1887

Chapter 13 : Osteoclasts—Key Players in Skeletal Health and Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Osteoclasts—Key Players in Skeletal Health and Disease, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819194/9781555819187_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555819194/9781555819187_Chap13-2.gif

Abstract:

Although bone is one of the hardest tissues in the body, necessary for its structural and protective roles, this organ is not static. Bone matrix must be renewed over time in order to maintain its mechanical properties, and myeloid lineage cells called osteoclasts (OCs) are the specialized cells that perform this critical function. Since bone is the major storage site for calcium, OCs play an important role in the regulation of this signaling ion by releasing it from bone. In this process, OCs respond indirectly to calcium-regulating hormones such as parathyroid hormone and 1,25(OH) vitamin D. Growth factors such as insulin-like growth factor-1 (IGF-1) and transforming growth factor β (TGF-β) are also incorporated into bone matrix and released by OCs, affecting the coupling of bone formation to bone resorption and potentially targeting other cells in the microenvironment, such as metastatic tumors. Lastly, OCs retain features of other myeloid cells, such as antigen presentation and cytokine production, which afford them the potential to affect immune responses. Thus, the OC plays many roles in health and disease.

Citation: Novack D, Mbalaviele G. 2017. Osteoclasts—Key Players in Skeletal Health and Disease, p 235-255. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0011-2015
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

A model of OC differentiation. OCs differentiate from HSCs. The hematopoietic niche comprises endothelial cells and perivascular stromal cells, which exhibit mesenchymal stem cell (MSC) features. It is still unclear whether OC precursors directly differentiate into OCs or enter the bloodstream before reentering the bone microenvironment to form OCs. In any scenario, higher levels of chemoattractants toward bone surfaces, including bone ECM proteins, lipid mediators (e.g., sphingosine-1-phosphate), and ECM degradation products, create gradients that attract OC precursors to the hard tissue, where they fuse and complete the differentiation process. Conversely, higher levels of perivascular chemorepellents (not drawn for simplicity) may also contribute to the migration of OC precursors toward the endosteum.

Citation: Novack D, Mbalaviele G. 2017. Osteoclasts—Key Players in Skeletal Health and Disease, p 235-255. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0011-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Key molecules involved in OC function. Loss of function of any of the depicted molecules causes osteopetrosis due to defective OC activity. OCs adhere to bone matrix proteins via integrin αβ and are polarized such that the plasma membrane-facing bone is convoluted (ruffled) and contains the proton pump (v-ATPase) and Cl channel 7 (ClC7), whereas the basolateral membrane bears the HCO /Cl antiporter. Cytoplasmic carbonic anhydrase type II (CAII) generates the protons to be secreted into the resorption lacuna beneath the cell. This lacuna becomes isolated from the rest of the extracellular space by the tight adhesion of αβ to the bone surface at the sealing zone. The cytoplasmic domain of β recruits signaling proteins, which induce the association of actin with interacting partners (including talin, vinculin, kindlin, myosin IIA, and paxillin) and formation of an actin ring that defines the periphery of the ruffled membrane. Concerted action of ClC7 and v-ATPase produces a high concentration of HCl that acidifies the resorption lacuna, leading to the dissolution of the inorganic components of the bone matrix. Acidified cytoplasmic vesicles containing lysosomal enzymes such as cathepsin K (Cat K) are also transported toward the bone-apposed plasma membrane and, ultimately, the sealed resorption lacuna, where they digest the exposed matrix proteins.

Citation: Novack D, Mbalaviele G. 2017. Osteoclasts—Key Players in Skeletal Health and Disease, p 235-255. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0011-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819194.chap13
1. Mosaad YM . 2014. Hematopoietic stem cells: an overview. Transfus Apheresis Sci 51 : 6882.[PubMed] [CrossRef]
