1887

Chapter 20 : Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    581.28 Kb
  • HTML
    148.66 Kb
  • XML
    173.01 Kb

Preview this chapter:
Zoom in
Zoomout

Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch20-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch20-2.gif

Abstract:

The first multidrug-resistant isolates of that were recognized as clinically significant were strains of spp. isolated in Japan in the late 1950s. These strains demonstrated resistance to chloramphenicol, streptomycin, sulfonamides, and tetracycline (1). By 1960, Watanabe and Fukasawa had demonstrated that all four resistance markers were transmissible from donor strains to recipient strains of and serovar Typhimurium via R-factors (2). Resistance to these and other first-line antimicrobial agents, however, remained rare among other genera of the . Resistance was seen as an anomaly. The discovery of the TEM beta-lactamase (3), which would become the most common cause of ampicillin and first-generation cephalosporin resistance in contemporary isolates, was still 6 years away. In the 1970s, reports of multidrug-resistant bacteria began to appear more frequently, and susceptibility to beta-lactams, aminoglycosides, and sulfonamides began to wane (4). Fast-forward to the 21st century when pan-susceptible clinical isolates of bacteria are now rare and multiple drug-resistant organisms (MDROs) representing dozens of bacterial species have been recognized and are spreading worldwide (5). Multidrug-resistant strains of staphylococci, enterococci, pseudomonads, acinetobacters, and members of the family are isolated with increasing frequency in clinical microbiology laboratories around the world, and controlling their spread has become a public health priority (6). Globally, we have now moved into the era of antimicrobial resistance.

Citation: Tenover F. 2016. Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings, p 245-255. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/10.1128/9781555819071/ch20.html?itemId=/content/book/10.1128/9781555819071.ch20&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Data on prevalence of MRSA in Europe in 2003 and 2014 from EARS-NET (http://www.ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/map_reports.aspx). Significant changes are indicated in the circled areas.

Citation: Tenover F. 2016. Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings, p 245-255. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Types of carbapenemase-producing in Canada. Data from the Canadian Public Health Laboratory Network. Used with permission from Michael Mulvey.

