1887

Chapter 26 : Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch26-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch26-2.gif

Abstract:

Bloodstream infections (BSIs) are severe diseases associated with a high morbidity and mortality, which increases with the delay until administration of the first appropriate antibiotic (1–8). For this reason, empiric treatments made of broad-range anti-infectious compounds or made of a combination of antimicrobials are started immediately after the sampling of blood bottles. BSIs can be caused by various microorganisms. In the absence of microbiological documentation, physicians suspect a BSI on the basis of clinical symptoms, which trigger the start of empirical treatments. The clinical presentations are multiple and include fever or hypothermia, increases in heart rate, change in inflammatory variable (C-reactive protein, procalcitonin, and white blood cell count increase), and organ failure (2, 9). These symptoms are generally nonspecific and only suggest bloodstream dissemination. Empirical treatments are made of broad-spectrum antibiotics on the basis of the clinical and epidemiological data, but this does not exclude any risk of inappropriate initial treatment.

Citation: Opota O, Jaton K, Prod'hom G, Greub G. 2016. Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections, p 336-361. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch26
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Different molecular technologies used for the detection and identification of microbes during bloodstream infections. Molecular methods for the diagnosis of BSI include nucleic acid-based methods and non-nucleic acid-based methods. Nucleic acid amplification-based techniques can be applied on positive blood cultures or used directly on blood, whereas non-nucleic acid amplification-based techniques such as FISH and microarray or non-nucleic acid-based methods such as MALDI-TOF MS can be used only on positive blood culture. Adapted from reference .

Citation: Opota O, Jaton K, Prod'hom G, Greub G. 2016. Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections, p 336-361. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Conventional and molecular methods for the identification of microorganisms from positive blood culture. When a blood culture is detected as positive, several strategies are available to identify the incriminated microorganism after the initial Gram staining, as follows. ( ) Identification directly from the positive blood culture using nucleic acid-based methods. ( ) Identification after the microbe's enrichment, namely a purified bacterial pellet suitable for MALDI-TOF MS analysis and some automated identification/antibiotic susceptibility testing approaches such as Vitek2 and Phoenix and rapid biochemical tests HMRZ, based on the chromogenic cephalosporin HMRZ-86 {(7R)-7-[2-(aminothiazol-4-yl)-(z)-2-(1-carboxy-1-ethylethoxyimino) acetamido]-3-(2,4-dinitrostyryl)-3-cephem-4-carboxylic acid trifluoroacetate, E-isomer}, and ESBLNDP (ESBL Nordmann-Poirel-Dortet). ( ) Identification after a subculture. To date, the automated system Vitek2 has been validated on short subcultures as well as the rapid biochemical tests HMRZ and CARNP (carbapenemase test Nordmann-Poirel); long subcultures are suitable for any type of analysis including phenotypic characterization; automated systems such as Vitek2, Phoenix, and MicroScan WalkAway; as well as PCR followed by sequencing. Adapted from reference .

Citation: Opota O, Jaton K, Prod'hom G, Greub G. 2016. Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections, p 336-361. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Microbial identification from positive blood culture using MALDI-TOF MS. The sample that is deposited on the MALDI-TOF multiwell plate can be a bacterial pellet obtained by centrifugation and erythrocyte lysis. Alternatively, the sample can be bacteria obtained after a subculture. Proteins are then extracted and embedded in a matrix directly on the multiwell conductive metal plate and submitted to the MALDI-TOF MS, which separates the proteins according to their molecular weights and their charges. This generates a mass spectrum (MS), which in a second stage is compared to a database of spectra. This analysis provides the identification of the microorganism with a confidence score, which allows acceptance at the species or at the genus level. The identification is interpreted according to the Gram staining and to the clinical presentation. Adapted with permission from reference .

Citation: Opota O, Jaton K, Prod'hom G, Greub G. 2016. Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections, p 336-361. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Schematic workflow of PCR/ESI-MS. (a) Nucleic acids are extracted from the sample, directly from whole blood, and (b) amplified by multiple PCR using multiple pairs of primers; each color represents a different primer. After amplification, the molecular mass of the amplicon(s) is precisely determined using ESI-MS (c, d, and e), from which (f) the base composition of the amplicon(s) is deduced. Finally, (g) information—base composition—obtained from one or more amplicon(s) is compared with a database, which provides the identification with a confidence score. Adapted from reference .