2. Demulder A,, Takahashi S,, Singer FR,, Hosking DJ,, Roodman GD . 1993. Abnormalities in osteoclast precursors and marrow accessory cells in Paget’s disease. Endocrinology 133 : 19781982.[PubMed]
3. Demulder A,, Suggs SV,, Zsebo KM,, Scarcez T,, Roodman GD . 1992. Effects of stem cell factor on osteoclast-like cell formation in long-term human marrow cultures. J Bone Miner Res 7 : 13371344.[PubMed] [CrossRef]
4. Bonar SL,, Brydges SD,, Mueller JL,, McGeough MD,, Pena C,, Chen D,, Grimston SK,, Hickman-Brecks CL,, Ravindran S,, McAlinden A,, Novack DV,, Kastner DL,, Civitelli R,, Hoffman HM,, Mbalaviele G . 2012. Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS One 7 : e35979. doi:10.1371/journal.pone.0035979. [CrossRef]
5. Mediero A,, Perez-Aso M,, Cronstein BN . 2014. Activation of EPAC1/2 is essential for osteoclast formation by modulating NFκB nuclear translocation and actin cytoskeleton rearrangements. FASEB J 28 : 49014913.[PubMed] [CrossRef]
6. Xing L,, Boyce B, . 2014. RANKL-based osteoclastogenic assays from murine bone marrow Cells, p 307313. In Hilton MJ (ed), Skeletal Development and Repair, vol 1130. Humana Press, Totowa, NJ. [PubMed] [CrossRef]
7. Mabilleau G,, Pascaretti-Grizon F,, Baslé MF,, Chappard D . 2012. Depth and volume of resorption induced by osteoclasts generated in the presence of RANKL, TNF-alpha/IL-1 or LIGHT. Cytokine 57 : 294299.[PubMed] [CrossRef]
8. Li P,, Schwarz EM,, O’Keefe RJ,, Ma L,, Looney RJ,, Ritchlin CT,, Boyce BF,, Xing L . 2004. Systemic tumor necrosis factor α mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor α-transgenic mice. Arthritis Rheum 50 : 265276.[PubMed] [CrossRef]
9. Henriksen K,, Karsdal M,, Taylor A,, Tosh D,, Coxon F, . 2012. Generation of human osteoclasts from peripheral blood, p 159175. In Helfrich MH,, Ralston SH (ed), Bone Research Protocols, vol 816. Humana Press, Totowa, NJ. [PubMed] [CrossRef]
10. Bradley E,, Oursler M, . 2008. Osteoclast culture and resorption assays, p 1935. In Westendorf J (ed), Osteoporosis, vol 455. Humana Press, Totowa, NJ. [PubMed] [CrossRef]
11. Wang Y,, Menendez A,, Fong C,, ElAlieh HZ,, Chang W,, Bikle DD . 2014. Ephrin B2/EphB4 mediates the actions of IGF-I signaling in regulating endochondral bone formation. J Bone Miner Res 29 : 19001913.[PubMed] [CrossRef]
12. Hayman AR,, Jones SJ,, Boyde A,, Foster D,, Colledge WH,, Carlton MB,, Evans MJ,, Cox TM . 1996. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122 : 31513162.[PubMed]
13. Sago K,, Teitelbaum SL,, Venstrom K,, Reichardt LF,, Ross FP . 1999. The integrin αvβ5 is expressed on avian osteoclast precursors and regulated by retinoic acid. J Bone Miner Res 14 : 3238.[PubMed] [CrossRef]
14. Saftig P,, Hunziker E,, Wehmeyer O,, Jones S,, Boyde A,, Rommerskirch W,, Moritz JD,, Schu P,, von Figura K . 1998. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95 : 1345313458.[PubMed] [CrossRef]
15. Gowen M,, Lazner F,, Dodds R,, Kapadia R,, Feild J,, Tavaria M,, Bertoncello I,, Drake F,, Zavarselk S,, Tellis I,, Hertzog P,, Debouck C,, Kola I . 1999. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14 : 16541663.[PubMed] [CrossRef]
16. Hoff AO,, Catala-Lehnen P,, Thomas PM,, Priemel M,, Rueger JM,, Nasonkin I,, Bradley A,, Hughes MR,, Ordonez N,, Cote GJ,, Amling M,, Gagel RF . 2002. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J Clin Invest 110 : 18491857.[PubMed] [CrossRef]
17. Kim N,, Takami M,, Rho J,, Josien R,, Choi Y . 2002. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 195 : 201209.[PubMed] [CrossRef]
18. Sørensen MG,, Henriksen K,, Schaller S,, Henriksen DB,, Nielsen FC,, Dziegiel MH,, Karsdal MA . 2007. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 25 : 3645.[PubMed] [CrossRef]
19. McHugh KP,, Hodivala-Dilke K,, Zheng MH,, Namba N,, Lam J,, Novack D,, Feng X,, Ross FP,, Hynes RO,, Teitelbaum SL . 2000. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105 : 433440.[PubMed] [CrossRef]
20. Chen TH,, Swarnkar G,, Mbalaviele G,, Abu-Amer Y . 2015. Myeloid lineage skewing due to exacerbated NF-κB signaling facilitates osteopenia in Scurfy mice. Cell Death Dis 6 : e1723. doi:10.1038/cddis.2015.87. [PubMed] [CrossRef]
21. Mbalaviele G,, Jaiswal N,, Meng A,, Cheng L,, Bos CV,, Thiede M . 1999. Human mesenchymal stem cells promote human osteoclast differentiation from CD34+ bone marrow hematopoietic progenitors. Endocrinology 140 : 37363743.[CrossRef]
22. Matayoshi A,, Brown C,, DiPersio JF,, Haug J,, Abu-Amer Y,, Liapis H,, Kuestner R,, Pacifici R . 1996. Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 93 : 1078510790.[PubMed] [CrossRef]