Citation: Tenover F. 2016. Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings, p 245-255. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819071.ch20
1. Ochiai K. 1959. Distribution and clinic of dysentery caused by antibiotic-resistant strains, p 306316. In Medicine in Japan in 1959. Proceedings of the 15th General Meeting of the Japan Medical Association.
2. Watanabe T, Fukasawa T. 1961. Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J Bacteriol 81:669678.[PubMed]
3. Datta N, Richmond MH. 1966. The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli. Biochem J 98:204209[CrossRef].[PubMed]
4. Tompkins LS, Plorde JJ, Falkow S. 1980. Molecular analysis of R-factors from multiresistant nosocomial isolates. J Infect Dis 141:625636[CrossRef].[PubMed]
5. World Health Organization. 2014. Antimicrobial Resistance: Global Report on Surveillance. World Health Organization, Geneva, Switzerland.
6. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. 2013. Antibiotic resistance—the need for global solutions. Lancet Infect Dis 13:10571098[CrossRef].[PubMed]
7. Vos MC, Behrendt MD, Melles DC, Mollema FP, de Groot W, Parlevliet G, Ott A, Horst-Kreft D, van Belkum A, Verbrugh HA. 2009. 5 years of experience implementing a methicillin-resistant Staphylococcus aureus search and destroy policy at the largest university medical center in the Netherlands. Infect Control Hosp Epidemiol 30:977984[CrossRef].[PubMed]
8. Jurke A, Kock R, Becker K, Thole S, Hendrix R, Rossen J, Daniels-Haardt I, Friedrich A. 2013. Reduction of the nosocomial meticillin-resistant Staphylococcus aureus incidence density by a region-wide search and follow-strategy in forty German hospitals of the EUREGIO, 2009 to 2011. Euro Surveill 18:20579[CrossRef].[PubMed]
9. Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW, European Staphylococcal Reference Laboratory Working Group. 2010. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 7:e1000215[CrossRef].[PubMed]
10. Tenover FC, Tickler IA, Goering RV, Kreiswirth BN, Mediavilla JR, Persing DH, MRSA Consortium. 2012. Characterization of nasal and blood culture isolates of methicillin-resistant Staphylococcus aureus from patients in United States Hospitals. Antimicrob Agents Chemother 56:13241330[CrossRef].[PubMed]
11. Li M, Diep BA, Villaruz AE, Braughton KR, Jiang X, DeLeo FR, Chambers HF, Lu Y, Otto M. 2009. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 106:58835888[CrossRef].[PubMed]
12. Wolk DM, Struelens MJ, Pancholi P, Davis T, Della-Latta P, Fuller D, Picton E, Dickenson R, Denis O, Johnson D, Chapin K. 2009. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol 47:823826[CrossRef].[PubMed]
13. Pulia MS, Calderone M, Hansen B, Stake CE, Cichon M, Li Z, Safdar N. 2013. Feasibility of rapid polymerase chain reaction for detection of methicillin-resistant Staphylococcus aureus colonization among emergency department patients with abscesses. Open Access Emerg Med 5:1722[CrossRef].
14. Steward CD, Raney PM, Morrell AK, Williams PP, McDougal LK, Jevitt L, McGowan JE Jr, Tenover FC. 2005. Testing for induction of clindamycin resistance in erythromycin-resistant isolates of Staphylococcus aureus. J Clin Microbiol 43:17161721[CrossRef].[PubMed]
15. Tenover FC, Reller LB, Weinstein MP. 2007. Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Clin Infect Dis 44:418423[CrossRef].[PubMed]
16. Woodford N, Turton JF, Livermore DM. 2011. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35:736755[CrossRef].[PubMed]
17. Glupczynski Y, Huang TD, Bouchahrouf W, Rezende de Castro R, Bauraing C, Gérard M, Verbruggen AM, Deplano A, Denis O, Bogaerts P. 2012. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int J Antimicrob Agents 39:168172[CrossRef].[PubMed]
18. Dortet L, Cuzon G, Nordmann P. 2014. Dissemination of carbapenemase-producing Enterobacteriaceae in France, 2012. J Antimicrob Chemother 69:623627[CrossRef].[PubMed]
19. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Huang TD, Nordmann P. 2008. Plasmid-encoded carbapenem-hydrolyzing beta-lactamase OXA-48 in an imipenem-susceptible Klebsiella pneumoniae strain from Belgium. Antimicrob Agents Chemother 52:34633464[CrossRef].[PubMed]
