1887

Chapter 54 : Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch54-1.gif /docserver/preview/fulltext/10.1128/9781555819071/9781555819088.ch54-2.gif

Abstract:

Over the past decade, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has moved from the research laboratory into the clinical microbiology laboratory to aid in the identification of microorganisms. This technology uses nonfragmenting or “soft” ionization to generate a mass spectrum profile of an analyte. For bacterial isolates, this profile is composed primarily of ribosomal proteins. The spectrum generated from a given isolate is compared to a reference database, or spectral library, and the instrument reports a list of organisms that best match the query spectrum (1, 2). These results are reported with a confidence score, providing a measure of the reliability of the identification. Numerous studies have demonstrated that MALDI-TOF MS greatly reduces the time and cost of bacterial identification and allows for further automation of the clinical laboratory (3–5). However, prior to the implementation of MALDI-TOF MS for patient testing, the system and any alternative methods used must be verified by the laboratory.

Citation: Faron M, Buchan B, Ledeboer N. 2016. Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols, p 784-796. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch54
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Example of reproducibility study flow chart. Prior to conducting testing, the laboratory should determine which organisms will be utilized for reproducibility testing. Guidance can be found in the package insert of the MALDI-TOF MS system. The laboratory should then design the test procedure, addressing how to store, test, record, and analyze the data. The laboratory staff should subculture out a fresh specimen to test over the next 5 days. If testing occurs over 5 days, a new subculture from the original frozen strain should be made. At least two different operators should perform the testing. After testing is complete, the total variance or percent agreement should be calculated to determine if the test precision is acceptable.

Citation: Faron M, Buchan B, Ledeboer N. 2016. Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols, p 784-796. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Example of a method comparison studies for MALDI-TOF MS verification. Prior to testing, a planned procedure describing how the laboratory will collect and store specimens, along with what comparator testing will be performed and how discrepant results will be characterized if needed. Collected specimens are tested on both the method under verification and the gold standard comparator test. The results of the method under verification are compared to the results from the gold standard to determine the accuracy of the test.