23. Muto A,, Mizoguchi T,, Udagawa N,, Ito S,, Kawahara I,, Abiko Y,, Arai A,, Harada S,, Kobayashi Y,, Nakamichi Y,, Penninger JM,, Noguchi T,, Takahashi N . 2011. Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res 26 : 29782990.[PubMed] [CrossRef]
24. Durand M,, Komarova SV,, Bhargava A,, Trebec-Reynolds DP,, Li K,, Fiorino C,, Maria O,, Nabavi N,, Manolson MF,, Harrison RE,, Dixon SJ,, Sims SM,, Mizianty MJ,, Kurgan L,, Haroun S,, Boire G,, de Fatima Lucena-Fernandes M,, de Brum-Fernandes AJ . 2013. Monocytes from patients with osteoarthritis display increased osteoclastogenesis and bone resorption: the In Vitro Osteoclast Differentiation in Arthritis study. Arthritis Rheum 65 : 148158.[PubMed] [CrossRef]
25. Hemingway F,, Cheng X,, Knowles HJ,, Estrada FM,, Gordon S,, Athanasou NA . 2011. In vitro generation of mature human osteoclasts. Calcif Tissue Int 89 : 389395.[PubMed] [CrossRef]
26. Lam J,, Takeshita S,, Barker JE,, Kanagawa O,, Ross FP,, Teitelbaum SL . 2000. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106 : 14811488.[PubMed] [CrossRef]
27. Charles JF,, Hsu LY,, Niemi EC,, Weiss A,, Aliprantis AO,, Nakamura MC . 2012. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 122 : 45924605.[PubMed] [CrossRef]
28. Jacome-Galarza CE,, Lee S-K,, Lorenzo JA,, Aguila HL . 2013. Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28 : 12031213.[PubMed] [CrossRef]
29. Jacquin C,, Gran DE,, Lee SK,, Lorenzo JA,, Aguila HL . 2006. Identification of multiple osteoclast precursor populations in murine bone marrow. J Bone Miner Res 21 : 6777.[PubMed] [CrossRef]
30. Takahashi N,, Udagawa N,, Tanaka S,, Murakami H,, Owan I,, Tamura T,, Suda T . 1994. Postmitotic osteoclast precursors are mononuclear cells which express macrophage-associated phenotypes. Dev Biol 163 : 212221.[PubMed] [CrossRef]
31. Park-Min KH,, Lee EY,, Moskowitz NK,, Lim E,, Lee SK,, Lorenzo JA,, Huang C,, Melnick AM,, Purdue PE,, Goldring SR,, Ivashkiv LB . 2013. Negative regulation of osteoclast precursor differentiation by CD11b and β2 integrin-B-cell lymphoma 6 signaling. J Bone Miner Res 28 : 135149.[PubMed] [CrossRef]
32. Zhuang J,, Zhang J,, Lwin ST,, Edwards JR,, Edwards CM,, Mundy GR,, Yang X . 2012. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells. PLoS One 7 : e48871. doi:10.1371/journal.pone.0048871. [PubMed] [CrossRef]
33. Sawant A,, Deshane J,, Jules J,, Lee CM,, Harris BA,, Feng X,, Ponnazhagan S . 2013. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res 73 : 672682.[PubMed] [CrossRef]
34. Danilin S,, Merkel AR,, Johnson JR,, Johnson RW,, Edwards JR,, Sterling JA . 2012. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. OncoImmunology 1 : 14841494.[PubMed] [CrossRef]
35. Yagi M,, Miyamoto T,, Sawatani Y,, Iwamoto K,, Hosogane N,, Fujita N,, Morita K,, Ninomiya K,, Suzuki T,, Miyamoto K,, Oike Y,, Takeya M,, Toyama Y,, Suda T . 2005. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202 : 345351.[PubMed] [CrossRef]
36. Miyamoto H,, Suzuki T,, Miyauchi Y,, Iwasaki R,, Kobayashi T,, Sato Y,, Miyamoto K,, Hoshi H,, Hashimoto K,, Yoshida S,, Hao W,, Mori T,, Kanagawa H,, Katsuyama E,, Fujie A,, Morioka H,, Matsumoto M,, Chiba K,, Takeya M,, Toyama Y,, Miyamoto T . 2012. Osteoclast stimulatory transmembrane protein and dendritic cell-specific transmembrane protein cooperatively modulate cell-cell fusion to form osteoclasts and foreign body giant cells. J Bone Miner Res 27 : 12891297.[PubMed] [CrossRef]
37. Mbalaviele G,, Chen H,, Boyce BF,, Mundy GR,, Yoneda T . 1995. The role of cadherin in the generation of multinucleated osteoclasts from mononuclear precursors in murine marrow. J Clin Invest 95 : 27572765.[PubMed] [CrossRef]
38. Van den Bossche J,, Malissen B,, Mantovani A,, De Baetselier P,, Van Ginderachter JA . 2012. Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood 119 : 16231633.[PubMed] [CrossRef]
39. Nakamura H,, Nakashima T,, Hayashi M,, Izawa N,, Yasui T,, Aburatani H,, Tanaka S,, Takayanagi H . 2014. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell-cell fusion. Biochem Biophys Res Commun 455 : 305311.[PubMed] [CrossRef]
40. Ishizuka H,, García-Palacios V,, Lu G,, Subler MA,, Zhang H,, Boykin CS,, Choi SJ,, Zhao L,, Patrene K,, Galson DL,, Blair HC,, Hadi TM,, Windle JJ,, Kurihara N,, Roodman GD . 2011. ADAM8 enhances osteoclast precursor fusion and osteoclast formation in vitro and in vivo. J Bone Miner Res 26 : 169181.[PubMed] [CrossRef]
41. Ishii M,, Egen JG,, Klauschen F,, Meier-Schellersheim M,, Saeki Y,, Vacher J,, Proia RL,, Germain RN . 2009. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458 : 524528.[PubMed] [CrossRef]