Citation: Opota O, Jaton K, Prod'hom G, Greub G. 2016. Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections, p 336-361. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819071.ch26
1. Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP, Artigas A, Schorr C, Levy MM. 2014. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 42:17491755[CrossRef].[PubMed]
2. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R, Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. 2013. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580637.
3. Levy MM, Artigas A, Phillips GS, Rhodes A, Beale R, Osborn T, Vincent JL, Townsend S, Lemeshow S, Dellinger RP. 2012. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis 12:919924[CrossRef].[PubMed]
4. Marshall JC, Dellinger RP, Levy M. 2010. The Surviving Sepsis Campaign: a history and a perspective. Surg Infect (Larchmt) 11:275281[CrossRef].[PubMed]
5. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J, Schorr C, Artigas A, Ramsay G, Beale R, Parker MM, Gerlach H, Reinhart K, Silva E, Harvey M, Regan S, Angus DC, Surviving Sepsis Campaign. 2010. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med 38:367374.
6. Huang L, Zhang YY, Sun LY. 2013. Time to positivity of blood culture can predict different Candida species instead of pathogen concentration in candidemia. Eur J Clin Microbiol Infect Dis 32:917922[CrossRef].[PubMed]
7. Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, Turpin RS, Bearden DT. 2006. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis 43:2531[CrossRef].[PubMed]
8. Taur Y, Cohen N, Dubnow S, Paskovaty A, Seo SK. 2010. Effect of antifungal therapy timing on mortality in cancer patients with candidemia. Antimicrob Agents Chemother 54:184190[CrossRef].[PubMed]
9. Osborn TM, Phillips G, Lemeshow S, Townsend S, Schorr CA, Levy MM, Dellinger RP. 2014. Sepsis severity score: an internationally derived scoring system from the surviving sepsis campaign database. Crit Care Med 42:19691976[CrossRef].[PubMed]
10. Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. 2010. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother 54:48514863[CrossRef].[PubMed]
11. Zaragoza R, Artero A, Camarena JJ, Sancho S, González R, Nogueira JM. 2003. The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect 9:412418[CrossRef].[PubMed]
12. Cain SE, Kohn J, Bookstaver PB, Albrecht H, Al-Hasan MN. 2015. Stratification of the impact of inappropriate empirical antimicrobial therapy for Gram-negative bloodstream infections by predicted prognosis. Antimicrob Agents Chemother 59:245250[CrossRef].[PubMed]
13. Chaubey VP, Pitout JD, Dalton B, Ross T, Church DL, Gregson DB, Laupland KB. 2010. Clinical outcome of empiric antimicrobial therapy of bacteremia due to extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. BMC Res Notes 3:116[CrossRef].[PubMed]
14. Paul M, Kariv G, Goldberg E, Raskin M, Shaked H, Hazzan R, Samra Z, Paghis D, Bishara J, Leibovici L. 2010. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother 65:26582665[CrossRef].[PubMed]
15. Goldberg E, Paul M, Talker O, Samra Z, Raskin M, Hazzan R, Leibovici L, Bishara J. 2010. Co-trimoxazole versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus bacteraemia: a retrospective cohort study. J Antimicrob Chemother 65:17791783[CrossRef].[PubMed]
16. Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitlik SD, Pitlik. 1998. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 244:379386[CrossRef].[PubMed]
17. Henry NK, McLimans CA, Wright AJ, Thompson RL, Wilson WR, Washington JA II. 1983. Microbiological and clinical evaluation of the isolator lysis-centrifugation blood culture tube. J Clin Microbiol 17:864869.[PubMed]
18. Kreger BE, Craven DE, Carling PC, McCabe WR. 1980. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med 68:332343[CrossRef].[PubMed]
19. Kreger BE, Craven DE, McCabe WR. 1980. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68:344355[CrossRef].[PubMed]
20. Werner AS, Cobbs CG, Kaye D, Hook EW. 1967. Studies on the bacteremia of bacterial endocarditis. JAMA 202:199203[CrossRef].[PubMed]
