1887

Chapter 21 : Molecular Diagnostics: Huge Impact on the Improvement of Public Health in China

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Molecular Diagnostics: Huge Impact on the Improvement of Public Health in China, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch21-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch21-2.gif

Abstract:

China has undergone rapid demographic and epidemiological changes over the past 30 years. One of the most exciting changes is the health improvement with significantly increased life expectancy (1). Infectious diseases, which used to be the primary threat in public health, have been greatly reduced (2). However, infectious diseases continue to exact a substantial toll on public health resources in China. Attention to and action against emerging infections and infectious diseases greatly increased after the outbreak of severe acute respiratory syndrome (SARS) in southern China in 2003. In addition, endemic diseases, including H5N1, , human granulocytic anaplasmosis, EV17, H1N1, H7N9, H10N8, and some other zoonotic infections, affect millions of individuals, further heightening public health concerns.

Citation: Wang H, Cao B, Zhang Y, Li S. 2016. Molecular Diagnostics: Huge Impact on the Improvement of Public Health in China, p 256-265. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The major epidemic areas of SARS-CoV (red), West Nile virus (blue), and H7N9 avian influenza virus (yellow) in China.

Citation: Wang H, Cao B, Zhang Y, Li S. 2016. Molecular Diagnostics: Huge Impact on the Improvement of Public Health in China, p 256-265. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819071.ch21
1. Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, Wan X, Yu S, Jiang Y, Naghavi M, Vos T, Wang H, Lopez AD, Murray CJL. 2013. Rapid health transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 381:19872015[CrossRef].[PubMed]
2. Wang L, Wang Y, Jin S, Wu Z, Chin DP, Koplan JP, Wilson ME. 2008. Emergence and control of infectious diseases in China. Lancet 372:15981605[CrossRef].[PubMed]
3. Khabbaz RF, Moseley RR, Steiner RJ, Levitt AM, Bell BP. 2014. Challenges of infectious diseases in the USA. Lancet 384:5363[CrossRef].[PubMed]
4. Daar AS, Thorsteinsdóttir H, Martin DK, Smith AC, Nast S, Singer PA. 2002. Top ten biotechnologies for improving health in developing countries. Nat Genet 32:229232[CrossRef].[PubMed]
5. Murray CJ, , et al 2014. Global, regional, and national incidence and mortality for HIV, tuberculosis and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:10051070. (Errata, Lancet 384:956, 384:1504.)
6. World Health Organization. 2012. Global tuberculosis control: WHO report 2012. WHO, Geneva, Switzerland.
7. Wang L, Zhang H, Ruan Y, Chin DP, Xia Y, Cheng S, Chen M, Zhao Y, Jiang S, Du X, He G, Li J, Wang S, Chen W, Xu C, Huang F, Liu X, Wang Y. 2014. Tuberculosis prevalence in China, 1990–2010; a longitudinal analysis of national survey data. Lancet 383:20572064[CrossRef].[PubMed]
8. Chen R, Gao XB, Liu ZH, Shen XB, Guo AZ, Duan YY, Liu ZL, Wu XW, Zhu DZ. 2013. Combination of multiplex PCR with denaturing high-performance liquid chromatography for rapid detection of Mycobacterium genus and simultaneous identification of the Mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis 77:5357[CrossRef].[PubMed]
9. Leung ET, Zheng L, Wong RY, Chan EW, Au TK, Chan RC, Lui G, Lee N, Ip M. 2011. Rapid and simultaneous detection of Mycobacterium tuberculosis complex and Beijing/W genotype in sputum by an optimized DNA extraction protocol and a novel multiplex real-time PCR. J Clin Microbiol 49:25092515[CrossRef].[PubMed]
10. Cui Z, Wang Y, Fang L, Zheng R, Huang X, Liu X, Zhang G, Rui D, Ju J, Hu Z. 2012. Novel real-time simultaneous amplification and testing method to accurately and rapidly detect Mycobacterium tuberculosis complex. J Clin Microbiol 50:646650[CrossRef].[PubMed]