42. Ishii M,, Kikuta J,, Shimazu Y,, Meier-Schellersheim M,, Germain RN . 2010. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med 207 : 27932798.[PubMed] [CrossRef]
43. Ishii M,, Kikuta J . 2013. Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis. Biochim Biophys Acta 1831 : 223227.[PubMed] [CrossRef]
44. Shahnazari M,, Chu V,, Wronski TJ,, Nissenson RA,, Halloran BP . 2013. CXCL12/CXCR4 signaling in the osteoblast regulates the mesenchymal stem cell and osteoclast lineage populations. FASEB J 27 : 35053513.[PubMed] [CrossRef]
45. Takahashi N,, Akatsu T,, Udagawa N,, Sasaki T,, Yamaguchi A,, Moseley JM,, Martin TJ,, Suda T . 1988. Osteoblastic cells are involved in osteoclast formation. Endocrinology 123 : 26002602.[PubMed] [CrossRef]
46. Udagawa N,, Takahashi N,, Akatsu T,, Tanaka H,, Sasaki T,, Nishihara T,, Koga T,, Martin TJ,, Suda T . 1990. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87 : 72607264.[PubMed] [CrossRef]
47. Wiktor-Jedrzejczak WW,, Ahmed A,, Szczylik C,, Skelly RR . 1982. Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J Exp Med 156 : 15161527.[PubMed] [CrossRef]
48. Yoshida H,, Hayashi SI,, Kunisada T,, Ogawa M,, Nishikawa S,, Okamura H,, Sudo T,, Shultz LD,, Nishikawa SI . 1990. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345 : 442444.[PubMed] [CrossRef]
49. Felix R,, Cecchini MG,, Hofstetter W,, Elford PR,, Stutzer A,, Fleisch H . 1990. Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J Bone Miner Res 5 : 781789.[PubMed] [CrossRef]
50. Stanley ER,, Chitu V . 2014. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 6 : a021857. doi:10.1101/cshperspect.a021857. [PubMed]
51. Otero K,, Turnbull IR,, Poliani PL,, Vermi W,, Cerutti E,, Aoshi T,, Tassi I,, Takai T,, Stanley SL,, Miller M,, Shaw AS,, Colonna M . 2009. Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin. Nat Immunol 10 : 734743.[PubMed] [CrossRef]
52. Glantschnig H,, Fisher JE,, Wesolowski G,, Rodan GA,, Reszka AA . 2003. M-CSF, TNFα and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ 10 : 11651177.[PubMed] [CrossRef]
53. Zamani A,, Decker C,, Cremasco V,, Hughes L,, Novack DV,, Faccio R . 2015. Diacylglycerol kinase ζ (DGKζ) is a critical regulator of bone homeostasis via modulation of c-Fos levels in osteoclasts. J Bone Miner Res 30 : 18521863.[PubMed] [CrossRef]
54. Baud’Huin M,, Renault R,, Charrier C,, Riet A,, Moreau A,, Brion R,, Gouin F,, Duplomb L,, Heymann D . 2010. Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. J Pathol 221 : 7786.[PubMed] [CrossRef]
55. Chen Z,, Buki K,, Vääräniemi J,, Gu G,, Väänänen HK . 2011. The critical role of IL-34 in osteoclastogenesis. PLoS One 6 : e18689. doi:10.1371/journal.pone.0018689. [PubMed] [CrossRef]
56. Li J,, Chen K,, Zhu L,, Pollard JW . 2006. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis 44 : 328335.[PubMed] [CrossRef]
57. Lee MS,, Kim HS,, Yeon JT,, Choi SW,, Chun CH,, Kwak HB,, Oh J . 2009. GM-CSF regulates fusion of mononuclear osteoclasts into bone-resorbing osteoclasts by activating the Ras/ERK pathway. J Immunol 183 : 33903399.[PubMed] [CrossRef]
58. Niida S,, Kaku M,, Amano H,, Yoshida H,, Kataoka H,, Nishikawa S,, Tanne K,, Maeda N,, Nishikawa SI,, Kodama H . 1999. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 190 : 293298.[PubMed] [CrossRef]
59. Nakagawa M,, Kaneda T,, Arakawa T,, Morita S,, Sato T,, Yomada T,, Hanada K,, Kumegawa M,, Hakeda Y . 2000. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett 473 : 161164.[CrossRef]
60. Adamopoulos IE,, Xia Z,, Lau YS,, Athanasou NA . 2006. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis. Biochem Biophys Res Commun 350 : 478483.[PubMed] [CrossRef]
61. Lacey DL,, Timms E,, Tan HL,, Kelley MJ,, Dunstan CR,, Burgess T,, Elliott R,, Colombero A,, Elliott G,, Scully S,, Hsu H,, Sullivan J,, Hawkins N,, Davy E,, Capparelli C,, Eli A,, Qian YX,, Kaufman S,, Sarosi I,, Shalhoub V,, Senaldi G,, Guo J,, Delaney J,, Boyle WJ . 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93 : 165176.[CrossRef]
62. Yasuda H,, Shima N,, Nakagawa N,, Yamaguchi K,, Kinosaki M,, Mochizuki S,, Tomoyasu A,, Yano K,, Goto M,, Murakami A,, Tsuda E,, Morinaga T,, Higashio K,, Udagawa N,, Takahashi N,, Suda T . 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95 : 35973602.[PubMed] [CrossRef]
63. Kong YY,, Yoshida H,, Sarosi I,, Tan HL,, Timms E,, Capparelli C,, Morony S,, Oliveira-dos-Santos AJ,, Van G,, Itie A,, Khoo W,, Wakeham A,, Dunstan CR,, Lacey DL,, Mak TW,, Boyle WJ,, Penninger JM . 1999. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397 : 315323.[PubMed] [CrossRef]