21. Wain J, Diep TS, Ho VA, Walsh AM, Nguyen TT, Parry CM, White NJ. 1998. Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol 36:16831687.[PubMed]
22. Bacconi A, Richmond GS, Baroldi MA, Laffler TG, Blyn LB, Carolan HE, Frinder MR, Toleno DM, Metzgar D, Gutierrez JR, Massire C, Rounds M, Kennel NJ, Rothman RE, Peterson S, Carroll KC, Wakefield T, Ecker DJ, Sampath R. 2014. Improved sensitivity for molecular detection of bacterial and Candida infections in blood. J Clin Microbiol 52:31643174[CrossRef].[PubMed]
23. Ecker DJ, Sampath R, Li H, Massire C, Matthews HE, Toleno D, Hall TA, Blyn LB, Eshoo MW, Ranken R, Hofstadler SA, Tang YW. 2010. New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev Mol Diagn 10:399415[CrossRef].[PubMed]
24. Opota O, Croxatto A, Prod'hom G, Greub G. 2015. Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect 21:313322[CrossRef].[PubMed]
25. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. 2008. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34:1760[CrossRef].[PubMed]
26. Fenollar F, Raoult D. 2007. Molecular diagnosis of bloodstream infections caused by non-cultivable bacteria. Int J Antimicrob Agents 30(Suppl 1):S7S15[CrossRef].[PubMed]
27. Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M. 2010. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol 48:15841591[CrossRef].[PubMed]
28. Tan TY, Ng LS, Kwang LL. 2008. Evaluation of disc susceptibility tests performed directly from positive blood cultures. J Clin Pathol 61:343346[CrossRef].[PubMed]
29. Opota O, Jaton K, Greub G. 2015. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infect 21:323331[CrossRef].[PubMed]
30. Al-Soud WA, Rådström P. 2001. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39:485493[CrossRef].[PubMed]
31. McLaughlin RW, Vali H, Lau PC, Palfree RG, De Ciccio A, Sirois M, Ahmad D, Villemur R, Desrosiers M, Chan EC. 2002. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? J Clin Microbiol 40:47714775[CrossRef].[PubMed]
32. Bloos F, Hinder F, Becker K, Sachse S, Mekontso Dessap A, Straube E, Cattoir V, Brun-Buisson C, Reinhart K, Peters G, Bauer M. 2010. A multicenter trial to compare blood culture with polymerase chain reaction in severe human sepsis. Intensive Care Med 36:241247[CrossRef].[PubMed]
33. Vernon SD, Shukla SK, Conradt J, Unger ER, Reeves WC. 2002. Analysis of 16S rRNA gene sequences and circulating cell-free DNA from plasma of chronic fatigue syndrome and non-fatigued subjects. BMC Microbiol 2:39[CrossRef].[PubMed]
34. Vernon SD, Unger ER, Dimulescu IM, Rajeevan M, Reeves WC. 2002. Utility of the blood for gene expression profiling and biomarker discovery in chronic fatigue syndrome. Dis Markers 18:193199[CrossRef].[PubMed]
35. Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C. 2004. Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol 26:133146[CrossRef].[PubMed]
36. Horz HP, Scheer S, Vianna ME, Conrads G. 2010. New methods for selective isolation of bacterial DNA from human clinical specimens. Anaerobe 16:4753[CrossRef].[PubMed]
37. Wolffs P, Grage H, Hagberg O, Rådström P. 2004. Impact of DNA polymerases and their buffer systems on quantitative real-time PCR. J Clin Microbiol 42:408411[CrossRef].[PubMed]
38. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K. 1994. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci 39:362372[CrossRef].[PubMed]
39. Hoorfar J, Wolffs P, Rådström P. 2004. Diagnostic PCR: validation and sample preparation are two sides of the same coin. APMIS 112:808814[CrossRef].[PubMed]
40. Byrnes JJ, Downey KM, Esserman L, So AG. 1975. Mechanism of hemin inhibition of erythroid cytoplasmic DNA polymerase. Biochemistry 14:796799[CrossRef].[PubMed]
41. Al-Soud WA, Jönsson LJ, Râdström P. 2000. Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 38:345350.[PubMed]
42. Wiesinger-Mayr H, Jordana-Lluch E, Martró E, Schoenthaler S, Noehammer C. 2011. Establishment of a semi-automated pathogen DNA isolation from whole blood and comparison with commercially available kits. J Microbiol Methods 85:206213[CrossRef].[PubMed]
43. Croxatto A, Prod'hom G, Durussel C, Greub G. 2014. Preparation of a blood culture pellet for rapid bacterial identification and antibiotic susceptibility testing. J Vis Exp 92:e51985. 10.3791/51985 [PubMed]
