, Tavakkol A. 2013. Molecular analysis of dermatophytes suggests spread of infection among household members. Cutis 91:237245.[PubMed]
70. Feng H, Shuda M, Chang Y, Moore PS. 2008. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:10961100[CrossRef].[PubMed]
71. Rodig SJ, Cheng J, Wardzala J, DoRosario A, Scanlon JJ, Laga AC, Martinez-Fernandez A, Barletta JA, Bellizzi AM, Sadasivam S, Holloway DT, Cooper DJ, Kupper TS, Wang LC, DeCaprio JA. 2012. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J Clin Invest 122:46454653[CrossRef].[PubMed]
72. Laude HC, Jonchère B, Maubec E, Carlotti A, Marinho E, Couturaud B, Peter M, Sastre-Garau X, Avril MF, Dupin N, Rozenberg F. 2010. Distinct merkel cell polyomavirus molecular features in tumour and non tumour specimens from patients with merkel cell carcinoma. PLoS Pathog 6:e1001076[CrossRef].[PubMed]
73. Touzé A, Gaitan J, Maruani A, Le Bidre E, Doussinaud A, Clavel C, Durlach A, Aubin F, Guyétant S, Lorette G, Coursaget P. 2009. Merkel cell polyomavirus strains in patients with merkel cell carcinoma. Emerg Infect Dis 15:960962[CrossRef].[PubMed]
74. Foulongne V, Dereure O, Kluger N, Molès JP, Guillot B, Segondy M. 2010. Merkel cell polyomavirus DNA detection in lesional and nonlesional skin from patients with Merkel cell carcinoma or other skin diseases. Br J Dermatol 162:5963[CrossRef].[PubMed]
75. Katano H, Ito H, Suzuki Y, Nakamura T, Sato Y, Tsuji T, Matsuo K, Nakagawa H, Sata T. 2009. Detection of Merkel cell polyomavirus in Merkel cell carcinoma and Kaposi's sarcoma. J Med Virol 81:19511958[CrossRef].[PubMed]
76. Mangana J, Dziunycz P, Kerl K, Dummer R, Cozzio A. 2010. Prevalence of Merkel cell polyomavirus among Swiss Merkel cell carcinoma patients. Dermatology 221:184188[CrossRef].[PubMed]
77. Haitz KA, Rady PL, Nguyen HP, He Q, Prieto VG, Tyring SK, Ciurea AM. 2012. Merkel cell polyomavirus DNA detection in a patient with Merkel cell carcinoma and multiple other skin cancers. Int J Dermatol 51:442444[CrossRef].[PubMed]
78. Jung HS, Choi YL, Choi JS, Roh JH, Pyon JK, Woo KJ, Lee EH, Jang KT, Han J, Park CS, Park YS, Shin YK. 2011. Detection of Merkel cell polyomavirus in Merkel cell carcinomas and small cell carcinomas by PCR and immunohistochemistry. Histol Histopathol 26:12311241.[PubMed]
79. Paolini F, Donati P, Amantea A, Bucher S, Migliano E, Venuti A. 2011. Merkel cell polyomavirus in Merkel cell carcinoma of Italian patients. Virol J 8:103[CrossRef].[PubMed]
80. Kassem A, Schöpflin A, Diaz C, Weyers W, Stickeler E, Werner M, Zur Hausen A. 2008. Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene. Cancer Res 68:50095013[CrossRef].[PubMed]
81. Becker JC, Houben R, Ugurel S, Trefzer U, Pföhler C, Schrama D. 2009. MC polyomavirus is frequently present in Merkel cell carcinoma of European patients. J Invest Dermatol 129:248250[CrossRef].[PubMed]
82. Foulongne V, Kluger N, Dereure O, Brieu N, Guillot B, Segondy M. 2008. Merkel cell polyomavirus and Merkel cell carcinoma, France. Emerg Infect Dis 14:14911493[CrossRef].[PubMed]
83. Duncavage EJ, Zehnbauer BA, Pfeifer JD. 2009. Prevalence of Merkel cell polyomavirus in Merkel cell carcinoma. Mod Pathol 22:516521[CrossRef].[PubMed]
84. de Koning MN, ter Schegget J, Eekhof JA, Kamp M, Kleter B, Gussekloo J, Feltkamp MC, Bouwes Bavinck JN, Purdie KJ, Bunker CB, Proby CM, Meys R, Harwood CA, Quint WG. 2010. Evaluation of a novel broad-spectrum PCR-multiplex genotyping assay for identification of cutaneous wart-associated human papillomavirus types. J Clin Microbiol 48:17061711[CrossRef].[PubMed]
85. Schmitt M, de Koning MN, Eekhof JA, Quint WG, Pawlita M. 2011. Evaluation of a novel multiplex human papillomavirus (HPV) genotyping assay for HPV types in skin warts. J Clin Microbiol 49:32623267[CrossRef].[PubMed]
86. Bruggink SC, de Koning MN, Gussekloo J, Egberts PF, Ter Schegget J, Feltkamp MC, Bavinck JN, Quint WG, Assendelft WJ, Eekhof JA. 2012. Cutaneous wart-associated HPV types: prevalence and relation with patient characteristics. J Clin Virol 55:250255[CrossRef].[PubMed]
87. Giannaki M, Kakourou T, Theodoridou M, Syriopoulou V, Kabouris M, Louizou E, Chrousos G. 2013. Human papillomavirus (HPV) genotyping of cutaneous warts in Greek children. Pediatr Dermatol 30:730735[CrossRef].[PubMed]
88. de Koning MN, Khoe LV, Eekhof JA, Kamp M, Gussekloo J, Ter Schegget J, Bouwes Bavinck JN, Quint WG. 2011. Lesional HPV types of cutaneous warts can be reliably identified by surface swabs. J Clin Virol 52:8487[CrossRef].[PubMed]
89. Sasagawa T, Mitsuishi T. 2012. Novel polymerase chain reaction method for detecting cutaneous human papillomavirus DNA. J Med Virol 84:138144[CrossRef].[PubMed]
90. Hannigan GD, Pulos N, Grice EA, Mehta S. 2015. Current concepts and ongoing research in the prevention and treatment of open fracture infections. Adv Wound Care (New Rochelle) 4:5974[CrossRef].[PubMed]
91. Misic AM, Gardner SE, Grice EA. 2014. The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing. Adv Wound Care (New Rochelle) 3:502510[CrossRef].[PubMed]


Generic image for table

Skin disorders caused by or associated with bacterial colonization and/or infection

Citation: Grice E. 2016. The Skin Microbiome: Insights into Potential Impact on Diagnostic Practice, p 117-125. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch10
Generic image for table

Skin disorders caused by or associated with fungal agents

Citation: Grice E. 2016. The Skin Microbiome: Insights into Potential Impact on Diagnostic Practice, p 117-125. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch10
Generic image for table

Skin disorders caused by or associated with viruses

Citation: Grice E. 2016. The Skin Microbiome: Insights into Potential Impact on Diagnostic Practice, p 117-125. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error