11. Zhu RY, Zhang KX, Zhao MQ, Liu YH, Xu YY, Ju CM, Li B, Chen JD. 2009. Use of visual loop-mediated isotheral amplification of rimM sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis. J Microbiol Methods 78:339343[CrossRef].[PubMed]
12. Zhu L, Jiang G, Wang S, Wang C, Li Q, Yu H, Zhou Y, Zhao B, Huang H, Xing W, Mitchelson K, Cheng J, Zhao Y, Guo Y. 2010. Biochip system for rapid and accurate identification of mycobacterial species from isolates and sputum. J Clin Microbiol 48:36543660[CrossRef].[PubMed]
13. Wang H, Yue J, Han M, Yang J, Zhao Y. 2010. Rapid method for identification of six common species of mycobacteria based on multiplex SNP analysis. J Clin Microbiol 48:247250[CrossRef].[PubMed]
14. Wu N, Zhang Y, Fu J, Zhang R, Feng L, Hu Y, Li X, Lu N, Zhao X, Pan Y, Li J, Zhu B, Wan K. 2012. Performance assessment of a novel two-step multiple displacement amplification-PCR assay for detection of Mycobacterium tuberculosis complex in sputum specimens. J Clin Microbiol 50:14431445[CrossRef].[PubMed]
15. Xu L, Kong J. 2013. A multiplexed nucleic acid microsystem for point-of-care detection of HIV co-infection with MTB and PCP. Talanta 117:532535[CrossRef].[PubMed]
16. Liu Q, Yang D, Xu W, Wang J, Lv B, Shao Y, Song H, Li G, Dong H, Wan K, Wang H. 2011. Molecular typing of Mycobacterium tuberculosis isolates circulating in Jiangsu province, China. BMC Infect Dis 11:288[CrossRef].[PubMed]
17. Liu R, Xing L, Peng Z, Zhang Y, Zhu C, Yang Z. 2011. Usefulness of mycobacterial interspersed repetitive-unit locus PCR amplification in rapid diagnosis of Beijing lineage strain infection among pediatric tuberculosis patients. J Clin Microbiol 49:712714[CrossRef].[PubMed]
18. Dong H, Liu Z, Lv B, Zhang Y, Liu J, Zhao X, Liu J, Wan K. 2010. Spoligotypes of Mycobacterium tuberculosis from different provinces of China. J Clin Microbiol 48:41024106[CrossRef].[PubMed]
19. Dong H, Shi L, Zhao X, Sang B, Lv B, Liu Z, Wan K. 2012. Genetic diversity of Mycobacterium tuberculosis isolates from Tibetans in Tibet, China. PLoS One 7:e33904[CrossRef].[PubMed]
20. Yu Q, Su Y, Lu B, Ma Y, Zhao X, Yang X, Dong H, Liu Y, Lian L, Wan L, Wu Y, Wan K. 2013. Genetic diversity of Mycobacterium tuberculosis isolates from Inner Mongolia, China. PLoS One 8:e57660[CrossRef].[PubMed]
21. Liang QF, Pang Y, Chen QY, Lin SF, Lin J, Zhao Y, Wei SZ, Zheng JF, Zheng SH. 2013. Genetic profile of tuberculosis among the migrant population in Fujian province, China. Int J Tuberc Lung Dis 17:655661[CrossRef].[PubMed]
22. Zhao Y, Xu S, Wang L, Chin DP, Wang S, Jiang G, Xia H, Zhou Y, Li Q, Ou X, Pang Y, Song Y, Zhao B, Zhang H, He G, Guo J, Wang Y. 2012. National survey of drug-resistant tuberculosis in China. N Engl J Med 366:21612170[CrossRef].[PubMed]
23. Duo L, Ying B, Song X, Lu X, Ye Y, Fan H, Xin J, Wang L. 2011. Molecular profile of drug resistance in tuberculous meningitis from southwest China. Clin Infect Dis 53:10671073[CrossRef].[PubMed]
24. Lau RW, Ho PL, Kao RY, Yew WW, Lau TC, Cheng VC, Yuen KY, Tsui SK, Chen X, Yam WC. 2011. Molecular characterization of fluoroquinolone resistance in Mycobacterium tuberculosis: functional analysis of gyrA mutation at position 74. Antimicrob Agents Chemother 55:608614[CrossRef].[PubMed]
25. Yin X, Yu Z. 2010. Mutation characterization of gyrA and gyrB genes in levofloxacin-resistant Mycobacterium tuberculosis clinical isolates from Guangdong province in China. J Infect 61:150154[CrossRef].[PubMed]
26. Yao C, Zhu T, Li Y, Zhang L, Zhang B, Huang J, Fu W. 2010. Detection of rpoB, katG and inhA gene mutations in Mycobacterium tuberculosis clinical isolates from Chongqing as determined by microarray. Clin Microbiol Infect 16:16391643[CrossRef].[PubMed]
27. World Health Organization. 2014. Xpert MTB/RIF implementation manual technical and operational ‘how-to’: practical considerations. WHO, Geneva, Switzerland.
