1887

Chapter 3 : Paleogenetics and Past Infections: the Two Faces of the Coin of Human Immune Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Paleogenetics and Past Infections: the Two Faces of the Coin of Human Immune Evolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819170/9781555819163_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555819170/9781555819163_Chap03-2.gif

Abstract:

With the advent of next-generation sequencing, the field of paleogenetics has considerably expanded over the past few years, making investigations that were once considered impossible a reality. A milestone in paleogenetics was reached in the year 2010, which saw for the first time the reconstruction of the nuclear genome of ancient humans who lived thousands of years ago. The genomes characterized that year covered both modern humans, with the approximately 4,000-year-old Saqqaq man ( ), and archaic humans, with the approximately 38,000-year-old Neanderthals from Croatia ( ) and a more than 30,000-year-old Denisovan individual discovered in Siberia ( ). These studies notably uncovered a migration of modern humans from Siberia into the New World some 5,500 years ago ( ) and a new group of archaic humans who lived in Siberia, the Denisovans ( ). With these molecular data, it was also possible to refine the separation between modern and archaic humans to between 272,000 and 435,000 years ago, with a genetic divergence time of 734,000 to 1,087,000 years ago ( ). Consistent with such an ancient genetic divergence between modern and archaic humans, for the human endogenous retrovirus (HERV) that is thought to have promoted the development of the placenta in mammals ( ), archaic individuals have six HERV-K proviruses (three common to Denisovans and Neanderthals, two specific to Neanderthals, and one specific to the Denisovan individual) that are absent in a 402-genome set of modern-day individuals ( ). Following these early characterizations of draft genomes of archaic humans, efforts focused on reconstructing high-quality genome sequences, and this was achieved for the original Denisovan genome ( ) and for the genome of a Neanderthal individual who lived in Altai ( Fig. 1 ) ( ).

Citation: Abi-Rached L, Raoult D. 2017. Paleogenetics and Past Infections: the Two Faces of the Coin of Human Immune Evolution, p 21-27. In Drancourt M, Raoult D (ed), Paleomicrobiology of Humans. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PoH-0018-2015
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Known complete archaicgenomes and their representation in modern populations. The three complete nuclear genomes of archaic humans that have been reconstructed to date are indicated by red (Denisovan) or blue (Neanderthal) circles at the geographical location where the samples used for these reconstructions were uncovered. The impact of archaic humans on the genomes of modern humans—as measured by the average proportion of the genome that is of archaic origin—is given for four regions of the world in gray circles. Red/blue: proportions of the genome that are of Denisovan (red) or Neanderthal (blue) origin ( ).