Citation: Faron M, Buchan B, Ledeboer N. 2016. Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols, p 784-796. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819071.ch54
1. Clark AE, Kaleta EJ, Arora A, Wolk DM. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 26:547603.[PubMed]
2. Hillenkamp F, Karas M. 1990. Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol 193:280295[CrossRef].[PubMed]
3. Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC. 2012. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:33013308[CrossRef].[PubMed]
4. Neville SA, Lecordier A, Ziochos H, Chater MJ, Gosbell IB, Maley MW, van Hal SJ. 2011. Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol 49:29802984[CrossRef].[PubMed]
5. Buchan BW, Riebe KM, Timke M, Kostrzewa M, Ledeboer NA. 2014. Comparison of MALDI-TOF MS with HPLC and nucleic acid sequencing for the identification of Mycobacterium species in cultures using solid medium and broth. Am J Clin Pathol 141:2534[CrossRef].[PubMed]
6. Centers for Disease Control and Prevention. 2004. Establishment and verification of performance specifications. Clinical Laboratory Improvement Act 42 CFR 493.1253. CDC, Atlanta, GA.
7. Centers for Disease Control and Prevention. 2004. Current CLIA Regulations. CDC, Atlanta, GA.
8. CLSI/NCCLS. 2003. Evaluation of precision performance of quantitative measurement methods. CLSI document EP5-A2, 2nd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
9. Code of Federal Regulations. 2010. Standard: Establishment and verification of performance specifications. In FDA, Department of Health and Human Services (ed), vol 8. U.S. Government Printing Office, Washington, DC.
10. Clark RB, Lewinski MA, Loeffelholz MJ, Tibbetts RJ, Sharp SE. 2009. Verification and Validation of Procedures in the Clinical Microbiology Laboratory. ASM Press, Washington, DC.
11. Code of Federal Regulations. 2010. General requirements for manufacturers and producers of in vitro diagnostic products. In FDA, Department of Health and Human Services (ed.), vol. 8. U.S. Government Printing Office, Washington DC.
12. Code of Federal Regulations.2010. Quality system regulation. In FDA, Department of Health and Human Services (ed.), vol. 8. U.S. Government Printing Office, Washington DC.
13. Code of Federal Regulations.2010. Labeling for in vitro diagnostic products. In FDA, Department of Health and Human Services (ed), vol 8. U.S. Government Printing Office, Washington, DC.
14. Schulthess B, Ledermann R, Mouttet F, Zbinden A, Bloemberg GV, Böttger EC, Hombach M. 2014. Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory. J Clin Microbiol 52:27972803[CrossRef].[PubMed]
15. CLSI/NCCLS. 2005. User Verification of Performance for Precision and Trueness, 2nd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
16. Williams TL, Andrzejewski D, Lay JO, Musser SM. 2003. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom 14:342351[CrossRef].[PubMed]
17. Anderson NW, Buchan BW, Riebe KM, Parsons LN, Gnacinski S, Ledeboer NA. 2012. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:10081013[CrossRef].[PubMed]
18. Chesher D. 2008. Evaluating assay precision. Clin Biochem Rev 29(Suppl 1):S23S26.[PubMed]
19. Šedo O, Vávrová A, Vad'urová M, Tvrzová L, Zdráhal Z. 2013. The influence of growth conditions on strain differentiation within the Lactobacillus acidophilus group using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling. Rapid Commun Mass Spectrom 27:27292736[CrossRef].[PubMed]
20. Mazzeo MF, Sorrentino A, Gaita M, Cacace G, Di Stasio M, Facchiano A, Comi G, Malorni A, Siciliano RA. 2006. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the discrimination of food-borne microorganisms. Appl Environ Microbiol 72:11801189[CrossRef].[PubMed]
21. College of American Pathologists.2014. Microbiology Checklist. College of American Pathologists, Northfield, IL.
22. Branda JA, Rychert J, Burnham CA, Bythrow M, Garner OB, Ginocchio CC, Jennemann R, Lewinski MA, Manji R, Mochon AB, Procop GW, Richter SS, Sercia LF, Westblade LF, Ferraro MJ. 2014. Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria. Diagn Microbiol Infect Dis 78:129131[CrossRef].[PubMed]
23. Li Y, Gu B, Liu G, Xia W, Fan K, Mei Y, Huang P, Pan S. 2014. MALDI-TOF MS versus VITEK 2 ANC card for identification of anaerobic bacteria. J Thorac Dis 6:517523.[PubMed]
24. Veloo AC, Elgersma PE, Friedrich AW, Nagy E, van Winkelhoff AJ. 2014. The influence of incubation time, sample preparation and exposure to oxygen on the quality of the MALDI-TOF MS spectrum of anaerobic bacteria. Clin Microbiol Infect 20:O1091O1097[CrossRef].[PubMed]
25. Burd EM. 2010. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev 23:550576[CrossRef].[PubMed]