44. Sachse S, Straube E, Lehmann M, Bauer M, Russwurm S, Schmidt KH. 2009. Truncated human cytidylate-phosphate-deoxyguanylate-binding protein for improved nucleic acid amplification technique-based detection of bacterial species in human samples. J Clin Microbiol 47:10501057[CrossRef].[PubMed]
45. Bizzini A, Greub G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect 16:16141619[CrossRef].[PubMed]
46. Azevedo NF, Jardim T, Almeida C, Cerqueira L, Almeida AJ, Rodrigues F, Keevil CW, Vieira MJ. 2011. Application of flow cytometry for the identification of Staphylococcus epidermidis by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) in blood samples. Antonie van Leeuwenhoek 100:463470[CrossRef].[PubMed]
47. Forrest GN, Mehta S, Weekes E, Lincalis DP, Johnson JK, Venezia RA. 2006. Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J Antimicrob Chemother 58:154158[CrossRef].[PubMed]
48. Hartmann H, Stender H, Schäfer A, Autenrieth IB, Kempf VA. 2005. Rapid identification of Staphylococcus aureus in blood cultures by a combination of fluorescence in situ hybridization using peptide nucleic acid probes and flow cytometry. J Clin Microbiol 43:48554857[CrossRef].[PubMed]
49. González V, Padilla E, Giménez M, Vilaplana C, Pérez A, Fernández G, Quesada MD, Pallarés MA, Ausina V. 2004. Rapid diagnosis of Staphylococcus aureus bacteremia using S. aureus PNA FISH. Eur J Clin Microbiol Infect Dis 23:396398[CrossRef].[PubMed]
50. Chapin K, Musgnug M. 2003. Evaluation of three rapid methods for the direct identification of Staphylococcus aureus from positive blood cultures. J Clin Microbiol 41:43244327[CrossRef].[PubMed]
51. Oliveira K, Procop GW, Wilson D, Coull J, Stender H. 2002. Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 40:247251[CrossRef].[PubMed]
52. Forrest GN, Roghmann MC, Toombs LS, Johnson JK, Weekes E, Lincalis DP, Venezia RA. 2008. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother 52:35583563[CrossRef].[PubMed]
53. Parcell BJ, Orange GV. 2013. PNA-FISH assays for early targeted bacteraemia treatment. J Microbiol Methods 95:253255[CrossRef].[PubMed]
54. Søgaard M, Hansen DS, Fiandaca MJ, Stender H, Schønheyder HC. 2007. Peptide nucleic acid fluorescence in situ hybridization for rapid detection of Klebsiella pneumoniae from positive blood cultures. J Med Microbiol 56:914917[CrossRef].[PubMed]
55. Peleg AY, Tilahun Y, Fiandaca MJ, D'Agata EM, Venkataraman L, Moellering RC Jr, Eliopoulos GM. 2009. Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa. J Clin Microbiol 47:830832[CrossRef].[PubMed]
56. Shepard JR, Addison RM, Alexander BD, Della-Latta P, Gherna M, Haase G, Hall G, Johnson JK, Merz WG, Peltroche-Llacsahuanga H, Stender H, Venezia RA, Wilson D, Procop GW, Wu F, Fiandaca MJ. 2008. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol 46:5055[CrossRef].[PubMed]
57. Wilson DA, Joyce MJ, Hall LS, Reller LB, Roberts GD, Hall GS, Alexander BD, Procop GW. 2005. Multicenter evaluation of a Candida albicans peptide nucleic acid fluorescent in situ hybridization probe for characterization of yeast isolates from blood cultures. J Clin Microbiol 43:29092912[CrossRef].[PubMed]
58. Rigby S, Procop GW, Haase G, Wilson D, Hall G, Kurtzman C, Oliveira K, Von Oy S, Hyldig-Nielsen JJ, Coull J, Stender H. 2002. Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J Clin Microbiol 40:21822186[CrossRef].[PubMed]
59. Hall L, Le Febre KM, Deml SM, Wohlfiel SL, Wengenack NL. 2012. Evaluation of the Yeast Traffic Light PNA FISH probes for identification of Candida species from positive blood cultures. J Clin Microbiol 50:14461448[CrossRef].[PubMed]
60. Farina C, Perin S, Andreoni S, Conte M, Fazii P, Lombardi G, Manso E, Morazzoni C, Sanna S, Medical Mycology Committee. (CoSM) ‘Fungemia Diagnosis Study Group', Italian Society of Clinical Microbiology (AMCLI). 2012. Evaluation of the peptide nucleic acid fluorescence in situ hybridisation technology for yeast identification directly from positive blood cultures: an Italian experience. Mycoses 55:388392.