Citation: Abi-Rached L, Raoult D. 2017. Paleogenetics and Past Infections: the Two Faces of the Coin of Human Immune Evolution, p 21-27. In Drancourt M, Raoult D (ed), Paleomicrobiology of Humans. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PoH-0018-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819170.chap3
1. Rasmussen M,, Li Y,, Lindgreen S,, Pedersen JS,, Albrechtsen A,, Moltke I,, Metspalu M,, Metspalu E,, Kivisild T,, Gupta R,, Bertalan M,, Nielsen K,, Gilbert MT,, Wang Y,, Raghavan M,, Campos PF,, Kamp HM,, Wilson AS,, Gledhill A,, Tridico S,, Bunce M,, Lorenzen ED,, Binladen J,, Guo X,, Zhao J,, Zhang X,, Zhang H,, Li Z,, Chen M,, Orlando L,, Kristiansen K,, Bak M,, Tommerup N,, Bendixen C,, Pierre TL,, Gronnow B,, Meldgaard M,, Andreasen C,, Fedorova SA,, Osipova LP,, Higham TF,, Ramsey CB,, Hansen TV,, Nielsen FC,, Crawford MH,, Brunak S,, Sicheritz-Ponten T,, Villems R,, Nielsen R,, Krogh A,, Wang J,, Willerslev E . 2010. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463 : 757762.[PubMed] [CrossRef]
2. Green RE,, Krause J,, Briggs AW,, Maricic T,, Stenzel U,, Kricher M,, Patterson N,, Heng L,, Zhai W,, Fritz MH,, Hansen NF,, Durand EY,, Malaspinas A,, Jensen JD,, Marques-Bonet T,, Alkan C,, Prüger K,, Meyer M,, Burbano HA,, Good JM,, Schultz R,, Aximu-Petri A,, Butthof A,, Höber B,, Höffner B,, Siegemund M,, Weihmann A,, Nusbaum C,, Lander ES,, Russ C,, Novod N,, Affourtit J,, Egholm M,, Verna C,, Rudan P,, Brajkovic D,, Kucan Z,, Gusic I,, Doronichev VB,, Golovanova LV,, Lalueza-Fox C,, Rasilla M,, Fortea J,, Rosas A,, Schmitz RW,, Johnson PLF,, Eichler EE,, Falush D,, Birney E,, Mullikin JC,, Slatkin M,, Nielsen R,, Kelso J,, Lachmann M,, Reich D,, Pääbo S . 2010. A draft sequence of the Neandertal genome. Science 328 : 710722.[PubMed] [CrossRef]
3. Reich D,, Green RE,, Kircher M,, Krause J,, Patterson N,, Durand EY,, Viola B,, Briggs AW,, Stenzel U,, Johnson PLF,, Maricic T,, Good JM,, Marques-Bonet T,, Alkan C,, Fu Q,, Mallick S,, Li H,, Meyer M,, Eichler EE,, Stoneking M,, Richards M,, Talamo S,, Shunkov MV,, Derevianko AP,, Hublin J,, Kelso J,, Slatkin M,, Pääbo S . 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468 : 10531060.[PubMed] [CrossRef]
4. Krause J,, Fu Q,, Good JM,, Viola B,, Shunkov MV,, Derevianko AP,, Pääbo S . 2010. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464 : 894897.[PubMed] [CrossRef]
5. Chuong EB . 2013. Retroviruses facilitate the rapid evolution of the mammalian placenta. Bioessays 35 : 853861.[PubMed] [CrossRef]
6. Lee A,, Huntley D,, Aiewsakun P,, Kanda RK,, Lynn C,, Tristem M . 2014. Novel Denisovan and Neanderthal retroviruses. J Virol 88 : 1290712909.[PubMed] [CrossRef]
7. Meyer M,, Kircher M,, Gansauge MT,, Li H,, Racimo F,, Mallick S,, Schraiber JG,, Jay F,, Prüfer K,, de Filippo C,, Sudmant PH,, Alkan C,, Fu Q,, Do R,, Rohland N,, Tandon A,, Siebauer M,, Green RE,, Bryc K,, Briggs AW,, Stenzel U,, Dabney J,, Shendure J,, Kitzman J,, Hammer MF,, Shunkov MV,, Derevianko AP,, Patterson N,, Andrés AM,, Eichler EE,, Slatkin M,, Reich D,, Kelso J,, Pääbo S . 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338 : 222226.[PubMed] [CrossRef]
8. Prüfer K,, Racimo F,, Patterson N,, Jay F,, Sankararaman S,, Sawyer S,, Heinze A,, Renaud G,, Sudmant PH,, Filippo C,, Li H,, Mallick S,, Dannemann M,, Fu Q,, Kircher M,, Kuhlwilm M,, Lachmann M,, Meyer M,, Ongyerth M,, Siebauer M,, Theunert C,, Tandon A,, Moorjani P,, Pickrell J,, Mullikin JC,, Vohr SH,, Green RE,, Hellman I,, Johnson PLF,, Blanche H,, Cann H,, Kitzman JO,, Shendure J,, Eichler EE,, Lein ES,, Bakken TE,, Golovanova LV,, Doronichev VB,, Shunkov MV,, Derevianko AP,, Viola B,, Slatkin M,, Reich D,, Kelso J,, Pääbo S . 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505 : 4349.[PubMed] [CrossRef]
9. Callaway E . 2015. Neanderthals had outsize effect on human biology. Nature 523 : 512513.[PubMed] [CrossRef]
10. Birney E,, Pritchard JK . 2014. Archaic humans four makes a party. Nature 505 : 3234.[PubMed] [CrossRef]
