1887

Chapter 19 : The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch19-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch19-2.gif

Abstract:

The Centers for Disease Control and Prevention (CDC) estimates that foodborne diseases cause illness in one in six Americans (or 48 million people) each year, leading to 128,000 hospitalizations and 3,000 deaths (1, 2). Among the known foodborne pathogens, bacteria proportionally cause the most severe illness, being associated with 64% of hospitalizations and 64% of the deaths. The foodborne bacteria associated with most hospitalizations and deaths are , , Shiga toxin-producing (STEC), and These bacteria are all zoonotic; i.e., they may be found in the normal intestinal biota of animals without causing disease and may spread to the environment and contaminate the food we eat.

Citation: Besser J, Carleton H, Goering R, Gerner-Smidt P. 2016. The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections, p 235-244. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic analytical principle of three approaches to whole-genome sequence analysis. (A) kmer, (B) hqSNP, (C) wgMLST.

Citation: Besser J, Carleton H, Goering R, Gerner-Smidt P. 2016. The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections, p 235-244. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

hqSNP (A) and wgMLST (B) trees of isolates of that are indistinguishable by PFGE (C). Isolates associated with an outbreak related to consumption of artisan cheese are highlighted with brackets and shown along with contemporary and historical isolates with no relation to the outbreak. The isolates from the patient who did not consume the artisan cheese product or did not have exposure information are denoted. The hqSNP and wgMLST analyses produced equivalent results.The hqSNPs were defined by consensus ≥75% and coverage ≥×10. The wgMLST analysis and UPGMA tree was generated using BioNumerics 7.5 (Applied Maths).