61. Martinez RM, Bauerle ER, Fang FC, Butler-Wu SM. 2014. Evaluation of three rapid diagnostic methods for direct identification of microorganisms in positive blood cultures. J Clin Microbiol 52:25212529[CrossRef].[PubMed]
62. Deck MK, Anderson ES, Buckner RJ, Colasante G, Coull JM, Crystal B, Della Latta P, Fuchs M, Fuller D, Harris W, Hazen K, Klimas LL, Lindao D, Meltzer MC, Morgan M, Shepard J, Stevens S, Wu F, Fiandaca MJ. 2012. Multicenter evaluation of the Staphylococcus QuickFISH method for simultaneous identification of Staphylococcus aureus and coagulase-negative staphylococci directly from blood culture bottles in less than 30 minutes. J Clin Microbiol 50:19941998[CrossRef].[PubMed]
63. Deck MK, Anderson ES, Buckner RJ, Colasante G, Davis TE, Coull JM, Crystal B, Latta PD, Fuchs M, Fuller D, Harris W, Hazen K, Klimas LL, Lindao D, Meltzer MC, Morgan M, Shepard J, Stevens S, Wu F, Fiandaca MJ. 2014. Rapid detection of Enterococcus spp. direct from blood culture bottles using Enterococcus QuickFISH method: a multicenter investigation. Diagn Microbiol Infect Dis 78:338342[CrossRef].[PubMed]
64. Carretto E, Bardaro M, Russello G, Mirra M, Zuelli C, Barbarini D. 2013. Comparison of the Staphylococcus QuickFISH BC test with the tube coagulase test performed on positive blood cultures for evaluation and application in a clinical routine setting. J Clin Microbiol 51:131135[CrossRef].[PubMed]
65. Wagner J, Schilcher G, Zollner-Schwetz I, Hoenigl M, Valentin T, Ribitsch W, Horina J, Rosenkranz AR, Grisold A, Unteregger M, Troppan K, Valentin A, Neumeister P, Krause R. 2013. Microbiological screening for earlier detection of central venous catheter-related bloodstream infections. Eur J Clin Invest 43:964969[CrossRef].[PubMed]
66. Yoo SM, Choi JY, Yun JK, Choi JK, Shin SY, Lee K, Kim JM, Lee SY. 2010. DNA microarray-based identification of bacterial and fungal pathogens in bloodstream infections. Mol Cell Probes 24:4452[CrossRef].[PubMed]
67. Wiesinger-Mayr H, Vierlinger K, Pichler R, Kriegner A, Hirschl AM, Presterl E, Bodrossy L, Noehammer C. 2007. Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition. BMC Microbiol 7:78[CrossRef].[PubMed]
68. Palka-Santini M, Pützfeld S, Cleven BE, Krönke M, Krut O. 2007. Rapid identification, virulence analysis and resistance profiling of Staphylococcus aureus by gene segment-based DNA microarrays: application to blood culture post-processing. J Microbiol Methods 68:468477[CrossRef].[PubMed]
69. Cleven BE, Palka-Santini M, Gielen J, Meembor S, Krönke M, Krut O. 2006. Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. J Clin Microbiol 44:23892397[CrossRef].[PubMed]
70. Mestas J, Polanco CM, Felsenstein S, Dien Bard J. 2014. Performance of the Verigene Gram-positive blood culture assay for direct detection of Gram-positive organisms and resistance markers in a pediatric hospital. J Clin Microbiol 52:283287[CrossRef].[PubMed]
71. Wojewoda CM, Sercia L, Navas M, Tuohy M, Wilson D, Hall GS, Procop GW, Richter SS. 2013. Evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants. J Clin Microbiol 51:20722076[CrossRef].[PubMed]
72. Beal SG, Ciurca J, Smith G, John J, Lee F, Doern CD, Gander RM. 2013. Evaluation of the nanosphere verigene gram-positive blood culture assay with the VersaTREK blood culture system and assessment of possible impact on selected patients. J Clin Microbiol 51:39883992[CrossRef].[PubMed]
73. Alby K, Daniels LM, Weber DJ, Miller MB. 2013. Development of a treatment algorithm for streptococci and enterococci from positive blood cultures identified with the Verigene Gram-positive blood culture assay. J Clin Microbiol 51:38693871[CrossRef].[PubMed]
74. Samuel LP, Tibbetts RJ, Agotesku A, Fey M, Hensley R, Meier FA. 2013. Evaluation of a microarray-based assay for rapid identification of Gram-positive organisms and resistance markers in positive blood cultures. J Clin Microbiol 51:11881192[CrossRef].[PubMed]