20. Poirel L, Potron A, Nordmann P. 2012. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 67:15971606[CrossRef].[PubMed]
21. Crump JA, Medalla FM, Joyce KW, Krueger AL, Hoekstra RM, Whichard JM, Barzilay EJ, Emerging Infections Program NARMS Working Group. 2011. Antimicrobial resistance among invasive nontyphoidal Salmonella enterica isolates in the United States: National Antimicrobial Resistance Monitoring System, 1996 to 2007. Antimicrob Agents Chemother 55:11481154[CrossRef].[PubMed]
22. Dudeck MA, Edwards JR, Allen-Bridson K, Gross C, Malpiedi PJ, Peterson KD, Pollock DA, Weiner LM, Sievert DM. 2015. National Healthcare Safety Network report, data summary for 2013, device-associated module. Am J Infect Control 43:206221[CrossRef].[PubMed]
23. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. 2013. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34:114[CrossRef].[PubMed]
24. Burton DC, Edwards JR, Horan TC, Jernigan JA, Fridkin SK. 2009. Methicillin-resistant Staphylococcus aureus central line-associated bloodstream infections in US intensive care units, 1997–2007. JAMA 301:727736[CrossRef].[PubMed]
25. Centers for Disease Control and Prevention (CDC). 2002. Staphylococcus aureus resistant to vancomycin—United States, 2002. MMWR Morb Mortal Wkly Rep 51:565567.[PubMed]
26. Centers for Disease Control and Prevention. 2014. National and State Healthcare-Associated Infections Progress Report. Centers for Disease Control and Prevention, Atlanta, GA.
27. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK, Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. 2014. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370:11981208.
28. Magooa MP, Müller EE, Gumede L, Lewis DA. 2013. Determination of Neisseria gonorrhoeae susceptibility to ciprofloxacin in clinical specimens from men using a real-time PCR assay. Int J Antimicrob Agents 42:6367[CrossRef].[PubMed]
29. Stelling J, Yih WK, Galas M, Kulldorff M, Pichel M, Terragno R, Tuduri E, Espetxe S, Binsztein N, O'Brien TF, Platt R, Collaborative Group WHONET-Argentina. 2010. Automated use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect 138:873883[CrossRef].[PubMed]
30. O'Brien TF, Stelling J. 2014. The world's microbiology laboratories can be a global microbial sensor network. Biomedica 34(Suppl 1):915.[PubMed]
31. Card R, Zhang J, Das P, Cook C, Woodford N, Anjum MF. 2013. Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. Antimicrob Agents Chemother 57:458465[CrossRef].[PubMed]
32. Findlay J, Hopkins KL, Meunier D, Woodford N. 2015. Evaluation of three commercial assays for rapid detection of genes encoding clinically relevant carbapenemases in cultured bacteria. J Antimicrob Chemother 70:13381342.
33. Nordmann P, Cornaglia G. 2012. Carbapenemase-producing Enterobacteriaceae: a call for action! Clin Microbiol Infect 18:411412[CrossRef].[PubMed]
34. Lascols C, Hackel M, Hujer AM, Marshall SH, Bouchillon SK, Hoban DJ, Hawser SP, Badal RE, Bonomo RA. 2012. Using nucleic acid microarrays to perform molecular epidemiology and detect novel β-lactamases: a snapshot of extended-spectrum β-lactamases throughout the world. J Clin Microbiol 50:16321639[CrossRef].[PubMed]
35. World Health Organbization. 2014. Global tuberculosis report 2014. World Health Organization, Geneva, Switzerland.
36. Syre H, Myneedu VP, Arora VK, Grewal HM. 2009. Direct detection of mycobacterial species in pulmonary specimens by two rapid amplification tests, the Gen-probe amplified Mycobacterium tuberculosis direct test and the genotype mycobacteria direct test. J Clin Microbiol 47:36353639[CrossRef].[PubMed]
37. Akpaka PE, Baboolal S, Clarke D, Francis L, Rastogi N. 2008. Evaluation of methods for rapid detection of resistance to isoniazid and rifampin in Mycobacterium tuberculosis isolates collected in the Caribbean. J Clin Microbiol 46:34263428[CrossRef].[PubMed]
38. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O'Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD. 2010. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363:10051015[CrossRef].[PubMed]
39. Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W. 2010. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. J Clin Microbiol 48:16831689[CrossRef].[PubMed]
40. Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R, Gler MT, Blakemore R, Worodria W, Gray C, Huang L, Caceres T, Mehdiyev R, Raymond L, Whitelaw A, Sagadevan K, Alexander H, Albert H, Cobelens F, Cox H, Alland D, Perkins MD. 2011. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377:14951505[CrossRef].[PubMed]
41. Division of Microbiology Devices, Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, Food and Drug Administration, Centers for Disease Control and Prevention (CDC). 2015. Revised device labeling for the Cepheid Xpert MTB/RIF assay for detecting Mycobacterium tuberculosis. MMWR Morb Mortal Wkly Rep 64:193.[PubMed]
42. Davis JL, Kawamura LM, Chaisson LH, Grinsdale J, Benhammou J, Ho C, Babst A, Banouvong H, Metcalfe JZ, Pandori M, Hopewell PC, Cattamanchi A. 2014. Impact of GeneXpert MTB/RIF on patients and tuberculosis programs in a low-burden setting. a hypothetical trial. Am J Respir Crit Care Med 189:15511559[CrossRef].[PubMed]
43. Chaisson LH, Roemer M, Cantu D, Haller B, Millman AJ, Cattamanchi A, Davis JL. 2014. Impact of GeneXpert MTB/RIF assay on triage of respiratory isolation rooms for inpatients with presumed tuberculosis: a hypothetical trial. Clin Infect Dis 59:13531360[CrossRef].[PubMed]
44. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:22332239.[PubMed]
45. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, Fussing V, Green J, Feil E, Gerner-Smidt P, Brisse S, Struelens M, European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group on Epidemiological Markers (ESGEM). 2007. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 13(Suppl 3):146[CrossRef].[PubMed]
46. Maquelin K, Cookson B, Tassios P, van Belkum A, European Society for Microbiology and Infectious Diseases (ESCMID) Study Group on Epidemiological Markers (ESGEM). 2007. Current trends in the epidemiological typing of clinically relevant microbes in Europe. J Microbiol Methods 69:222226[CrossRef].[PubMed]
47. Nahmias A, Sakurai N, Blumberg R, Doe Ge A, Sulzer C. 1961. The Staphylococcus “80/81 complex: epidemiological and laboratory observations. J Infect Dis 109:211222[CrossRef].[PubMed]
48. Robinson DA, Kearns AM, Holmes A, Morrison D, Grundmann H, Edwards G, O'Brien FG, Tenover FC, McDougal LK, Monk AB, Enright MC. 2005. Re-emergence of early pandemic Staphylococcus aureus as a community-acquired meticillin-resistant clone. Lancet 365:12561258[CrossRef].[PubMed]
49. Donahue JA, Baldwin JN. 1966. Hemolysin and leukocidin production by 80/81 strains of Staphylococcus aureus. J Infect Dis 116:324328[CrossRef].[PubMed]
50. Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J. 1999. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:11281132[CrossRef].[PubMed]
51. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy ME, Etienne J. 2003. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978984[CrossRef].[PubMed]
52. Talan DA, Krishnadasan A, Gorwitz RJ, Fosheim GE, Limbago B, Albrecht V, Moran GJ, EMERGEncy ID Net Study Group. 2011. Comparison of Staphylococcus aureus from skin and soft-tissue infections in US emergency department patients, 2004 and 2008. Clin Infect Dis 53:144149[CrossRef].[PubMed]
53. Hageman JC, Uyeki TM, Francis JS, Jernigan DB, Wheeler JG, Bridges CB, Barenkamp SJ, Sievert DM, Srinivasan A, Doherty MC, McDougal LK, Killgore GE, Lopatin UA, Coffman R, MacDonald JK, McAllister SK, Fosheim GE, Patel JB, McDonald LC. 2006. Severe community-acquired pneumonia due to Staphylococcus aureus, 2003–04 influenza season. Emerg Infect Dis 12:894899[CrossRef].[PubMed]
54. DeLeo FR, Chambers HF. 2009. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:24642474[CrossRef].[PubMed]
55. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC. 2003. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:51135120[CrossRef].[PubMed]
56. Chambers HF, Deleo FR. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629641[CrossRef].[PubMed]
57. Tenover FC, Tickler IA, Goering RV, Kreiswirth BN, Mediavilla JR, Persing DH, MRSA Consortium. 2012. Characterization of nasal and blood culture isolates of methicillin-resistant Staphylococcus aureus from patients in United States Hospitals. Antimicrob Agents Chemother 56:13241330[CrossRef].[PubMed]