64. Bucay N,, Sarosi I,, Dunstan CR,, Morony S,, Tarpley J,, Capparelli C,, Scully S,, Tan HL,, Xu W,, Lacey DL,, Boyle WJ,, Simonet WS . 1998. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12 : 12601268.[PubMed] [CrossRef]
65. Whyte MP,, Tau C,, McAlister WH,, Zhang X,, Novack DV,, Preliasco V,, Santini-Araujo E,, Mumm S . 2014. Juvenile Paget’s disease with heterozygous duplication within TNFRSF11A encoding RANK. Bone 68 : 153161.[PubMed] [CrossRef]
66. Hughes AE,, Ralston SH,, Marken J,, Bell C,, MacPherson H,, Wallace RG,, van Hul W,, Whyte MP,, Nakatsuka K,, Hovy L,, Anderson DM . 2000. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24 : 4548.[PubMed] [CrossRef]
67. Novack DV,, Teitelbaum SL . 2008. The osteoclast: friend or foe? Annu Rev Pathol 3 : 457484.[PubMed] [CrossRef]
68. Smink JJ,, Bégay V,, Schoenmaker T,, Sterneck E,, de Vries TJ,, Leutz A . 2009. Transcription factor C/EBPβ isoform ratio regulates osteoclastogenesis through MafB. EMBO J 28 : 17691781.[PubMed] [CrossRef]
69. Smink J,, Tunn PU,, Leutz A . 2012. Rapamycin inhibits osteoclast formation in giant cell tumor of bone through the C/EBPβ-MafB axis. J Mol Med Berl 90 : 2530.[PubMed] [CrossRef]
70. Takayanagi H,, Kim S,, Koga T,, Nishina H,, Isshiki M,, Yoshida H,, Saiura A,, Isobe M,, Yokochi T,, Inoue J,, Wagner EF,, Mak TW,, Kodama T,, Taniguchi T . 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3 : 889901.[PubMed] [CrossRef]
71. Mao D,, Epple H,, Uthgenannt B,, Novack DV,, Faccio R . 2006. PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest 116 : 28692879.[PubMed] [CrossRef]
72. Alhawagri M,, Yamanaka Y,, Ballard D,, Oltz E,, Abu-Amer Y . 2012. Lysine392, a K63-linked ubiquitination site in NEMO, mediates inflammatory osteoclastogenesis and osteolysis. J Orthop Res 30 : 554560.[PubMed] [CrossRef]
73. Bronisz A,, Carey HA,, Godlewski J,, Sif S,, Ostrowski MC,, Sharma SM . 2014. The multifunctional protein fused in sarcoma (FUS) is a coactivator of microphthalmia-associated transcription factor (MITF). J Biol Chem 289 : 326334.[PubMed] [CrossRef]
74. Yasui T,, Hirose J,, Aburatani H,, Tanaka S . 2011. Epigenetic regulation of osteoclast differentiation. Ann N Y Acad Sci 1240 : 713.[PubMed] [CrossRef]
75. Kim JH,, Kim N . 2014. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21 : 233241.[PubMed] [CrossRef]
76. Mizoguchi F,, Izu Y,, Hayata T,, Hemmi H,, Nakashima K,, Nakamura T,, Kato S,, Miyasaka N,, Ezura Y,, Noda M . 2010. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem 109 : 866875.[PubMed]
77. Nishikawa K,, Iwamoto Y,, Kobayashi Y,, Katsuoka F,, Kawaguchi S,, Tsujita T,, Nakamura T,, Kato S,, Yamamoto M,, Takayanagi H,, Ishii M . 2015. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 21 : 281287.[CrossRef]
78. Yasui T,, Hirose J,, Tsutsumi S,, Nakamura K,, Aburatani H,, Tanaka S . 2011. Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1 . J Bone Miner Res 26 : 26652671.[PubMed] [CrossRef]
79. Park-Min KH,, Lim E,, Lee MJ,, Park SH,, Giannopoulou E,, Yarilina A,, van der Meulen M,, Zhao B,, Smithers N,, Witherington J,, Lee K,, Tak PP,, Prinjha RK,, Ivashkiv LB . 2014. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nat Commun 5 : 5418. doi:10.1038/ncomms6418. [PubMed] [CrossRef]
80. Shakibaei M,, Buhrmann C,, Mobasheri A . 2011. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-κB ligand (RANKL) activation of NF-κB signaling and inhibit osteoclastogenesis in bone-derived cells. J Biol Chem 286 : 1149211505.[PubMed] [CrossRef]
81. Hah YS,, Cheon YH,, Lim HS,, Cho HY,, Park BH,, Ka SO,, Lee YR,, Jeong DW,, Kim HO,, Han MK,, Lee SI . 2014. Myeloid deletion of SIRT1 aggravates serum transfer arthritis in mice via nuclear factor-κB activation. PLoS One 9 : e87733. doi:10.1371/journal.pone.0087733. [CrossRef]
82. Zou W,, Reeve JL,, Liu Y,, Teitelbaum SL,, Ross FP . 2008. DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol Cell 31 : 422431.[PubMed] [CrossRef]
83. Mócsai A,, Humphrey MB,, Van Ziffle JAG,, Hu Y,, Burghardt A,, Spusta SC,, Majumdar S,, Lanier LL,, Lowell CA,, Nakamura MC . 2004. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA 101 : 61586163.[PubMed] [CrossRef]
84. Koga T,, Inui M,, Inoue K,, Kim S,, Suematsu A,, Kobayashi E,, Iwata T,, Ohnishi H,, Matozaki T,, Kodama T,, Taniguchi T,, Takayanagi H,, Takai T . 2004. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428 : 758763.[PubMed] [CrossRef]