75. Sullivan KV, Turner NN, Roundtree SS, Young S, Brock-Haag CA, Lacey D, Abuzaid S, Blecker-Shelly DL, Doern CD. 2013. Rapid detection of Gram-positive organisms by use of the Verigene Gram-positive blood culture nucleic acid test and the BacT/Alert Pediatric FAN system in a multicenter pediatric evaluation. J Clin Microbiol 51:35793584[CrossRef].[PubMed]
76. Buchan BW, Ginocchio CC, Manii R, Cavagnolo R, Pancholi P, Swyers L, Thomson RB Jr, Anderson C, Kaul K, Ledeboer NA. 2013. Multiplex identification of gram-positive bacteria and resistance determinants directly from positive blood culture broths: evaluation of an automated microarray-based nucleic acid test. PLoS Med 10:e1001478[CrossRef].[PubMed]
77. Dodémont M, De Mendonça R, Nonhoff C, Roisin S, Denis O. 2014. Performance of the Verigene Gram-negative blood culture assay for rapid detection of bacteria and resistance determinants. J Clin Microbiol 52:30853087[CrossRef].[PubMed]
78. Hill JT, Tran KD, Barton KL, Labreche MJ, Sharp SE. 2014. Evaluation of the nanosphere Verigene BC-GN assay for direct identification of gram-negative bacilli and antibiotic resistance markers from positive blood cultures and potential impact for more-rapid antibiotic interventions. J Clin Microbiol 52:38053807[CrossRef].[PubMed]
79. Bhatti MM, Boonlayangoor S, Beavis KG, Tesic V. 2014. Evaluation of FilmArray and Verigene systems for rapid identification of positive blood cultures. J Clin Microbiol 52:34333436[CrossRef].[PubMed]
80. Mancini N, Infurnari L, Ghidoli N, Valzano G, Clementi N, Burioni R, Clementi M. 2014. Potential impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. J Clin Microbiol 52:12421245[CrossRef].[PubMed]
81. Sullivan KV, Deburger B, Roundtree SS, Ventrola CA, Blecker-Shelly DL, Mortensen JE. 2014. Pediatric multicenter evaluation of the Verigene gram-negative blood culture test for rapid detection of inpatient bacteremia involving gram-negative organisms, extended-spectrum beta-lactamases, and carbapenemases. J Clin Microbiol 52:24162421[CrossRef].[PubMed]
82. Tojo M, Fujita T, Ainoda Y, Nagamatsu M, Hayakawa K, Mezaki K, Sakurai A, Masui Y, Yazaki H, Takahashi H, Miyoshi-Akiyama T, Totsuka K, Kirikae T, Ohmagari N. 2014. Evaluation of an automated rapid diagnostic assay for detection of Gram-negative bacteria and their drug-resistance genes in positive blood cultures. PLoS One 9:e94064[CrossRef].[PubMed]
83. Braun SD, Monecke S, Thürmer A, Ruppelt A, Makarewicz O, Pletz M, Reiβig A, Slickers P, Ehricht R. 2014. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. PLoS One 9:e102232[CrossRef].[PubMed]
84. Wolk D, Mitchell S, Patel R. 2001. Principles of molecular microbiology testing methods. Infect Dis Clin North Am 15:11571204[CrossRef].[PubMed]
85. Steensels D, Vankeerberghen A, De Beenhouwer H. 2013. Towards multitarget testing in molecular microbiology. Int J Microbiol 2013:121057[CrossRef].[PubMed]
86. Jaton K, Ninet B, Bille J, Greub G. 2010. False-negative PCR result due to gene polymorphism: the example of Neisseria meningitidis. J Clin Microbiol 48:45904591[CrossRef].[PubMed]
87. Elenitoba-Johnson KS, Bohling SD, Wittwer CT, King TC. 2001. Multiplex PCR by multicolor fluorimetry and fluorescence melting curve analysis. Nat Med 7:249253[CrossRef].[PubMed]
88. Wittwer CT, Herrmann MG, Gundry CN, Elenitoba-Johnson KS. 2001. Real-time multiplex PCR assays. Methods 25:430442[CrossRef].[PubMed]
89. Erali M, Pounder JI, Woods GL, Petti CA, Wittwer CT. 2006. Multiplex single-color PCR with amplicon melting analysis for identification of Aspergillus species. Clin Chem 52:14431445[CrossRef].[PubMed]
90. Blaschke AJ, Heyrend C, Byington CL, Fisher MA, Barker E, Garrone NF, Thatcher SA, Pavia AT, Barney T, Alger GD, Daly JA, Ririe KM, Ota I, Poritz MA. 2012. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn Microbiol Infect Dis 74:349355[CrossRef].[PubMed]
91. Weller SA, Cox V, Essex-Lopresti A, Hartley MG, Parsons TM, Rachwal PA, Stapleton HL, Lukaszewski RA. 2012. Evaluation of two multiplex real-time PCR screening capabilities for the detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis in blood samples generated from murine infection models. J Med Microbiol 61:15461555[CrossRef].[PubMed]
