1887

Chapter 11 : The Gastrointestinal Microbiome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

The Gastrointestinal Microbiome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch11-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch11-2.gif

Abstract:

Through the years, the individual microbes that reside in the human gastrointestinal (GI) tract have been labeled as pathogens, commensals, uncultivable, or unidentifiable. While exploration of particular species in the discovery and diagnosis of disease remains paramount, it is the landscape of the microbial community that continues to offer greater clues to the role of microbes in human health and quality of life. In contrast to other body systems, the human GI microbiome is ecologically diverse and complex and plays an active role in digestion, metabolism, behavior, heart size, and the development of the mucosal immune system, among other associations (1, 2). The composition of the gut microbiota is influenced by diet, age, host genetics, antibiotic treatment, and the environment (e.g., psychological stress, hygiene, climate, and allergies) (3). The microbial communities found in the gut have also been shown to contribute, both negatively and positively, not only to health issues rooted in the GI tract, but also to those of the respiratory and central nervous systems. An imbalance or shift of the gut microbiome has been linked to the development of a variety of disorders including inflammatory bowel disease (4–6), gastric ulcers and cancer (7–10), autism spectrum disorder (11–15), and obesity and diabetes (16–19). Because of the implications related to these changes and the development of “unhealthy” microbiomes, research is ongoing to continue to refine the definition and composition of a “healthy” gut microbiome.

Citation: Magee A, Versalovic J, Luna R. 2016. The Gastrointestinal Microbiome, p 126-137. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The dynamic nature of the gut microbiome over the span of a lifetime. With initial seeding of the microbiome at birth, the bacterial community of the gut continues to evolve through the course of a lifetime. Various factors affect the specific composition of an individual's gut community, and in return, the gut microbiome contributes to health and disease. (Reproduced with permission from reference .)

Citation: Magee A, Versalovic J, Luna R. 2016. The Gastrointestinal Microbiome, p 126-137. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Antibiotics, probiotics, and prebiotics in the gut. (A) While antibiotics successfully eliminate pathogenic bacteria, the diversity of the overall bacterial community is diminished and can leave the host susceptible to further disease. (B) Probiotics and prebiotics are effective at manipulating the microbial community and promoting a healthier microbiome profile in the gut. (Reproduced with permission from reference .)

Citation: Magee A, Versalovic J, Luna R. 2016. The Gastrointestinal Microbiome, p 126-137. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Fecal microbiome transplantation for the treatment of infection. Using material from a healthy donor, fecal transplants have successfully treated infection and restored a healthy gut microbiome. (Reproduced with permission from reference .)