85. Wu Y,, Torchia J,, Yao W,, Lane NE,, Lanier LL,, Nakamura MC,, Humphrey MB . 2007. Bone microenvironment specific roles of ITAM adapter signaling during bone remodeling induced by acute estrogen-deficiency. PLoS One 2 : e586. doi:10.1371/journal.pone.0000586. [CrossRef]
86. Li S,, Miller CH,, Giannopoulou E,, Hu X,, Ivashkiv LB,, Zhao B . 2014. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J Clin Invest 124 : 50575073.[PubMed] [CrossRef]
87. Zou W,, Teitelbaum SL . 2015. Absence of Dap12 and the αvβ3 integrin causes severe osteopetrosis. J Cell Biol 208 : 125136.[PubMed] [CrossRef]
88. Li Y,, Li A,, Strait K,, Zhang H,, Nanes MS,, Weitzmann MN . 2007. Endogenous TNFα lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-κB. J Bone Miner Res 22 : 646655.[PubMed] [CrossRef]
89. Onal M,, Xiong J,, Chen X,, Thostenson JD,, Almeida M,, Manolagas SC,, O’Brien CA . 2012. Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem 287 : 2985129860.[PubMed] [CrossRef]
90. Kong YY,, Feige U,, Sarosi I,, Bolon B,, Tafuri A,, Morony S,, Capparelli C,, Li J,, Elliott R,, McCabe S,, Wong T,, Campagnuolo G,, Moran E,, Bogoch ER,, Van G,, Nguyen LT,, Ohashi PS,, Lacey DL,, Fish E,, Boyle WJ,, Penninger JM . 1999. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402 : 304309.[PubMed] [CrossRef]
91. Weitzmann MN,, Cenci S,, Rifas L,, Haug J,, Dipersio J,, Pacifici R . 2001. T cell activation induces human osteoclast formation via receptor activator of nuclear factor κB ligand-dependent and -independent mechanisms. J Bone Miner Res 16 : 328337.[PubMed] [CrossRef]
92. Horwood NJ,, Kartsogiannis V,, Quinn JM,, Romas E,, Martin TJ,, Gillespie MT . 1999. Activated T lymphocytes support osteoclast formation in vitro . Biochem Biophys Res Commun 265 : 144150.[PubMed] [CrossRef]
93. Lee SK,, Kadono Y,, Okada F,, Jacquin C,, Koczon-Jaremko B,, Gronowicz G,, Adams DJ,, Aguila HL,, Choi Y,, Lorenzo JA . 2006. T lymphocyte-deficient mice lose trabecular bone mass with ovariectomy. J Bone Miner Res 21 : 17041712.[PubMed] [CrossRef]
94. Toraldo G,, Roggia C,, Qian WP,, Pacifici R,, Weitzmann MN . 2003. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor κB ligand and tumor necrosis factor α from T cells. Proc Natl Acad Sci USA 100 : 125130.[PubMed] [CrossRef]
95. Li Y,, Li A,, Yang X,, Weitzmann MN . 2007. Ovariectomy-induced bone loss occurs independently of B cells. J Cell Biochem 100 : 13701375.[PubMed] [CrossRef]
96. Li Y,, Toraldo G,, Li A,, Yang X,, Zhang H,, Qian W-P,, Weitzmann MN . 2007. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109 : 38393848.[PubMed] [CrossRef]
97. Zaiss MM,, Axmann R,, Zwerina J,, Polzer K,, Gückel E,, Skapenko A,, Schulze-Koops H,, Horwood N,, Cope A,, Schett G . 2007. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum 56 : 41044112.[PubMed] [CrossRef]
98. Kelchtermans H,, Geboes L,, Mitera T,, Huskens D,, Leclercq G,, Matthys P . 2009. Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann Rheum Dis 68 : 744750.[PubMed] [CrossRef]
99. Zaiss MM,, Sarter K,, Hess A,, Engelke K,, Böhm C,, Nimmerjahn F,, Voll R,, Schett G,, David JP . 2010. Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiation. Arthritis Rheum 62 : 23282338.[PubMed] [CrossRef]
100. Luo CY,, Wang L,, Sun C,, Li DJ . 2011. Estrogen enhances the functions of CD4+CD25+Foxp3+ regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol Immunol 8 : 5058.[PubMed] [CrossRef]
101. Kiesel JR,, Buchwald ZS,, Aurora R . 2009. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol 182 : 54775487.[PubMed] [CrossRef]
102. Buchwald ZS,, Kiesel JR,, Yang C,, DiPaolo R,, Novack DV,, Aurora R . 2013. Osteoclast-induced Foxp3+ CD8 T-cells limit bone loss in mice. Bone 56 : 163173.[PubMed] [CrossRef]
103. Buchwald ZS,, Yang C,, Nellore S,, Shashkova EV,, Davis JL,, Cline A,, Ko J,, Novack DV,, DiPaolo R,, Aurora R . 2015. A bone anabolic effect of RANKL in a murine model of osteoporosis mediated through FoxP3+ CD8 T cells. J Bone Miner Res 30 : 15081522.[PubMed] [CrossRef]
104. Grassi F,, Manferdini C,, Cattini L,, Piacentini A,, Gabusi E,, Facchini A,, Lisignoli G . 2011. T cell suppression by osteoclasts in vitro. J Cell Physiol 226 : 982990.[PubMed] [CrossRef]
105. Li H,, Hong S,, Qian J,, Zheng Y,, Yang J,, Yi Q . 2010. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 116 : 210217.[PubMed] [CrossRef]
106. Li H,, Lu Y,, Qian J,, Zheng Y,, Zhang M,, Bi E,, He J,, Liu Z,, Xu J,, Gao JY,, Yi Q . 2014. Human osteoclasts are inducible immunosuppressive cells in response to T cell-derived IFN-γ and CD40 ligand in vitro. J Bone Miner Res 29 : 26662675.[PubMed] [CrossRef]
