1887

Chapter 25 : Lectin Receptors Expressed on Myeloid Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Lectin Receptors Expressed on Myeloid Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819194/9781555819187_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555819194/9781555819187_Chap25-2.gif

Abstract:

Lectins, defined as proteins that recognize carbohydrates, perform numerous essential biological functions. Recognizing a diverse array of carbohydrate structures, vertebrate lectins have been subdivided into several structurally distinct families which can be located intracellularly (such as the intracellular M-type family of lectins, which function primarily in the glycoprotein secretory pathway), in the plasma membrane (such as some members of the C-type lectin and Siglec [sialic acid-binding immunoglobulin-type lectin] families, which are involved in pathogen recognition and immune regulation), or are secreted into the extracellular milieu (such as some members of the galectin family, which serve several homeostatic and immune functions) ( Table 1 ). We will restrict our discussion here to selected myeloid- and plasma membrane-expressed members of only two families, the C-type lectins and Siglecs. We will provide a brief overview of each family and then focus on selected illustrative and detailed examples that highlight how these lectins influence myeloid cell functioning in health and disease. For an overview on the other lectin families, the reader is referred to an excellent website (http://www.imperial.ac.uk/research/animallectins/ctld/lectins.html).

Citation: Brown G, Crocker P. 2017. Lectin Receptors Expressed on Myeloid Cells, p 455-483. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0036-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Siglecs in humans and mice. There are two subgroups of Siglecs: One group contains Siglecs that are conserved in all mammalian species and the other group contains CD33-related Siglecs that appear to be undergoing rapid evolution in primates. The cell types expressing highest levels of each Siglec are indicated. B, B cell; Eos, eosinophil; Mac, macrophage; mDC, myeloid dendritic cell; Mon, monocyte; Neu, neutrophil; NK, NK cell; Oli, oligodendrocyte; Ost, osteoclast; pDC, plasmacytoid dendritic cell; Pla, placental syncytiotrophoblast; Sch, Schwann cell.

Citation: Brown G, Crocker P. 2017. Lectin Receptors Expressed on Myeloid Cells, p 455-483. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0036-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Selected signal transduction cascades induced by C-type lectin receptors. Activation receptors, such as Dectin-1, Dectin-2, Mincle, and MCL, induce cellular responses primarily through Syk kinase, although other pathways can be involved, such as those induced by Raf-1. Inhibitory receptors, such as MICL, activate protein tyrosine phosphatases (PTPs, such as SHP-1), which attenuate activation pathways. DNGR-1 (CLEC9A), not discussed in the text, is an actin-binding receptor expressed by CD8 DCs and involved in antigen cross-presentation. Reprinted from reference , with permission.

Citation: Brown G, Crocker P. 2017. Lectin Receptors Expressed on Myeloid Cells, p 455-483. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0036-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Dectin-1 can mediate the nonopsonic phagocytosis of fluorescently labeled fungal particles (green) via actin (red)-based phagocytic cups. Reprinted from reference , with permission.

Citation: Brown G, Crocker P. 2017. Lectin Receptors Expressed on Myeloid Cells, p 455-483. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0036-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The macrophage mannose receptor. Structure of the MR indicating its exogenous and endogenous ligands (including those in tissues). Mɸ, macrophage; LDL, low-density lipoprotein; HBV, hepatitis B virus; CPS, capsular polysaccharide; SEA, secreted egg antigen; Adam-13, a disintegrin and metalloprotease 13. Reprinted from reference , with permission.