26. Buchan BW, Ginocchio CC, Manii R, Cavagnolo R, Pancholi P, Swyers L, Thomson RB Jr, Anderson C, Kaul K, Ledeboer NA. 2013. Multiplex identification of gram-positive bacteria and resistance determinants directly from positive blood culture broths: evaluation of an automated microarray-based nucleic acid test. PLoS Med 10:e1001478[CrossRef].[PubMed]
27. Chen JH, Ho PL, Kwan GS, She KK, Siu GK, Cheng VC, Yuen KY, Yam WC. 2013. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol 51:17331739[CrossRef].[PubMed]
28. Sánchez-Juanes F, Siller Ruiz M, Moreno Obregón F, Criado González M, Hernández Egido S, de Frutos Serna M, González-Buitrago JM, Muñoz-Bellido JL. 2014. Pretreatment of urine samples with SDS improves direct identification of urinary tract pathogens with matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 52:335338[CrossRef].[PubMed]
29. CLSI/NCCLS. 2006. Molecular Diagnostic Methods for Infectious Diseases. Clinical and Laboratory Standards Institute, Wayne, PA.
30. CLSI/NCCLS. 2005. Collection, Transport, Preparation, and Storage of Specimens for Molecular Methods. Clinical and Laboratory Standards Institute, Wayne, PA.
31. Khot PD, Couturier MR, Wilson A, Croft A, Fisher MA. 2012. Optimization of matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis for bacterial identification. J Clin Microbiol 50:38453852[CrossRef].[PubMed]
32. Degand N, Carbonnelle E, Dauphin B, Beretti JL, Le Bourgeois M, Sermet-Gaudelus I, Segonds C, Berche P, Nassif X, Ferroni A. 2008. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 46:33613367[CrossRef].[PubMed]
33. Kroumova V, Gobbato E, Basso E, Mucedola L, Giani T, Fortina G. 2011. Direct identification of bacteria in blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new methodological approach. Rapid Commun Mass Spectrom 25:22472249[CrossRef].[PubMed]
34. Food and Drug Administration. 2001. FDA Guidance for Industry: Bioanalytical Method Validation. Center for Drug Evaluation and Research, U.S. Department of Health and Human Services, Rockville, MD.
35. International Organization of Standardization. 2003. In Vitro Diagnostic Medical Devices—Measurement of Quantities in Biological Samples. Metrological Traceability of Values Assigned to Calibrators and Control Materials. ISO 17511:2003. ISO, Geneva, Switzerland.
36. International Organization of Standardization. 2006. Statistics—Vocabulary and Symbols, Part 1. Probability and General Statistical Terms. ISO, Geneva, Switzerland.
37. CLSI/NCCLS. 2002. Method Comparison and Bias Estimation Using Patient Samples, 2nd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
38. CLSI/NCCLS. 2008. User Protocol for Evaluation of Qualitative Test Performance, 2nd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
39. Ford BA, Burnham CA. 2013. Optimization of routine identification of clinically relevant Gram-negative bacteria by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the Bruker Biotyper. J Clin Microbiol 51:14121420[CrossRef].[PubMed]
40. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J. 2010. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:11691175[CrossRef].[PubMed]
41. Koch DD, Peters T,. 1999. Selection and evaluation of methods, p 7–47. In Burtis CA, Ashwood ER (ed), Tietz Textbook of Clinical Chemistry, 3rd ed. WB Saunders Co, Philadelphia, PA.
42. Westgard JO. 2008. Basic Method Validation, 3rd ed. Westgard QC Inc, Madison, WI.
43. Jamal WY, Ahmad S, Khan ZU, Rotimi VO. 2014. Comparative evaluation of two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the identification of clinically significant yeasts. Int J Infect Dis 26:167170[CrossRef].[PubMed]
44. Dunne WM Jr, Doing K, Miller E, Miller E, Moreno E, Baghli M, Mailler S, Girard V, van Belkum A, Deol P. 2014. Rapid inactivation of Mycobacterium and Nocardia species before identification using MALDI-TOF mass spectrometry. J Clin Microbiol 52:36543659[CrossRef].[PubMed]
45. Schmitt BH, Cunningham SA, Dailey AL, Gustafson DR, Patel R. 2013. Identification of anaerobic bacteria by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry with on-plate formic acid preparation. J Clin Microbiol 51:782786[CrossRef].[PubMed]
46. Elder BL, Hansen SA, Kellogg JA, Marsik FJ, Zabransky RJ.1997. Verification and Validation of Procedures in the Clinical Microbiology. American Society of Microbiology, Washington, DC.
47. Green TA, Black CA, Johnson RE. 2001. In defense of discrepant analysis. J Clin Epidemiol 54:210215[CrossRef].[PubMed]
48. Hadgu A. 1999. Discrepant analysis: a biased and an unscientific method for estimating test sensitivity and specificity. J Clin Epidemiol 52:12311237[CrossRef].[PubMed]
49. Hadgu A. 2000. Discrepant analysis is an inappropriate and unscientific method. J Clin Microbiol 38:43014302.[PubMed]
50. McAdam AJ. 2000. Discrepant analysis: how can we test a test? J Clin Microbiol 38:20272029.[PubMed]