107. McHugh KP,, Hodivala-Dilke K,, Zheng MH,, Namba N,, Lam J,, Novack D,, Feng X,, Ross FP,, Hynes RO,, Teitelbaum SL . 2000. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105 : 433440.[PubMed] [CrossRef]
108. DeSelm CJ,, Miller BC,, Zou W,, Beatty WL,, van Meel E,, Takahata Y,, Klumperman J,, Tooze SA,, Teitelbaum SL,, Virgin HW . 2011. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 21 : 966974.[PubMed] [CrossRef]
109. Zou W,, Izawa T,, Zhu T,, Chappel J,, Otero K,, Monkley SJ,, Critchley DR,, Petrich BG,, Morozov A,, Ginsberg MH,, Teitelbaum SL . 2013. Talin1 and Rap1 are critical for osteoclast function. Mol Cell Biol 33 : 830844.[PubMed] [CrossRef]
110. Fukunaga T,, Zou W,, Warren JT,, Teitelbaum SL . 2014. Vinculin regulates osteoclast function. J Biol Chem 289 : 1355413564.[PubMed] [CrossRef]
111. Schmidt S,, Nakchbandi I,, Ruppert R,, Kawelke N,, Hess MW,, Pfaller K,, Jurdic P,, Fässler R,, Moser M . 2011. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J Cell Biol 192 : 883897.[PubMed] [CrossRef]
112. Krits I,, Wysolmerski RB,, Holliday LS,, Lee BS . 2002. Differential localization of myosin II isoforms in resting and activated osteoclasts. Calcif Tissue Int 71 : 530538.[PubMed] [CrossRef]
113. Zou W,, DeSelm CJ,, Broekelmann TJ,, Mecham RP,, Vande Pol S,, Choi K,, Teitelbaum SL . 2012. Paxillin contracts the osteoclast cytoskeleton. J Bone Miner Res 27 : 24902500.[PubMed] [CrossRef]
114. Faccio R,, Teitelbaum SL,, Fujikawa K,, Chappel J,, Zallone A,, Tybulewicz VL,, Ross FP,, Swat W . 2005. Vav3 regulates osteoclast function and bone mass. Nat Med 11 : 284290.[PubMed] [CrossRef]
115. Croke M,, Ross FP,, Korhonen M,, Williams DA,, Zou W,, Teitelbaum SL . 2011. Rac deletion in osteoclasts causes severe osteopetrosis. J Cell Sci 124 : 38113821.[PubMed] [CrossRef]
116. Zou W,, Croke M,, Fukunaga T,, Broekelmann TJ,, Mecham RP,, Teitelbaum SL . 2013. Zap70 inhibits Syk-mediated osteoclast function. J Cell Biochem 114 : 18711878.[PubMed] [CrossRef]
117. Soriano P,, Montgomery C,, Geske R,, Bradley A . 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64 : 693702.[PubMed] [CrossRef]
118. Zou W,, Kitaura H,, Reeve J,, Long F,, Tybulewicz VLJ,, Shattil SJ,, Ginsberg MH,, Ross FP,, Teitelbaum SL . 2007. Syk, c-Src, the αvβ3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol 176 : 877888.[PubMed] [CrossRef]
119. Baron R,, Neff L,, Louvard D,, Courtoy PJ . 1985. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101 : 22102222.[PubMed] [CrossRef]
120. Vaes G . 1968. On the mechanisms of bone resorption: the action of parathyroid hormone on the excretion and synthesis of lysosomal enzymes and on the extracellular release of acid by bone cells. J Cell Biol 39 : 676697.[PubMed] [CrossRef]
121. Gay CV,, Schraer H,, Anderson RE,, Cao H . 1984. Current studies on the location and function of carbonic anhydrase in osteoclasts. Ann N Y Acad Sci 429 : 473478.[PubMed] [CrossRef]
122. Baron R,, Neff L,, Brown W,, Courtoy PJ,, Louvard D,, Farquhar MG . 1988. Polarized secretion of lysosomal enzymes: co-distribution of cation-independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J Cell Biol 106 : 18631872.[PubMed] [CrossRef]
123. Sobacchi C,, Schulz A,, Coxon FP,, Villa A,, Helfrich MH . 2013. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9 : 522536.[PubMed] [CrossRef]
124. Van Wesenbeeck L,, Odgren PR,, Coxon FP,, Frattini A,, Moens P,, Perdu B,, MacKay CA,, Van Hul E,, Timmermans JP,, Vanhoenacker F,, Jacobs R,, Peruzzi B,, Teti A,, Helfrich MH,, Rogers MJ,, Villa A,, Van Hul W . 2007. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest 117 : 919930.[PubMed] [CrossRef]
125. Ye S,, Fowler TW,, Pavlos NJ,, Ng PY,, Liang K,, Feng Y,, Zheng M,, Kurten R,, Manolagas SC,, Zhao H . 2011. LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhm1. PLoS One 6 : e27285. doi:10.1371/journal.pone.0027285. [PubMed] [CrossRef]
126. Fujita Y,, Nakata K,, Yasui N,, Matsui Y,, Kataoka E,, Hiroshima K,, Shiba RI,, Ochi T . 2000. Novel mutations of the cathepsin K gene in patients with pycnodysostosis and their characterization. J Clin Endocrinol Metab 85 : 425431.[PubMed] [CrossRef]
127. Andersen TL,, del Carmen Ovejero M,, Kirkegaard T,, Lenhard T,, Foged NT,, Delaissé JM . 2004. A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells. Bone 35 : 11071119.[PubMed] [CrossRef]