58. Tenover FC, Goering RV. 2009. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother 64:441446[CrossRef].[PubMed]
59. McDougal LK, Fosheim GE, Nicholson A, Bulens SN, Limbago BM, Shearer JE, Summers AO, Patel JB. 2010. Emergence of resistance among USA300 methicillin-resistant Staphylococcus aureus isolates causing invasive disease in the United States. Antimicrob Agents Chemother 54:38043811[CrossRef].[PubMed]
60. Dhanji H, Doumith M, Rooney PJ, O'Leary MC, Loughrey AC, Hope R, Woodford N, Livermore DM. 2011. Molecular epidemiology of fluoroquinolone-resistant ST131 Escherichia coli producing CTX-M extended-spectrum beta-lactamases in nursing homes in Belfast, UK. J Antimicrob Chemother 66:297303[CrossRef].[PubMed]
61. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y, Brolund A, Giske CG. 2009. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 53:33653370[CrossRef].[PubMed]
62. Bush K, Jacoby GA. 2010. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969976[CrossRef].[PubMed]
63. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC. 2001. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:11511161[CrossRef].[PubMed]
64. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y, Motakefi A, Giske CG. 2009. Molecular epidemiology of KPC-producing Klebsiella pneumoniae in the United States: clonal expansion of MLST sequence type 258. Antimicrob Agents Chemother 53:33653370[CrossRef].[PubMed]
65. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785796[CrossRef].[PubMed]
66. Deleo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD, Porter AR, Chavda KD, Jacobs MR, Mathema B, Olsen RJ, Bonomo RA, Musser JM, Kreiswirth BN. 2014. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci USA 111:49884993[CrossRef].[PubMed]
67. Cantón R, Akóva M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Miriagou V, Naas T, Rossolini GM, Samuelsen Ø, Seifert H, Woodford N, Nordmann P, European Network on Carbapenemases. 2012. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18:413431[CrossRef].[PubMed]
68. Tacconelli E, Cataldo MA, Dancer SJ, De Angelis G, Falcone M, Frank U, Kahlmeter G, Pan A, Petrosillo N, Rodríguez-Baño J, Singh N, Venditti M, Yokoe DS, Cookson B, European Society of Clinical Microbiology. 2014. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect 20(Suppl 1):155[CrossRef].[PubMed]
69. Shenoy ES, Kim J, Rosenberg ES, Cotter JA, Lee H, Walensky RP, Hooper DC. 2013. Discontinuation of contact precautions for methicillin-resistant Staphylococcus aureus: a randomized controlled trial comparing passive and active screening with culture and polymerase chain reaction. Clin Infect Dis 57:176184.
70. Centers for Disease Control and Prevention. 2013. Antibiotic resistance threats in the United States, 2013. Department of Health and Human Services.
71. Tenover FC, Tickler IA, Persing DH. 2012. Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob Agents Chemother 56:29292932[CrossRef].[PubMed]
72. Bolan GA, Sparling PF, Wasserheit JN. 2012. The emerging threat of untreatable gonococcal infection. N Engl J Med 366:485487[CrossRef].[PubMed]
73. Limbago BM, Kallen AJ, Zhu W, Eggers P, McDougal LK, Albrecht VS. 2014. Report of the 13th vancomycin-resistant Staphylococcus aureus isolate from the United States. J Clin Microbiol 52:9981002[CrossRef].[PubMed]
74. Clinical and Laboratory Standards Institute. 2014. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement; M100-S24. Clinical and Laboratory Standards Institute, Wayne, PA.

Tables

Generic image for table

Click to view

TABLE 1

Susceptibility of isolates to carbapenems in France, Greece, Italy, United Kingdom, and Germany in 2013

Citation: Tenover F. 2016. Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings, p 245-255. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch20
Generic image for table

Click to view

TABLE 2

CDC antibiotic resistance threats

Citation: Tenover F. 2016. Role of Molecular Methods in Improving Public Health Surveillance of Infections Caused by Antimicrobial-Resistant Bacteria in Health Care and Community Settings, p 245-255. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error