Citation: Magee A, Versalovic J, Luna R. 2016. The Gastrointestinal Microbiome, p 126-137. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819071.ch11
1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 2007. The human microbiome project. Nature 449:804810[CrossRef].[PubMed]
2. Stecher B, Hardt WD. 2011. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 14:8291[CrossRef].[PubMed]
3. Phillips ML. 2009. Gut reaction: environmental effects on the human microbiota. Environ Health Perspect 117:A198A205[CrossRef].[PubMed]
4. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut microbiome viewed across age and geography. Nature 486:222227.[PubMed]
5. Rajilić-Stojanović M, Shanahan F, Guarner F, de Vos WM. 2013. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis 19:481488[CrossRef].[PubMed]
6. Jalanka-Tuovinen J, Salonen A, Nikkilä J, Immonen O, Kekkonen R, Lahti L, Palva A, de Vos WM. 2011. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One 6:e23035[CrossRef].[PubMed]
7. Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260270.[PubMed]
8. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L. 2008. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3:e2836[CrossRef].[PubMed]
9. McColl KE. 2010. Clinical practice. Helicobacter pylori infection. N Engl J Med 362:15971604[CrossRef].[PubMed]
10. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, El-Omar EM, Brenner D, Fuchs CS, Meyerson M, Garrett WS. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207215[CrossRef].[PubMed]
11. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E, Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green JA III. 2010. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16:444453[CrossRef].[PubMed]
12. Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, Bennett A, Jabado O, Hirschberg DL, Lipkin WI. 2011. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 6:e24585[CrossRef].[PubMed]
13. Gondalia SV, Palombo EA, Knowles SR, Cox SB, Meyer D, Austin DW. 2012. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res 5:419427[CrossRef].[PubMed]
14. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-Brown R. 2013. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8:e68322[CrossRef].[PubMed]
15. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R. 2013. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One 8:e76993[CrossRef].[PubMed]
16. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. 2009. A core gut microbiome in obese and lean twins. Nature 457:480484[CrossRef].[PubMed]
17. Ley RE. 2010. Obesity and the human microbiome. Curr Opin Gastroenterol 26:511[CrossRef].[PubMed]
18. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085[CrossRef].[PubMed]
19. Qin J, , et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:5560[CrossRef].[PubMed]
20. Fitzgerald C, Whichard J, Nachamkin I,. 2008. Diagnosis and antimicrobial susceptibility of Campylobacter species, p 227243. In Nachamkin I, Szymanski CM, Blaser MJ (ed), Campylobacter, 3rd ed. ASM Press, Washington, DC.[CrossRef]
21. Luna RA, Fasciano LR, Jones SC, Boyanton BL Jr, Ton TT, Versalovic J. 2007. DNA pyrosequencing-based bacterial pathogen identification in a pediatric hospital setting. J Clin Microbiol 45:29852992[CrossRef].[PubMed]
22. Dethlefsen L, McFall-Ngai M, Relman DA. 2007. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811818[CrossRef].[PubMed]
23. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J. 2009. Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856866[CrossRef].[PubMed]
24. Vael C, Desager K. 2009. The importance of the development of the intestinal microbiota in infancy. Curr Opin Pediatr 21:794800[CrossRef].[PubMed]
25. Methé BA, , et al, Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486:215221[CrossRef].[PubMed]
26. Huttenhower C, , et al, Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207214[CrossRef].[PubMed]
27. Griffiths MW. 2010. Improving quality in milk products 2.5.2: Beneficial effects of natural constituents of milk and milk products on gut health, p 2873. In Improving the Safety and Quality of Milk, vol. 2. Woodhead Publishing, Cambridge, United Kingdom.
28. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. 2005. Diversity of the human intestinal microbial flora. Science 308:16351638[CrossRef].[PubMed]
29. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI. 2008. Evolution of mammals and their gut microbes. Science 320:16471651[CrossRef].[PubMed]
30. Qin J, , et al, MetaHIT Consortium. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:5965[CrossRef].[PubMed]
31. Ottman N, Smidt H, de Vos WM, Belzer C. 2012. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol 2:104[CrossRef].[PubMed]
32. Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R. 2011. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140:17131719[CrossRef].[PubMed]
33. La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM, Stevens HJ, Bennett WE Jr, Shaikh N, Linneman LA, Hoffmann JA, Hamvas A, Deych E, Shands BA, Shannon WD, Tarr PI. 2014. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci USA 111:1252212527[CrossRef].[PubMed]
34. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. 2014. The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65[CrossRef].[PubMed]
35. Le Huërou-Luron I, Blat S, Boudry G. 2010. Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 23:2336[CrossRef].[PubMed]
36. Bezirtzoglou E, Tsiotsias A, Welling GW. 2011. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 17:478482[CrossRef].[PubMed]
37. Schwartz S, Friedberg I, Ivanov IV, Davidson LA, Goldsby JS, Dahl DB, Herman D, Wang M, Donovan SM, Chapkin RS. 2012. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol 13:r32[CrossRef].[PubMed]
38. Adlerberth I, Wold AE. 2009. Establishment of the gut microbiota in Western infants. Acta Paediatr 98:229238[CrossRef].[PubMed]
39. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M. 2007. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169181[CrossRef].[PubMed]
40. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. 2007. Development of the human infant intestinal microbiota. PLoS Biol 5:e177[CrossRef].[PubMed]
41. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. 2011. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl 1):45784585[CrossRef].[PubMed]
42. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J. 2011. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141:17821791[CrossRef].[PubMed]
43. Hopkins MJ, Macfarlane GT, Furrie E, Fite A, Macfarlane S. 2005. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiol Ecol 54:7785[CrossRef].[PubMed]
44. Hopkins MJ, Sharp R, Macfarlane GT. 2001. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48:198205[CrossRef].[PubMed]
45. Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ, Paliy O. 2011. Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol 77:404412[CrossRef].[PubMed]
46. Lin A, Bik EM, Costello EK, Dethlefsen L, Haque R, Relman DA, Singh U. 2013. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One 8:e53838[CrossRef].[PubMed]
47. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W. 2010. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5:e10667[CrossRef].[PubMed]
48. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178184[CrossRef].[PubMed]
49. McElhany KG, Pillai SD,. 2011. Prevalence and fate of gut-associated human pathogens in the environment, p 217237. In Sadowsky MJ (ed), The Fecal Bacteria. ASM Press, Washington, DC.[CrossRef]
50. Kaper JB. 2005. Pathogenic Escherichia coli. Int J Med Microbiol 295:355356[CrossRef].[PubMed]
51. Sheh A, Fox JG. 2013. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 4:505531[CrossRef].[PubMed]
52. Monstein HJ, Tiveljung A, Kraft CH, Borch K, Jonasson J. 2000. Profiling of bacterial flora in gastric biopsies from patients with Helicobacter pylori-associated gastritis and histologically normal control individuals by temperature gradient gel electrophoresis and 16S rDNA sequence analysis. J Med Microbiol 49:817822[CrossRef].[PubMed]
53. Trieber CA, Taylor DE. 2002. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol 184:21312140[CrossRef].[PubMed]
54. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, Star J, Weljie AM, Flint HJ, Metz DC, Bennett MJ, Li H, Bushman FD, Lewis JD. 2014. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65:6372.[PubMed]
55. Arumugam M, , et al, MetaHIT Consortium. 2011. Enterotypes of the human gut microbiome. Nature 473:174180[CrossRef].[PubMed]
56. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 2009. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14[CrossRef].[PubMed]
57. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD. 2009. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:17161724, e1711–1712.
58. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:1469114696[CrossRef].[PubMed]
59. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559563[CrossRef].[PubMed]
60. Gupta SS, Mohammed MH, Ghosh TS, Kanungo S, Nair GB, Mande SS. 2011. Metagenome of the gut of a malnourished child. Gut Pathog 3:7[CrossRef].[PubMed]
61. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. 2006. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55:205211[CrossRef].[PubMed]
62. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:10221023[CrossRef].[PubMed]
63. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:1107011075[CrossRef].[PubMed]
64. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:10271031[CrossRef].[PubMed]
65. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214[CrossRef].[PubMed]
66. Preidis GA, Versalovic J. 2009. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136:20152031[CrossRef].[PubMed]
67. Jernberg C, Löfmark S, Edlund C, Jansson JK. 2007. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:5666[CrossRef].[PubMed]
68. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511521[CrossRef].[PubMed]
69. Dethlefsen L, Huse S, Sogin ML, Relman DA. 2008. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280[CrossRef].[PubMed]
70. Romick-Rosendale LE, Goodpaster AM, Hanwright PJ, Patel NB, Wheeler ET, Chona DL, Kennedy MA. 2009. NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril). Magn Reson Chem 47(Suppl 1):S36S46[CrossRef].[PubMed]
71. Yap IK, Li JV, Saric J, Martin FP, Davies H, Wang Y, Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, Holmes E. 2008. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res 7:37183728[CrossRef].[PubMed]
72. Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger SC, Däumer C, Heinsen FA, Latorre A, Barbas C, Seifert J, dos Santos VM, Ott SJ, Ferrer M, Moya A. 2013. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62:15911601[CrossRef].[PubMed]
73. Pflughoeft KJ, Versalovic J. 2012. Human microbiome in health and disease. Annu Rev Pathol 7:99122[CrossRef].[PubMed]
74. Kang S, Denman SE, Morrison M, Yu Z, Dore J, Leclerc M, McSweeney CS. 2010. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis 16:20342042[CrossRef].[PubMed]
75. O'Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O'Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM. 2005. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541551[CrossRef].[PubMed]
76. Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S. 2010. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil 22:512519, e114515.
77. Chumpitazi BP, Hollister EB, Oezguen N, Tsai CM, McMeans AR, Luna RA, Savidge TC, Versalovic J, Shulman RJ. 2014. Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome. Gut Microbes 5:165175[CrossRef].[PubMed]
78. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, Rudi K. 2014. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26:11551162[CrossRef].[PubMed]