28. Lun ZR, Wang QP, Chen XG, Li AX, Zhu XQ. 2007. Streptococcus suis: an emerging zoonotic pathogen. Lancet Infect Dis 7:201209[CrossRef].[PubMed]
29. Liu Z, Zheng H, Gottschalk M, Bai X, Lan R, Ji S, Liu H, Xu J. 2013. Development of multiplex PCR assays for the identification of the 33 serotypes of Streptococcus suis. PLoS One 8:e72070[CrossRef].[PubMed]
30. Tang J, Wang C, Feng Y, Yang W, Song H, Chen Z, Yu H, Pan X, Zhou X, Wang H, Wu B, Wang H, Zhao H, Lin Y, Yue J, Wu Z, He X, Gao F, Khan AH, Wang J, Zhao GP, Wang Y, Wang X, Chen Z, Gao GF. 2006. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med 3:e151[CrossRef].[PubMed]
31. Huang J, Shang K, Kashif J, Wang L. 2014. Genetic diversity of Streptococcus suis isolated from three pig farms of China contributed by acquiring antibiotic resistance genes. J Sci Food Agric; Epub ahead of print.
32. Li LL, Liao XP, Sun J, Yang YR, Liu BT, Yang SS, Zhao DH, Liu YH. 2012. Antimicrobial resistance, serotypes, and virulence factors of Streptococcus suis isolates from diseased pigs. Foodborne Pathog Dis 9:583588[CrossRef].[PubMed]
33. Shao Z, Li W, Ren J, Liang X, Xu L, Diao B, Li M, Lu M, Ren H, Cui Z, Zhu B, Dai Z, Zhang L, Chen X, Kan B, Xu J. 2006. Identification of a new Neisseria meningitidis serogroup C clone from Anhui province, China. Lancet 367:419423[CrossRef].[PubMed]
34. Zhu H, Wang Q, Wen L, Xu J, Shao Z, Chen M, Chen M, Reeves PR, Cao B, Wang L. 2012. Development of a multiplex PCR assay for detection and genogrouping of Neisseria meningitidis. J Clin Microbiol 50:4651[CrossRef].[PubMed]
35. Zhou H, Gao Y, Xu L, Li M, Li Q, Li Y, Liang X, Luo H, Kan B, Xu J, Shao Z. 2012. Distribution of serogroups and sequence types in disease-associated and carrier strains of Neisseria meningitidis isolated in China between 2003 and 2008. Epidemiol Infect 140:12961303[CrossRef].[PubMed]
36. Hu S, Zhang W, Li F, Hu Z, Ma E, Zheng T, Zhao Y, Li W, Zhou H, Shao Z, Xu J. 2014. Neisseria meningitidis serogroup W135 sequence type 11, Anhui province, China, 2011–2013. Emerg Infect Dis 20:12361238[CrossRef].[PubMed]
37. Shao Z, Zhou H, Gao Y, Ren H, Xu L, Kan B, Xu J. 2010. Neisseria meningitidis serogroup W135, China. Emerg Infect Dis 16:348349[CrossRef].[PubMed]
38. World Health Organization. 2008. Interregional meeting on prevention and control of plague. WHO, Geneva, Switzerland.