128. Mosig RA,, Dowling O,, DiFeo A,, Ramirez MC,, Parker IC,, Abe E,, Diouri J,, Aqeel AA,, Wylie JD,, Oblander SA,, Madri J,, Bianco P,, Apte SS,, Zaidi M,, Doty SB,, Majeska RJ,, Schaffler MB,, Martignetti JA . 2007. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 16 : 11131123.[PubMed] [CrossRef]
129. Nesbitt SA,, Horton MA . 1997. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276 : 266269.[PubMed] [CrossRef]
130. Salo J,, Lehenkari P,, Mulari M,, Metsikkö K,, Väänänen HK . 1997. Removal of osteoclast bone resorption products by transcytosis. Science 276 : 270273.[PubMed] [CrossRef]
131. Kawana K,, Takahashi M,, Hoshino H,, Kushida K . 2002. Comparison of serum and urinary C-terminal telopeptide of type I collagen in aging, menopause and osteoporosis. Clin Chim Acta 316 : 109115.[PubMed] [CrossRef]
132. Qu C,, Bonar SL,, Hickman-Brecks CL,, Abu-Amer S,, McGeough MD,, Peña CA,, Broderick L,, Yang C,, Grimston SK,, Kading J,, Abu-Amer Y,, Novack DV,, Hoffman HM,, Civitelli R,, Mbalaviele G . 2015. NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J 29 : 12691279.[PubMed] [CrossRef]
133. Burton L,, Paget D,, Binder NB,, Bohnert K,, Nestor BJ,, Sculco TP,, Santambrogio L,, Ross FP,, Goldring SR,, Purdue PE . 2013. Orthopedic wear debris mediated inflammatory osteolysis is mediated in part by NALP3 inflammasome activation. J Orthop Res 31 : 7380.[PubMed] [CrossRef]
134. Youm YH,, Grant RW,, McCabe LR,, Albarado DC,, Nguyen KY,, Ravussin A,, Pistell P,, Newman S,, Carter R,, Laque A,, Münzberg H,, Rosen CJ,, Ingram DK,, Salbaum JM,, Dixit VD . 2013. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18 : 519532.[PubMed] [CrossRef]
135. Scianaro R,, Insalaco A,, Bracci Laudiero L,, De Vito R,, Pezzullo M,, Teti A,, De Benedetti F,, Prencipe G . 2014. Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis. Pediatr Rheumatol Online J 12 : 3030.[PubMed] [CrossRef]
136. Tang Y,, Wu X,, Lei W,, Pang L,, Wan C,, Shi Z,, Zhao L,, Nagy TR,, Peng X,, Hu J,, Feng X,, Van Hul W,, Wan M,, Cao X . 2009. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15 : 757765.[PubMed] [CrossRef]
137. Xian L,, Wu X,, Pang L,, Lou M,, Rosen CJ,, Qiu T,, Crane J,, Frassica F,, Zhang L,, Rodriguez JP,, Jia X,, Yakar S,, Xuan S,, Efstratiadis A,, Wan M,, Cao X . 2012. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18 : 10951101.[PubMed] [CrossRef]
138. Ota K,, Quint P,, Ruan M,, Pederson L,, Westendorf JJ,, Khosla S,, Oursler MJ . 2013. TGF-β induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts. Endocrinology 154 : 37453752.[PubMed] [CrossRef]
139. Ota K,, Quint P,, Weivoda MM,, Ruan M,, Pederson L,, Westendorf JJ,, Khosla S,, Oursler MJ . 2013. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 57 : 6875.[PubMed] [CrossRef]
140. Lotinun S,, Kiviranta R,, Matsubara T,, Alzate JA,, Neff L,, Lüth A,, Koskivirta I,, Kleuser B,, Vacher J,, Vuorio E,, Horne WC,, Baron R . 2013. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest 123 : 666681.[PubMed] [CrossRef]
141. Takeshita S,, Fumoto T,, Matsuoka K,, Park KA,, Aburatani H,, Kato S,, Ito M,, Ikeda K . 2013. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest 123 : 39143924.[PubMed] [CrossRef]
142. Negishi-Koga T,, Shinohara M,, Komatsu N,, Bito H,, Kodama T,, Friedel RH,, Takayanagi H . 2011. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17 : 14731480.[PubMed] [CrossRef]
143. Irie N,, Takada Y,, Watanabe Y,, Matsuzaki Y,, Naruse C,, Asano M,, Iwakura Y,, Suda T,, Matsuo K . 2009. Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem 284 : 1463714644.[PubMed] [CrossRef]
144. Zhao C,, Irie N,, Takada Y,, Shimoda K,, Miyamoto T,, Nishiwaki T,, Suda T,, Matsuo K . 2006. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4 : 111121.[PubMed] [CrossRef]
145. Cauley JA . 2015. Estrogen and bone health in men and women. Steroids 99(Pt A): 1115.[PubMed]
146. Manolagas SC,, O’Brien CA,, Almeida M . 2013. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 9 : 699712.[PubMed] [CrossRef]
147. Andreopoulou P,, Bockman RS . 2015. Management of postmenopausal osteoporosis. Annu Rev Med 66 : 329342.[PubMed] [CrossRef]
148. Franceschi C,, Campisi J . 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69 : S4S9.[PubMed] [CrossRef]
149. Sanguineti R,, Puddu A,, Mach F,, Montecucco F,, Viviani GL . 2014. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflamm 975872 : doi:10.1155/2014/975872. [PubMed] [CrossRef]
150. D’Amelio P,, Grimaldi A,, Di Bella S,, Brianza SZ,, Cristofaro MA,, Tamone C,, Giribaldi G,, Ulliers D,, Pescarmona GP,, Isaia G . 2008. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43 : 92100.[PubMed] [CrossRef]