51. Sternberg M, McAdam AJ. 2001. Discrepant analysis is still at large. J Clin Microbiol 39:826827[CrossRef].[PubMed]
52. CLSI/NCCLS. 2005. Evaluation of Matrix Effects. Clinical and Laboratory Standards Institute, Wayne, PA.
53. O'hara CM. 2005. Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic gram-negative bacilli. Clin Microbiol Rev 18:147162[CrossRef].[PubMed]
54. Tetrault G. 1991. Sensitivity and specificity of clinical tests. Am J Clin Pathol 96:556.[PubMed]
55. McElvania TeKippe E, Burnham CA. 2014. Evaluation of the Bruker Biotyper and VITEK MS MALDI-TOF MS systems for the identification of unusual and/or difficult-to-identify microorganisms isolated from clinical specimens. Eur J Clin Microbiol Infect Dis 33:21632171[CrossRef].[PubMed]
56. Fehlberg LC, Andrade LH, Assis DM, Pereira RH, Gales AC, Marques EA. 2013. Performance of MALDI-ToF MS for species identification of Burkholderia cepacia complex clinical isolates. Diagn Microbiol Infect Dis 77:126128[CrossRef].[PubMed]
57. Demarco ML, Burnham CA. 2014. Diafiltration MALDI-TOF mass spectrometry method for culture-independent detection and identification of pathogens directly from urine specimens. Am J Clin Pathol 141:204212[CrossRef].[PubMed]
58. Ferreira L, Sánchez-Juanes F, González-Avila M, Cembrero-Fuciños D, Herrero-Hernández A, González-Buitrago JM, Muñoz-Bellido JL. 2010. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:21102115[CrossRef].[PubMed]
59. Saah AJ, Hoover DR. 1997. “Sensitivity” and “specificity” reconsidered: the meaning of these terms in analytical and diagnostic settings. Ann Intern Med 126:9194[CrossRef].[PubMed]
60. CLSI/NCCLS. 2004. Protocols for Determination for Limits of Detection and Limits of Quantitation. Clinical and Laboratory Standards Institute, Wayne, PA.
61. Bolotin S, De Lima C, Choi KW, Lombos E, Burton L, Mazzulli T, Drews SJ. 2009. Validation of the TaqMan Influenza A Detection Kit and a rapid automated total nucleic acid extraction method to detect influenza A virus in nasopharyngeal specimens. Ann Clin Lab Sci 39:155159.[PubMed]
62. Arnold RJ, Karty JA, Ellington AD, Reilly JP. 1999. Monitoring the growth of a bacteria culture by MALDI-MS of whole cells. Anal Chem 71:19901996[CrossRef].[PubMed]
63. Annesley TM. 2003. Ion suppression in mass spectrometry. Clin Chem 49:10411044[CrossRef].[PubMed]
64. CLSI/NCCLS. 2005. Interference Testing in Clinical Chemistry. Clinical and Laboratory Standards Institute, Wayne, PA.
65. Kern CC, Usbeck JC, Vogel RF, Behr J. 2013. Optimization of Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry for the identification of bacterial contaminants in beverages. J Microbiol Methods 93:185191[CrossRef].[PubMed]
66. Martiny D, Visscher A, Catry B, Chatellier S, Vandenberg O. 2013. Optimization of Campylobacter growth conditions for further identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). J Microbiol Methods 94:221223[CrossRef].[PubMed]
67. College of American Pathologists. 2014. All Commons Checklist. American College of Pathologists, Northfield, IL.
68. US Centers for Medicare and Medicaid Services (CMS). 2003. Medicare, Medicaid and CLIA Programs. Laboratory requirements relating to quality systems and certain personnel qualifications. Final Rule. Fed Regist 16:36403714.
69. Niitsuma K, Saito M, Koshiba S, Kaneko M. 2014. [Identification of mycobacteria by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry—using reference strains and clinical isolates of Mycobacterium.]. Kekkaku 89:555563. In Japanese.[PubMed]
70. Saleeb PG, Drake SK, Murray PR, Zelazny AM. 2011. Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:17901794[CrossRef].[PubMed]
71. Elder BL, Hansen SA, Kellog JA, Marsik FJ, Zabransky RJ. 2003. Competency Assessment in the Clinical Microbiology Laboratory. American Society for Microbiology, Washington, DC.
72. CLSI/NCCLS. 2009. Training and Competence Assessment; Approved Guidelines. 3rd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
73. Sharp SE, Elder BL. 2004. Competency assessment in the clinical microbiology laboratory. Clin Microbiol Rev 17:681694[CrossRef].[PubMed]

Tables

Generic image for table
TABLE 1

Requirements for verification of MALDI-TOF MS assays

Citation: Faron M, Buchan B, Ledeboer N. 2016. Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols, p 784-796. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch54
Generic image for table
TABLE 2

Example of accuracy report for Gram-positive organisms

Citation: Faron M, Buchan B, Ledeboer N. 2016. Verification and Validation of Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry-Based Protocols, p 784-796. In Persing D, Tenover F, Hayden R, Ieven M, Miller M, Nolte F, Tang Y, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555819071.ch54

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error