39. Wang H, Cui Y, Wang Z, Wang X, Guo Z, Yan Y, Li C, Cui B, Xiao X, Yang Y, Qi Z, Wang G, Wei B, Yu S, He D, Chen H, Chen G, Song Y, Yang R. 2011. A dog-associated primary pneumonic plague in Qinghai province, China. Clin Infect Dis 52:185190[CrossRef].[PubMed]
40. Qu S, Shi Q, Zhou L, Guo Z, Zhou D, Zhai J, Yang R. 2010. Ambient stable quantitative PCR reagents for the detection of Yersinia pestis. PLoS Negl Trop Dis 4:e629[CrossRef].[PubMed]
41. Zhou D, Han Y, Song Y, Tong Z, Wang J, Guo Z, Pei D, Pang X, Zhai J, Li M, Cui B, Qi Z, Jin L, Dai R, Du Z, Bao J, Zhang X, Yu J, Wang J, Huang P, Yang R. 2004. DNA microarray analysis of genome dynamics in Yersinia pestis: insights into bacterial genome microevolution and niche adaptation. J Bacteriol 186:51385146[CrossRef].[PubMed]
42. Cui YJ, Li YJ, Gorgé O, Platonov ME, Yan YF, Guo ZB, Pourcel C, Dentovskaya SV, Balakhonov SV, Wang XY, Song YJ, Anisimov AP, Vergnaud G, Yang RF. 2008. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One 3:e2652.[CrossRef]
43. Eppinger M, Guo Z, Sebastian Y, Song Y, Lindler LE, Yang R, Ravel J. 2009. Draft genome sequences of Yersinia pestis isolates from natural foci of endemic plague in China. J Bacteriol 191:76287629[CrossRef].[PubMed]
44. Li Y, Cui Y, Hauck Y, Platonov ME, Dai E, Song Y, Guo Z, Pourcel C, Dentovskaya SV, Anisimov AP, Yang R, Vergnaud G. 2009. Genotyping and phylogenetic analysis of Yersinia pestis by MLVA: insights into the worldwide expansion of Central Asia plague foci. PLoS One 4:e6000[CrossRef].[PubMed]
45. Chen C, Qu PH, Gu Q, Huang B, Zhang WZ, Mu XP, Zhang L, Chen MR, Wang LX, E SM, Ye JY, Tang XL, Lan K, Luo Q, Dai XB, Yuan H. 2012. Application of broad-spectrum PCR amplification and direct sequencing for identification of the infrequent bacterial cultures from clinical sources, targeting the bacterial 16S rRNA gene with universal primers. Chin J Lab Med 35:612619. In Chinese.
46. Zhang ZY, Sun ZQ, Wang ZL, Hu HR, Wen ZL, Song YZ, Zhao JW, Wang HH, Guo XK, Zhang SL. 2013. Identification and pathogenicity analysis of a novel non-tuberculous mycobacterium clinical isolate with nine-antibiotic resistance. Clin Microbiol Infect 19:9196[CrossRef].[PubMed]
47. Zhang ZY, Sun ZQ, Wang ZL, Wen ZL, Sun QW, Zhu ZQ, Song YZ, Zhao JW, Wang HH, Zhang SL, Guo XK. 2011. Complete genome sequence of a novel clinical isolate, the nontuberculous Mycobacterium strain JDM601. J Bacteriol 193:43004301[CrossRef].[PubMed]
48. Zhao GP. 2007. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos Trans R Soc Lond B Biol Sci 362:10631081[CrossRef].[PubMed]
49. Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguière AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Müller S, Rickerts V, Stürmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:19671976[CrossRef].[PubMed]
50. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY, Leung CB, To KF, Lui SF, Szeto CC, Chung S, Sung JJ. 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348:19861994[CrossRef].[PubMed]
51. Poon LL, Wong OK, Chan KH, Luk W, Yuen KY, Peiris JS, Guan Y. 2003. Rapid diagnosis of a coronavirus associated with severe acute respiratory syndrome (SARS). Clin Chem 49:953955[CrossRef].[PubMed]
52. Marra MA, , et al 2003. The genome sequence of the SARS-associated coronavirus. Science 300:13991404[CrossRef].[PubMed]
53. Chinese SARS Molecular Epidemiology Consortium. 2004. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303:16661669[CrossRef].[PubMed]
54. Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S, Meyer R, Bowen M, McKinney N, Morrill WE, Crabtree MB, Kramer LD, Roehrig JT. 2002. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298:96105[CrossRef].[PubMed]
55. Kauffman EB, Franke MA, Wong SJ, Kramer LD,. 2011. Detection of West Nile virus, p 383433. In Stephenson JR, Warners A (ed), Methods in Molecular Biology, 2nd ed. Humana Press, New York.