Citation: Besser J, Carleton H, Goering R, Gerner-Smidt P. 2016. The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections, p 235-244. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819071.ch19
1. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. 2011. Foodborne illness acquired in the United States—unspecified agents. Emerg Infect Dis 17:1622[CrossRef].[PubMed]
2. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM, Cronquist A, Hanna S, Hatch J, Hayes T, Larson K, Nicholson C, Wymore K, Tobin-D'Angelo M, Strockbine N, Snippes P, Atkinson R, Gould LH. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:715[CrossRef].[PubMed]
3. CDC. 2014. Surveillance for Foodborne Disease Outbreaks United States, 2012: Annual Report. US Department of Health and Human Services, CDC, Atlanta, GA.
4. Besser J, Keene W. 2014. Foodborne disease surveillance and outbreak detection. In Guidelines for Foodborne Disease Outbreak Response, 2nd ed. The Council to Improve Foodborne Outbreak Response (CIFOR), Atlanta, GA.
5. Berger M, Shiau R, Weintraub JM. 2006. Review of syndromic surveillance: implications for waterborne disease detection. J Epidemiol Community Health 60:543550[CrossRef].[PubMed]
6. Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris GK. 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18:512520.[PubMed]
7. McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O'Connor KA, Cosgrove S, Gossack JP, Parachini SS, Jain NS, Ettestad P, Ibraheem M, Cantu V, Joshi M, DuVernoy T, Fogg NW Jr, Gorny JR, Mogen KM, Spires C, Teitell P, Joseph LA, Tarr CL, Imanishi M, Neil KP, Tauxe RV, Mahon BE. 2013. Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med 369:944953[CrossRef].[PubMed]
8. Besser J,. 2007. Use of molecular epidemiology in infectious disease surveillance, p 393407. In M'ikanatha N (ed), Infectious Disease Surveillance. Blackwell Publishers, London, United Kingdom.[CrossRef]
9. Boxrud D, Monson T, Stiles T, Besser J. 2010. The role, challenges, and support of PulseNet laboratories in detecting foodborne disease outbreaks. Public Health Rep 125(Suppl 2):5762.[PubMed]
10. Swaminathan B, Gerner-Smidt P, Ng LK, Lukinmaa S, Kam KM, Rolando S, Gutiérrez EP, Binsztein N. 2006. Building PulseNet International: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog Dis 3:3650[CrossRef].[PubMed]
11. Reingold AL. 1998. Outbreak investigations—a perspective. Emerg Infect Dis 4:2127[CrossRef].[PubMed]
12. Hedberg CW, Palazzi-Churas KL, Radke VJ, Selman CA, Tauxe RV. 2008. The use of clinical profiles in the investigation of foodborne outbreaks in restaurants: United States, 1982–1997. Epidemiol Infect 136:6572[CrossRef].[PubMed]
13. Gerner-Smidt P, Kincaid J, Kubota K, Hise K, Hunter SB, Fair MA, Norton D, Woo-Ming A, Kurzynski T, Sotir MJ, Head M, Holt K, Swaminathan B. 2005. Molecular surveillance of Shiga toxigenic Escherichia coli O157 by PulseNet USA. J Food Prot 68:19261931.[PubMed]
14. Sotir MJ, Ewald G, Kimura AC, Higa JI, Sheth A, Troppy S, Meyer S, Hoekstra RM, Austin J, Archer J, Spayne M, Daly ER, Griffin PM, Salmonella Wandsworth Outbreak Investigation Team. 2009. Outbreak of Salmonella Wandsworth and Typhimurium infections in infants and toddlers traced to a commercial vegetable-coated snack food. Pediatr Infect Dis J 28:10411046[CrossRef].[PubMed]
15. Goering RV. 2010. Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10:866875[CrossRef].[PubMed]
16. Goering RV, Ribor EM, Gerner-Smidt P,. 2011. Pulsed-field gel electrophoresis: laboratory and epidemiologic considerations for interpretation of data, p 167177. In Persing DH, Tenover FC, Tang YW, Nolte FS, Hayden LRT, Van Belkum A (ed), Molecular Microbiology: Diagnostic Principles and Practice, 2nd ed. ASM Press, Washington, DC.[CrossRef]
17. Schwartz DC, Cantor CR. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:6775[CrossRef].[PubMed]
18. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, Iqbal Z, Kinney A, Limberger R, Musser KA, Shudt M, Strain E, Wiedmann M, Wolfgang WJ. 2014. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar Enteritidis. Emerg Infect Dis 20:13061314[CrossRef].[PubMed]
19. Buermans HP, den Dunnen JT. 2014. Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:19321941[CrossRef].[PubMed]
20. Edwards DJ, Holt KE. 2013. Beginner's guide to comparative bacterial genome analysis using next-generation sequence data. Microb Inform Exp 3:2[CrossRef].[PubMed]
21. Hoffmann M, Zhao S, Pettengill J, Luo Y, Monday SR, Abbott J, Ayers SL, Cinar HN, Muruvanda T, Li C, Allard MW, Whichard J, Meng J, Brown EW, McDermott PF. 2014. Comparative genomic analysis and virulence differences in closely related Salmonella enterica serotype Heidelberg isolates from humans, retail meats, and animals. Genome Biol Evol 6:10461068[CrossRef].[PubMed]
22. Hopkins KL, Peters TM, de Pinna E, Wain J. 2011. Standardisation of multilocus variable-number tandem-repeat analysis (MLVA) for subtyping of Salmonella enterica serovar Enteritidis. Euro Surveill 16:19942.[PubMed]
23. Hyytia-Trees E, Lafon P, Vauterin P, Ribot EM. 2010. Multilaboratory validation study of standardized multiple-locus variable-number tandem repeat analysis protocol for Shiga toxin-producing Escherichia coli O157: a novel approach to normalize fragment size data between capillary electrophoresis platforms. Foodborne Pathog Dis 7:129136[CrossRef].[PubMed]
24. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK. 2011. The origin of the Haitian cholera outbreak strain. N Engl J Med 364:3342[CrossRef].[PubMed]
25. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, Rempel S, Moore R, Zhao Y, Holt R, Varhol R, Birol I, Lem M, Sharma MK, Elwood K, Jones SJ, Brinkman FS, Brunham RC, Tang P. 2011. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364:730739[CrossRef].[PubMed]
26. Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES, Turnsek MA, Guo Y, Wang S, Paxinos EE, Orata F, Gladney LM, Stroika S, Folster JP, Rowe L, Freeman MM, Knox N, Frace M, Boncy J, Graham M, Hammer BK, Boucher Y, Bashir A, Hanage WP, Van Domselaar G, Tarr CL. 2013. Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti. MBio 4:e00398[CrossRef].[PubMed]
27. Prosperi M, Veras N, Azarian T, Rathore M, Nolan D, Rand K, Cook RL, Johnson J, Morris JG Jr, Salemi M. 2013. Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in the genomic era: a cross-sectional study. Sci Rep 3:1902[CrossRef].[PubMed]
28. Reuter S, Harrison TG, Köser CU, Ellington MJ, Smith GP, Parkhill J, Peacock SJ, Bentley SD, Török ME. 2013. A pilot study of rapid whole-genome sequencing for the investigation of a Legionella outbreak. BMJ Open 3:e002175[CrossRef].[PubMed]
29. Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, Li S, Li Y, Zhang Z, Yang X, Zhao M, Wang P, Guan Y, Cen Z, Zhao X, Christner M, Kobbe R, Loos S, Oh J, Yang L, Danchin A, Gao GF, Song Y, Li Y, Yang H, Wang J, Xu J, Pallen MJ, Wang J, Aepfelbacher M, Yang R, E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium. 2011. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med 365:718724[CrossRef].[PubMed]
30. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H. 2011. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751[CrossRef].[PubMed]
31. Gardner SN, Hall BG. 2013. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS One 8:e81760[CrossRef].[PubMed]
32. Liu F, Hu Y, Wang Q, Li HM, Gao GF, Liu CH, Zhu B. 2014. Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates. BMC Genomics 15:469[CrossRef].[PubMed]
33. Maiden MC, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND. 2013. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11:728736[CrossRef].[PubMed]
34. Allard MW, Luo Y, Strain E, Pettengill J, Timme R, Wang C, Li C, Keys CE, Zheng J, Stones R, Wilson MR, Musser SM, Brown EW. 2013. On the evolutionary history, population genetics and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004. PLoS One 8:e55254[CrossRef].[PubMed]
35. Barrett TJ, Gerner-Smidt P, Swaminathan B. 2006. Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog Dis 3:2031[CrossRef].[PubMed]
36. Adékambi T, Drancourt M, Raoult D. 2009. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17:3745[CrossRef].[PubMed]
37. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:15011510[CrossRef].[PubMed]
38. Kleinheinz KA, Joensen KG, Larsen MV. 2014. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 4:e27943[CrossRef].[PubMed]
39. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O'Brien JS, Pawlowski AC, Piddock LJ, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright GD. 2013. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:33483357[CrossRef].[PubMed]
40. Jones TF, Gerner-Smidt P. 2012. Nonculture diagnostic tests for enteric diseases. Emerg Infect Dis 18:513514[CrossRef].[PubMed]
41. Cronquist AB, Mody RK, Atkinson R, Besser J, Tobin D'Angelo M, Hurd S, Robinson T, Nicholson C, Mahon BE. 2012. Impacts of culture-independent diagnostic practices on public health surveillance for bacterial enteric pathogens. Clin Infect Dis 54(Suppl 5):S432S439[CrossRef].[PubMed]
42. Jensen C, Ethelberg S, Olesen B, Schiellerup P, Olsen KE, Scheutz F, Nielsen EM, Neimann J, Høgh B, Gerner-Smidt P, Mølbak K, Krogfelt KA. 2007. Attaching and effacing Escherichia coli isolates from Danish children: clinical significance and microbiological characteristics. Clin Microbiol Infect 13:863872[CrossRef].[PubMed]
43. Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J, Ehrlich D, Doré J. 2013. A metagenomic insight into our gut's microbiome. Gut 62:146158[CrossRef].[PubMed]
44. Scholz MB, Lo CC, Chain PS. 2012. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 23:915[CrossRef].[PubMed]
45. Tommasi C, Equitani F, Masala M, Ballardini M, Favaro M, Meledandri M, Fontana C, Narciso P, Nicastri E. 2008. Diagnostic difficulties of Lactobacillus casei bacteraemia in immunocompetent patients: a case report. J Med Case Reports 2:315[CrossRef].[PubMed]
46. Rasmussen RS, Morrissey MT. 2008. DNA-based methods for the identification of commercial fish and seafood species. Compr Rev Food Sci Food Saf 7:280295[CrossRef].
47. Ottesen AR, González Peña A, White JR, Pettengill JB, Li C, Allard S, Rideout S, Allard M, Hill T, Evans P, Strain E, Musser S, Knight R, Brown E. 2013. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol 13:114[CrossRef].[PubMed]
48. Loman NJ, Constantinidou C, Christner M, Rohde H, Chan JZ, Quick J, Weir JC, Quince C, Smith GP, Betley JR, Aepfelbacher M, Pallen MJ. 2013. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 309:15021510[CrossRef].[PubMed]

Tables

Generic image for table
TABLE 1

Key characteristics of different whole-genome sequencing analysis techniques used in outbreak investigations

Citation: Besser J, Carleton H, Goering R, Gerner-Smidt P. 2016. The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections, p 235-244. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error