92. Altun O, Almuhayawi M, Ullberg M, Ozenci V. 2013. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol 51:41304136[CrossRef].[PubMed]
93. Paolucci M, Foschi C, Tamburini MV, Ambretti S, Lazzarotto T, Landini MP. 2014. Comparison between MALDI-TOF MS and FilmArray Blood Culture Identification panel for rapid identification of yeast from positive blood culture. J Microbiol Methods 104:9293[CrossRef].[PubMed]
94. Pardo J, Klinker KP, Borgert SJ, Butler BM, Rand KH, Iovine NM. 2014. Detection of Neisseria meningitidis from negative blood cultures and cerebrospinal fluid with the FilmArray blood culture identification panel. J Clin Microbiol 52:22622264[CrossRef].[PubMed]
95. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309317[CrossRef].[PubMed]
96. Wyllie DH, Crook DW, Peto TE. 2006. Mortality after Staphylococcus aureus bacteraemia in two hospitals in Oxfordshire, 1997–2003: cohort study. BMJ 333:281[CrossRef].[PubMed]
97. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. 2003. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36:5359[CrossRef].[PubMed]
98. Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. 2005. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol 26:166174[CrossRef].[PubMed]
99. Naber CK, Baddour LM, Giamarellos-Bourboulis EJ, Gould IM, Herrmann M, Hoen B, Karchmer AW, Kobayashi Y, Kozlov RS, Lew D, Miró JM, Moellering RC Jr, Moreillon P, Peters G, Rubinstein E, Seifert H, Corey GR. 2009. Clinical consensus conference: survey on Gram-positive bloodstream infections with a focus on Staphylococcus aureus. Clin Infect Dis 48(Suppl 4):S260S270[CrossRef].[PubMed]
100. Naber CK. 2009. Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis 48(Suppl 4):S231S237[CrossRef].[PubMed]
101. Engemann JJ, Carmeli Y, Cosgrove SE, Fowler VG, Bronstein MZ, Trivette SL, Briggs JP, Sexton DJ, Kaye KS. 2003. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis 36:592598[CrossRef].[PubMed]
102. Fätkenheuer G, Preuss M, Salzberger B, Schmeisser N, Cornely OA, Wisplinghoff H, Seifert H. 2004. Long-term outcome and quality of care of patients with Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis 23:157162[CrossRef].[PubMed]
103. Spencer DH, Sellenriek P, Burnham CA. 2011. Validation and implementation of the GeneXpert MRSA/SA blood culture assay in a pediatric setting. Am J Clin Pathol 136:690694[CrossRef].[PubMed]
104. Clerc O, Prod'hom G, Senn L, Jaton K, Zanetti G, Calandra T, Greub G. 2014. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and PCR-based rapid diagnosis of Staphylococcus aureus bacteraemia. Clin Microbiol Infect 20:355360[CrossRef].[PubMed]
105. Stamper PD, Cai M, Howard T, Speser S, Carroll KC. 2007. Clinical validation of the molecular BD GeneOhm StaphSR assay for direct detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in positive blood cultures. J Clin Microbiol 45:21912196[CrossRef].[PubMed]
106. Ishikawa H, Kutsukake E, Chiba K, Fukui T, Matsumoto T. 2011. The performance of the BD geneOhm MRSA™ assay for MRSA isolated from clinical patients in Japan, including the effects of specimen contamination and ways to improve it. J Infect Chemother 17:214218[CrossRef].[PubMed]
107. Tang YW, Kilic A, Yang Q, McAllister SK, Li H, Miller RS, McCormac M, Tracy KD, Stratton CW, Han J, Limbago B. 2007. StaphPlex system for rapid and simultaneous identification of antibiotic resistance determinants and Panton-Valentine leukocidin detection of staphylococci from positive blood cultures. J Clin Microbiol 45:18671873[CrossRef].[PubMed]
108. Clerc O, Prod'hom G, Vogne C, Bizzini A, Calandra T, Greub G. 2013. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis 56:11011107[CrossRef].[PubMed]
109. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. 1996. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:15841586[CrossRef].[PubMed]