56. Li XL, Fu SH, Liu WB, Wang HY, Lu Z, Tong SX, Li ZX, Nasci RS, Kosoy O, Cui Y, Liang GD. 2013. West nile virus infection in Xinjiang, China. Vector Borne Zoonotic Dis 13:131133[CrossRef].[PubMed]
57. Lu Z, Fu SH, Cao L, Tang CJ, Zhang S, Li ZX, Tusong M, Yao XH, Zhang HL, Wang PY, Wumaier M, Yuan XY, Li MH, Zhu CZ, Fu LP, Liang GD. 2014. Human infection with West Nile virus, Xinjiang, China, 2011. Emerg Infect Dis 20:14211423[CrossRef].[PubMed]
58. Li L, He Y, Yang H, Zhu J, Xu X, Dong J, Zhu Y, Jin Q. 2005. Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1999 to 2004 in Shenzhen, People's Republic of China. J Clin Microbiol 43:38353839[CrossRef].[PubMed]
59. Yang F, Zhang T, Hu Y, Wang X, Du J, Li Y, Sun S, Sun X, Li Z, Jin Q. 2011. Survey of enterovirus infections from hand, foot and mouth disease outbreak in China, 2009. Virol J 8:508[CrossRef].[PubMed]
60. Xing W, Liao Q, Viboud C, Zhang J, Sun J, Wu JT, Chang Z, Liu F, Fang VJ, Zheng Y, Cowling BJ, Varma JK, Farrar JJ, Leung GM, Yu H. 2014. Hand, foot, and mouth disease in China, 2008–12: an epidemiological study. Lancet Infect Dis 14:308318[CrossRef].[PubMed]
61. Liu CC, Lian WC, Butler M, Wu SC. 2007. High immunogenic enterovirus 71 strain and its production using serum-free microcarrier Vero cell culture. Vaccine 25:1924[CrossRef].[PubMed]
62. Johnston SL, Siegel CS. 1990. Presumptive identification of enteroviruses with RD, HEp-2, and RMK cell lines. J Clin Microbiol 28:10491050.[PubMed]
63. Chen TC, Chen GW, Hsiung CA, Yang JY, Shih SR, Lai YK, Juang JL. 2006. Combining multiplex reverse transcription-PCR and a diagnostic microarray to detect and differentiate enterovirus 71 and coxsackievirus A16. J Clin Microbiol 44:22122219[CrossRef].[PubMed]
64. Cui A, Xu C, Tan X, Zhang Y, Zhu Z, Mao N, Lu Y, Xu W. 2013. The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD. PLoS One 8:e61451[CrossRef].[PubMed]
65. Ge S, Yan Q, He S, Zhuang S, Niu J, Xia N. 2013. Specific primer amplification of the VP1 region directed by 5′ UTR sequence analysis: enterovirus testing and identification in clinical samples from hand-foot-and-mouth disease patients. J Virol Methods 193:463469[CrossRef].[PubMed]
66. Lee MK, Chan PK, Ho II, Lai WM. 2013. Enterovirus infection among patients admitted to hospital in Hong Kong in 2010: epidemiology, clinical characteristics, and importance of molecular diagnosis. J Med Virol 85:18111817[CrossRef].[PubMed]
67. Chou WP, Chen PH, Miao M Jr, Kuo LS, Yeh SH, Chen PJ. 2011. Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. Biotechniques 50:5257[CrossRef].[PubMed]
68. Zhang S, Xue M, Zhang J, Chen Q, Chen J, Wang Z, Zhou W, Chen P, Xia N, Ge S. 2013. A one-step dipstick assay for the on-site detection of nucleic acid. Clin Biochem 46:18521856[CrossRef].[PubMed]
69. Zhang S, Lin Y, Wang J, Wang P, Chen J, Xue M, He S, Zhou W, Xu F, Liu P, Chen P, Ge S, Xia N. 2014. A convenient nucleic acid test on the basis of the capillary convective PCR for the on-site detection of enterovirus 71. J Mol Diagn 16:452458[CrossRef].[PubMed]
70. Chen Q, Hu Z, Zhang Q, Yu M. 2014. Development and evaluation of a real-time method of simultaneous amplification and testing of enterovirus 71 incorporating a RNA internal control system. J Virol Methods 196:139144[CrossRef].[PubMed]
71. Lavanchy D. 2005. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J Clin Virol 34(Suppl 1):S1S3[CrossRef].[PubMed]
72. Baumert TF, Thimme R, von Weizsäcker F. 2007. Pathogenesis of hepatitis B virus infection. World J Gastroenterol 13:8290[CrossRef].[PubMed]
73. Wang L, Pan Y, Zhang K, Zhang R, Sun Y, Xie J, Li J. 2013. A 10-year human hepatitis B virus nucleic test external quality assessment in China: continual improvement. Clin Chim Acta 425:139147[CrossRef].[PubMed]