11. Sankararaman S,, Mallick S,, Dannemann M,, Prüfer K,, Kelso J,, Pääbo S,, Patterson N,, Reich D . 2014. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507 : 354357.[PubMed] [CrossRef]
12. Abi-Rached L,, Jobin MJ,, Kulkarni S,, McWhinnie A,, Dalva K,, Gragert L,, Babrzadeh F,, Gharizadeh B,, Luo M,, Plummer FA,, Kimani J,, Carrington M,, Middleton D,, Rajalingam R,, Beksac M,, Marsh SG,, Maiers M,, Guethlein LA,, Tavoularis S,, Little AM,, Green RE,, Norman PJ,, Parham P . 2011. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334 : 8994.[PubMed] [CrossRef]
13. Dannemann M,, Andres AM,, Kelso J . 2016. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human Toll-like receptors. Am J Hum Genet 98 : 2233.[PubMed] [CrossRef]
14. Asara JM,, Schweitzer MH,, Freimark LM,, Phillips M,, Cantley LC .. 2007. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316 : 280285.[PubMed] [CrossRef]
15. Schweitzer MH,, Zheng W,, Organ CL,, Avci R,, Suo Z,, Freimark LM,, Lebleu VS,, Duncan MB,, Vander Heiden MG,, Neveu JM,, Lane WS,, Cottrell JS,, Horner JR,, Cantley LC,, Kalluri R,, Asara JM . 2009. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis . Science 324 : 626631.[PubMed] [CrossRef]
16. Corthals A,, Koller A,, Martin DW,, Rieger R,, Chen EI,, Bernaski M,, Recagno G,, Dávalos LM . 2012. Detecting the immune system response of a 500 year-old Inca mummy. PLoS ONE 7 : e41244. doi:10.1371/journal.pone.0041244. [PubMed] [CrossRef]
17. Kolman CJ,, Centurion-Lara A,, Lukehart SA,, Owsley DW,, Tuross N . 1999. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J Infect Dis 180 : 20602063.[PubMed] [CrossRef]
18. Norman PJ,, Hollenbach JA,, Nemat-Gorgani N,, Guethlein LA,, Hilton HG,, Pando MJ,, Koram KA,, Riley EM,, Abi-Rached L,, Parham P . 2013. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet 9 : e1003938. doi:10.1371/journal.pgen.1003938. [CrossRef]
19. Campos-Lima PO,, Gavioli R,, Zhang QJ,, Wallace LE,, Dolcetti R,, Rowe M,, Rickinson AB,, Masucci MG . 1993. HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A11+ population. Science 260 : 98100.[PubMed] [CrossRef]
20. Allers K,, Schneider T . 2015. CCR5Δ32 mutation and HIV infection: basis for curative HIV therapy. Curr Opin Virol 14 : 2429.[PubMed] [CrossRef]
21. Stephens JC,, Reich DE,, Goldstein DB,, Shin HD,, Smith MW,, Carrington M,, Winkler C,, Huttley GA,, Allikmets R,, Schriml L,, Gerrard B,, Malasky M,, Ramos MD,, Morlot S,, Tzetis M,, Oddoux C,, di Giovine FS,, Nasioulas G,, Chandler D,, Aseev M,, Hanson M,, Kalaydjieva L,, Glavac D,, Gasparini P,, Kanavakis E,, Claustres M,, Kambouris M,, Ostrer H,, Duff G,, Baranov V,, Sibul H,, Metspalu A,, Goldman D,, Martin N,, Duffy D,, Schmidtke J,, Estivill X,, O’Brien SJ,, Dean M . 1998. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet 62 : 15071515.[PubMed] [CrossRef]
22. Hummel S,, Schmidt D,, Kremeyer B,, Herrmann B,, Oppermann M . 2005. Detection of the CCR5-Delta32 HIV resistance gene in Bronze Age skeletons. Genes Immun 6 : 371374.[PubMed] [CrossRef]
23. Lucotte G . 2002. Frequencies of 32 base pair deletion of the (Delta 32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians: a comparative analysis. Infect Genet Evol 1 : 201205.[PubMed] [CrossRef]
24. Signoli M . 2012. Reflections on crisis burials related to past plague epidemics. Clin Microbiol Infect 18 218223.[CrossRef]
25. Mecsas J,, Franklin G,, Kuziel WA,, Brubaker RR,, Falkow S,, Mosier DE . 2004. Evolutionary genetics: CCR5 mutation and plague protection. Nature 427 : 606. [PubMed] [CrossRef]
26. Elvin SJ,, Elvin SJ,, Williamson ED,, Scott JC,, Smith JN,, Pérez De Lema G,, Chilla S,, Clapham P,, Pfeffer K,, Schlöndorff D,, Luckow B . 2004. Evolutionary genetics: ambiguous role of CCR5 in Y. pestis infection. Nature 430 : 417. [PubMed] [CrossRef]
27. Styer KL,, Click EM,, Hopkins GW,, Frothingham R,, Aballay A . 2007. Study of the role of CCR5 in a mouse model of intranasal challenge with Yersinia pestis . Microbes Infect 9 : 11351138.[PubMed] [CrossRef]
28. Galvani AP,, Slatkin M . 2003. Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. Proc Natl Acad Sci U S A 100 : 1527615279.[PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error