110. Croxatto A, Prod'hom G, Greub G. 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380407[CrossRef].[PubMed]
111. Anhalt JP, Fenselau C. 1975. Identification of bacteria using mass spectrometry. Anal Chem 47:219225[CrossRef].
112. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr. 1996. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:12271232[CrossRef].[PubMed]
113. Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K. 2014. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin Microbiol Infect 20:10011006[CrossRef].[PubMed]
114. Verroken A, Defourny L, Lechgar L, Magnette A, Delmee M, Glupczynski Y. 2014. Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture. Eur J Clin Microbiol Infect Dis. [Epub ahead of print.]
115. Prod'hom G, Bizzini A, Durussel C, Bille J, Greub G. 2010. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 48:14811483[CrossRef].[PubMed]
116. La Scola B, Raoult D. 2009. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS One 4:e8041[CrossRef].[PubMed]
117. Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J, Bougnoux ME, Alanio A, Berche P, Nassif X. 2010. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:15421548[CrossRef].[PubMed]
118. Meex C, Neuville F, Descy J, Huynen P, Hayette MP, De Mol P, Melin P. 2012. Direct identification of bacteria from BacT/ALERT anaerobic positive blood cultures by MALDI-TOF MS: MALDI Sepsityper kit versus an in-house saponin method for bacterial extraction. J Med Microbiol 61:15111516[CrossRef].[PubMed]
119. Moussaoui W, Jaulhac B, Hoffmann AM, Ludes B, Kostrzewa M, Riegel P, Prévost G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect 16:16311638[CrossRef].[PubMed]
120. Stevenson LG, Drake SK, Murray PR. 2010. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:444447[CrossRef].[PubMed]
121. Drancourt M. 2010. Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect 16:16201625[CrossRef].[PubMed]
122. Opota O, Ney B, Zanetti G, Jaton K, Greub G, Prod'hom G. 2014. Bacteremia caused by Comamonas kerstersii in a patient with diverticulosis. J Clin Microbiol 52:10091012[CrossRef].[PubMed]
123. Seng P, Abat C, Rolain JM, Colson P, Lagier JC, Gouriet F, Fournier PE, Drancourt M, La Scola B, Raoult D. 2013. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:21822194[CrossRef].[PubMed]
124. Kärpänoja P, Harju I, Rantakokko-Jalava K, Haanperä M, Sarkkinen H. 2014. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of viridans group streptococci. Eur J Clin Microbiol Infect Dis 33:779788[CrossRef].[PubMed]
125. Deng J, Fu L, Wang R, Yu N, Ding X, Jiang L, Fang Y, Jiang C, Lin L, Wang Y, Che X. 2014. Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identification of seventy-three clinical isolates of enteropathogens. J Thorac Dis 6:539544.[PubMed]
126. Schaumann R, Knoop N, Genzel GH, Losensky K, Rosenkranz C, Stîngu CS, Schellenberger W, Rodloff AC, Eschrich K. 2013. Discrimination of Enterobacteriaceae and non-fermenting Gram negative bacilli by MALDI-TOF mass spectrometry. Open Microbiol J 7:118122[CrossRef].[PubMed]
127. Khot PD, Fisher MA. 2013. Novel approach for differentiating Shigella species and Escherichia coli by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:37113716[CrossRef].[PubMed]
128. Wang Z, Russon L, Li L, Roser DC, Long SR. 1998. Investigation of spectral reproducibility in direct analysis of bacteria proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 12:456464[CrossRef].[PubMed]