74. Gish RG, Locarnini SA. 2006. Chronic hepatitis B: current testing strategies. Clin Gastroenterol Hepatol 4:666676[CrossRef].[PubMed]
75. Lee LG, Connell CR, Bloch W. 1993. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res 21:37613766[CrossRef].[PubMed]
76. Yang L, Du F, Chen G, Yasmeen A, Tang Z. 2014. A novel colorimetric PCR-based biosensor for detection and quantification of hepatitis B virus. Anal Chim Acta 840:7581[CrossRef].[PubMed]
77. Tian L, Wang Y, Xu D, Gao Y, Wen X, Tian Y. 2014. The differential diagnostic model for serous peptidomics in HBV carriers established by MALDI-TOF-MS analysis. Clin Biochem 47:5662[CrossRef].[PubMed]
78. Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD. 2005. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79:28142822[CrossRef].[PubMed]
79. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO. 2012. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA 109:42694274[CrossRef].[PubMed]
80. Lee MS, Chang PC, Shien JH, Cheng MC, Shieh HK. 2001. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J Virol Methods 97:1322[CrossRef].[PubMed]
81. Trampuz A, Prabhu RM, Smith TF, Baddour LM. 2004. Avian influenza: a new pandemic threat? Mayo Clin Proc 79:523530, quiz 530[CrossRef].[PubMed]
82. Chan CH, Lin KL, Chan Y, Wang YL, Chi YT, Tu HL, Shieh HK, Liu WT. 2006. Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction. J Virol Methods 136:3843[CrossRef].[PubMed]
83. Stone B, Burrows J, Schepetiuk S, Higgins G, Hampson A, Shaw R, Kok T. 2004. Rapid detection and simultaneous subtype differentiation of influenza A viruses by real time PCR. J Virol Methods 117:103112[CrossRef].[PubMed]
84. Yan X, Schielke EG, Grace KM, Hassell C, Marrone BL, Nolan JP. 2004. Microsphere-based duplexed immunoassay for influenza virus typing by flow cytometry. J Immunol Methods 284:2738[CrossRef].[PubMed]
85. Gyarmati P, Conze T, Zohari S, LeBlanc N, Nilsson M, Landegren U, Banér J, Belák S. 2008. Simultaneous genotyping of all hemagglutinin and neuraminidase subtypes of avian influenza viruses by use of padlock probes. J Clin Microbiol 46:17471751[CrossRef].[PubMed]
86. Wu L, Ding L, Pei Z, Huo X, Wen G, Pan Z. 2013. A multiplex reverse transcription-PCR assay for the detection of influenza A virus and differentiation of the H1, H3, H5 and H9 subtypes. J Virol Methods 188:4750[CrossRef].[PubMed]
87. Yang JR, Kuo CY, Huang HY, Wu FT, Huang YL, Cheng CY, Su YT, Chang FY, Wu HS, Liu MT. 2014. Newly emerging mutations in the matrix genes of the human influenza A(H1N1)pdm09 and A(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR. J Clin Microbiol 52:7682[CrossRef].[PubMed]
88. Xu X, Subbarao, Cox NJ, Guo Y. 1999. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261:1519[CrossRef].[PubMed]
89. Yuen KY, Chan PK, Peiris M, Tsang DN, Que TL, Shortridge KF, Cheung PT, To WK, Ho ET, Sung R, Cheng AF. 1998. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351:467471[CrossRef].[PubMed]
90. Neumann G, Chen H, Gao GF, Shu Y, Kawaoka Y. 2010. H5N1 influenza viruses: outbreaks and biological properties. Cell Res 20:5161[CrossRef].[PubMed]
91. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF. 2005. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309:1206[CrossRef].[PubMed]
92. Zou S, Han J, Wen L, Liu Y, Cronin K, Lum SH, Gao L, Dong J, Zhang Y, Guo Y, Shu Y. 2007. Human influenza A virus (H5N1) detection by a novel multiplex PCR typing method. J Clin Microbiol 45:18891892[CrossRef].[PubMed]
93. Tian J, Zhao H, Liu M, Chen Y, Quan X. 2012. Detection of influenza A virus based on fluorescence resonance energy transfer from quantum dots to carbon nanotubes. Anal Chim Acta 723:8387[CrossRef].[PubMed]
94. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A, Pybus OG, Lopez-Gatell H, Alpuche-Aranda CM, Chapela IB, Zavala EP, Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth C, Collaboration WHORPA, WHO Rapid Pandemic Assessment Collaboration. 2009. Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324:15571561[CrossRef].[PubMed]
95. Wu W, Kang X, Bai Z, Liu L, Li J, Wu X, Sun H, Hu T, Yang M, Wang P, Liu L, Yang Y, Di B, Chen W. 2010. Detection of pandemic influenza A/H1N1/2009 virus by real-time reverse transcription polymerase chain reaction. J Virol Methods 165:294296[CrossRef].[PubMed]
96. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y. 2013. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:18881897[CrossRef].[PubMed]
97. Horby P. 2013. H7N9 is a virus worth worrying about. Nature 496:399[CrossRef].[PubMed]
98. Van Ranst M, Lemey P. 2013. Genesis of avian-origin H7N9 influenza A viruses. Lancet 381:18831885[CrossRef].[PubMed]
99. Morens DM, Taubenberger JK, Fauci AS. 2013. H7N9 avian influenza A virus and the perpetual challenge of potential human pandemicity. MBio 4:4[CrossRef].[PubMed]
100. Baas C, Barr IG, Fouchier RA, Kelso A, Hurt AC. 2013. A comparison of rapid point-of-care tests for the detection of avian influenza A(H7N9) virus, 2013. Euro Surveill 18:18.[PubMed]
101. Corman VM, Eickmann M, Landt O, Bleicker T, Brünink S, Eschbach-Bludau M, Matrosovich M, Becker S, Drosten C. 2013. Specific detection by real-time reverse-transcription PCR assays of a novel avian influenza A(H7N9) strain associated with human spillover infections in China. Euro Surveill 18:20461.[PubMed]
102. Wong CK, Zhu H, Li OT, Leung YH, Chan MC, Guan Y, Peiris JS, Poon LL. 2013. Molecular detection of human H7N9 influenza A virus causing outbreaks in China. Clin Chem 59:10621067[CrossRef].[PubMed]
103. Zhang J, Feng Y, Hu D, Lv H, Zhu J, Cao M, Zheng F, Zhu J, Gong X, Hao L, Srinivas S, Ren H, Qi Z, Li B, Wang C. 2013. Rapid and sensitive detection of H7N9 avian influenza virus by use of reverse transcription-loop-mediated isothermal amplification. J Clin Microbiol 51:37603764[CrossRef].[PubMed]
104. Zhao GH, Li J, Blair D, Li XY, Elsheikha HM, Lin RQ, Zou FC, Zhu XQ. 2012. Biotechnological advances in the diagnosis, species differentiation and phylogenetic analysis of Schistosoma spp. Biotechnol Adv 30:13811389[CrossRef].[PubMed]
105. World Health Organization. 2012. World malaria report 2012. WHO, Geneva, Switzerland.
106. Gryseels B, Polman K, Clerinx J, Kestens L. 2006. Human schistosomiasis. Lancet 368:11061118[CrossRef].[PubMed]
107. Li J, Zhao GH, Zou FC, Mo XH, Yuan ZG, Ai L, Li HL, Weng YB, Lin RQ, Zhu XQ. 2010. Combined mitochondrial 16S and 12S rDNA sequences: an effective genetic marker for inter-species phylogenetic analysis of zoonotic trematodes. Parasitol Res 107:561569[CrossRef].[PubMed]
108. Wu G. 2002. A historical perspective on the immunodiagnosis of schistosomiasis in China. Acta Trop 82:193198[CrossRef].[PubMed]
109. Zhu YC. 2005. Immunodiagnosis and its role in schistosomiasis control in China: a review. Acta Trop 96:130136[CrossRef].[PubMed]
110. Yu JM, de Vlas SJ, Jiang QW, Gryseels B. 2007. Comparison of the Kato-Katz technique, hatching test and indirect hemagglutination assay (IHA) for the diagnosis of Schistosoma japonicum infection in China. Parasitol Int 56:4549[CrossRef].[PubMed]
111. Zhou YB, Yang MX, Tao P, Jiang QL, Zhao GM, Wei JG, Jiang QW. 2008. A longitudinal study of comparison of the Kato-Katz technique and indirect hemagglutination assay (IHA) for the detection of schistosomiasis japonica in China, 2001–2006. Acta Trop 107:251254[CrossRef].[PubMed]
112. Xiang X, Tianping W, Zhigang T. 2003. Development of a rapid, sensitive, dye immunoassay for schistosomiasis diagnosis: a colloidal dye immunofiltration assay. J Immunol Methods 280:4957[CrossRef].[PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error