79. Maes M, Kubera M, Leunis JC. 2008. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol Lett 29:117124.[PubMed]
80. Maes M, Kubera M, Leunis JC, Berk M. 2012. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord 141:5562[CrossRef].[PubMed]
81. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. 2011. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:30473052[CrossRef].[PubMed]
82. Cryan JF, O'Mahony SM. 2011. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23:187192[CrossRef].[PubMed]
83. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. 2013. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666673[CrossRef].[PubMed]
84. Mayer EA, Tillisch K. 2011. The brain-gut axis in abdominal pain syndromes. Annu Rev Med 62:381396[CrossRef].[PubMed]
85. Mayer EA, Savidge T, Shulman RJ. 2014. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146:15001512[CrossRef].[PubMed]
86. Levy RL, Olden KW, Naliboff BD, Bradley LA, Francisconi C, Drossman DA, Creed F. 2006. Psychosocial aspects of the functional gastrointestinal disorders. Gastroenterology 130:14471458[CrossRef].[PubMed]
87. Williams BL, Hornig M, Parekh T, Lipkin WI. 2012. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio 3:e00261e11[CrossRef].[PubMed]
88. Finegold SM. 2011. Desulfovibrio species are potentially important in regressive autism. Med Hypotheses 77:270274[CrossRef].[PubMed]
89. Finegold SM, Downes J, Summanen PH. 2012. Microbiology of regressive autism. Anaerobe 18:260262[CrossRef].[PubMed]
90. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, McTeague M, Sandler R, Wexler H, Marlowe EM, Collins MD, Lawson PA, Summanen P, Baysallar M, Tomzynski TJ, Read E, Johnson E, Rolfe R, Nasir P, Shah H, Haake DA, Manning P, Kaul A. 2002. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35(Suppl 1):S6S16[CrossRef].[PubMed]
91. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, Carteni M, De Rosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C. 2010. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 51:418424[CrossRef].[PubMed]
92. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:14511463[CrossRef].[PubMed]
93. Anthes E. 2012. Study finds no link between autism and gut microbes. Simons Foundation Autism Research Initiative. http://sfari.org/news-and-opinion/news/study-finds-no-link-between-autism-and-gut-microbes.
94. Kim SW, Suda W, Kim S, Oshima K, Fukuda S, Ohno H, Morita H, Hattori M. 2013. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res 20:241253[CrossRef].[PubMed]
95. Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, De Noni I, Stuknyte M, Chouaia B, Riso P, Guglielmetti S. 2014. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr 144:17871796[CrossRef].[PubMed]
96. van Zanten GC, Krych L, Röytiö H, Forssten S, Lahtinen SJ, Abu Al-Soud W, Sørensen S, Svensson B, Jespersen L, Jakobsen M. 2014. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial. FEMS Microbiol Ecol 90:225236[CrossRef].[PubMed]
97. Ten Bruggencate SJ, Girard SA, Floris-Vollenbroek EG, Bhardwaj R, Tompkins TA. 2015. The effect of a multi-strain probiotic on the resistance toward Escherichia coli challenge in a randomized, placebo-controlled, double-blind intervention study. Eur J Clin Nutr 69:385391[CrossRef].[PubMed]
98. Charbonneau D, Gibb RD, Quigley EM. 2013. Fecal excretion of Bifidobacterium infantis 35624 and changes in fecal microbiota after eight weeks of oral supplementation with encapsulated probiotic. Gut Microbes 4:201211[CrossRef].[PubMed]
99. De La Cochetière MF, Durand T, Lalande V, Petit JC, Potel G, Beaugerie L. 2008. Effect of antibiotic therapy on human fecal microbiota and the relation to the development of Clostridium difficile. Microb Ecol 56:395402[CrossRef].[PubMed]
100. Jarvis WR, Schlosser J, Jarvis AA, Chinn RY. 2009. National point prevalence of Clostridium difficile in US health care facility inpatients, 2008. Am J Infect Control 37:263270[CrossRef].[PubMed]
101. Borody TJ, Campbell J. 2011. Fecal microbiota transplantation: current status and future directions. Expert Rev Gastroenterol Hepatol 5:653655[CrossRef].[PubMed]
102. Borody TJ, Khoruts A. 2012. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9:8896[CrossRef].[PubMed]
103. Ananthakrishnan AN. 2011. Clostridium difficile infection: epidemiology, risk factors and management. Nat Rev Gastroenterol Hepatol 8:1726[CrossRef].[PubMed]
104. Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. 2013. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 4:125135[CrossRef].[PubMed]
105. Weingarden AR, Chen C, Bobr A, Yao D, Lu Y, Nelson VM, Sadowsky MJ, Khoruts A. 2014. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol 306:G310G319[CrossRef].[PubMed]
106. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913916 e917.
107. Petrof EO, Khoruts A. 2014. From stool transplants to next-generation microbiota therapeutics. Gastroenterology 146:15731582[CrossRef].[PubMed]
108. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, Jarnerot G, Tysk C, Jansson JK, Engstrand L. 2010. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139:18441854 e1841.
109. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. 2005. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 43:33803389[CrossRef].[PubMed]
110. Zhang L, Man SM, Day AS, Leach ST, Lemberg DA, Dutt S, Stormon M, Otley A, O'Loughlin EV, Magoffin A, Ng PH, Mitchell H. 2009. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn's disease. J Clin Microbiol 47:453455[CrossRef].[PubMed]
111. Thomson JM, Hansen R, Berry SH, Hope ME, Murray GI, Mukhopadhya I, McLean MH, Shen Z, Fox JG, El-Omar E, Hold GL. 2011. Enterohepatic helicobacter in ulcerative colitis: potential pathogenic entities? PLoS One 6:e17184[CrossRef].[PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error