Citation: Brown G, Crocker P. 2017. Lectin Receptors Expressed on Myeloid Cells, p 455-483. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0036-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819194.chap25
1. Crocker PR,, Clark EA,, Filbin M,, Gordon S,, Jones Y,, Kehrl JH,, Kelm S,, Le Douarin N,, Powell L,, Roder J,, Schnaar RL,, Sgroi DC,, Stamenkovic K,, Schauer R,, Schachner M,, van den Berg TK,, van der Merwe PA,, Watt SM,, Varki A . 1998. Siglecs: a family of sialic-acid binding lectins. Glycobiology 8 : v. [PubMed] [CrossRef]
2. Cao H,, Crocker PR . 2011. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 132 : 1826.[PubMed] [CrossRef]
3. Bensing BA,, Khedri Z,, Deng L,, Yu H,, Prakobphol A,, Fisher SJ,, Chen X,, Iverson TM,, Varki A,, Sullam PM . 2016. Novel aspects of sialoglycan recognition by the Siglec-like domains of streptococcal SRR glycoproteins. Glycobiology doi:10.1093/glycob/cww042. [PubMed] [CrossRef]
4. Rademacher C,, Bru T,, McBride R,, Robison E,, Nycholat CM,, Kremer EJ,, Paulson JC . 2012. A Siglec-like sialic-acid-binding motif revealed in an adenovirus capsid protein. Glycobiology 22 : 10861091.[PubMed] [CrossRef]
5. Attrill H,, Imamura A,, Sharma RS,, Kiso M,, Crocker PR,, van Aalten DM . 2006. Siglec-7 undergoes a major conformational change when complexed with the α(2,8)-disialylganglioside GT1b. J Biol Chem 281 : 3277432783.[PubMed] [CrossRef]
6. Kuroki K,, Wang J,, Ose T,, Yamaguchi M,, Tabata S,, Maita N,, Nakamura S,, Kajikawa M,, Kogure A,, Satoh T,, Arase H,, Maenaka K . 2014. Structural basis for simultaneous recognition of an O-glycan and its attached peptide of mucin family by immune receptor PILRα. Proc Natl Acad Sci U S A 111 : 88778882.[PubMed] [CrossRef]
7. Lu Q,, Lu G,, Qi J,, Wang H,, Xuan Y,, Wang Q,, Li Y,, Zhang Y,, Zheng C,, Fan Z,, Yan J,, Gao GF . 2014. PILRα and PILRβ have a siglec fold and provide the basis of binding to sialic acid. Proc Natl Acad Sci U S A 111 : 82218226.[PubMed] [CrossRef]
8. Soto PC,, Stein LL,, Hurtado-Ziola N,, Hedrick SM,, Varki A . 2010. Relative over-reactivity of human versus chimpanzee lymphocytes: implications for the human diseases associated with immune activation. J Immunol 184 : 41854195.[PubMed] [CrossRef]
9. Crocker PR,, Paulson JC,, Varki A . 2007. Siglecs and their roles in the immune system. Nat Rev Immunol 7 : 255266.[PubMed] [CrossRef]
10. Macauley MS,, Crocker PR,, Paulson JC . 2014. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14 : 653666.[PubMed] [CrossRef]
11. Daëron M,, Jaeger S,, Du Pasquier L,, Vivier E . 2008. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol Rev 224 : 1143.[PubMed] [CrossRef]
12. Avril T,, Floyd H,, Lopez F,, Vivier E,, Crocker PR . 2004. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol 173 : 68416849.[PubMed] [CrossRef]
13. Avril T,, Freeman SD,, Attrill H,, Clarke RG,, Crocker PR . 2005. Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. J Biol Chem 280 : 1984319851.[PubMed] [CrossRef]
14. Crocker PR,, Gordon S . 1986. Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages. J Exp Med 164 : 18621875.[CrossRef]
15. Klaas M,, Crocker PR . 2012. Sialoadhesin in recognition of self and non-self. Semin Immunopathol 34 : 353364.[PubMed] [CrossRef]
16. Crocker PR,, Kelm S,, Dubois C,, Martin B,, McWilliam AS,, Shotton DM,, Paulson JC,, Gordon S . 1991. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J 10 : 16611669.[PubMed]
17. Kelm S,, Brossmer R,, Isecke R,, Gross HJ,, Strenge K,, Schauer R . 1998. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur J Biochem 255 : 663672.[PubMed] [CrossRef]
18. Chávez-Galán L,, Olleros ML,, Vesin D,, Garcia I . 2015. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Front Immunol 6 : 263. doi:10.3389/fimmu.2015.00263. [PubMed] [CrossRef]
19. Crocker PR,, Gordon S . 1989. Mouse macrophage hemagglutinin (sheep erythrocyte receptor) with specificity for sialylated glycoconjugates characterized by a monoclonal antibody. J Exp Med 169 : 13331346.[PubMed] [CrossRef]
20. Hartnell A,, Steel J,, Turley H,, Jones M,, Jackson DG,, Crocker PR . 2001. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97 : 288296.[PubMed] [CrossRef]
21. Steiniger B,, Barth P,, Herbst B,, Hartnell A,, Crocker PR . 1997. The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology 92 : 307316.[PubMed] [CrossRef]
22. Martinez-Pomares L,, Gordon S . 2012. CD169+ macrophages at the crossroads of antigen presentation. Trends Immunol 33 : 6670.[PubMed] [CrossRef]
23. Vanderheijden N,, Delputte PL,, Favoreel HW,, Vandekerckhove J,, Van Damme J,, van Woensel PA,, Nauwynck HJ . 2003. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J Virol 77 : 82078215.[PubMed] [CrossRef]
24. Rempel H,, Calosing C,, Sun B,, Pulliam L . 2008. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One 3 : e1967. doi:10.1371/journal.pone.0001967. [PubMed] [CrossRef]
25. Farrell HE,, Davis-Poynter N,, Bruce K,, Lawler C,, Dolken L,, Mach M,, Stevenson PG . 2015. Lymph node macrophages restrict murine cytomegalovirus dissemination. J Virol 89 : 71477158.[PubMed] [CrossRef]
26. Frederico B,, Chao B,, Lawler C,, May JS,, Stevenson PG . 2015. Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination. J Gen Virol 96 : 23142327.[PubMed] [CrossRef]
27. Bernhard CA,, Ried C,, Kochanek S,, Brocker T . 2015. CD169+ macrophages are sufficient for priming of CTLs with specificities left out by cross-priming dendritic cells. Proc Natl Acad Sci U S A 112 : 54615466.[PubMed] [CrossRef]
28. Iannacone M,, Moseman EA,, Tonti E,, Bosurgi L,, Junt T,, Henrickson SE,, Whelan SP,, Guidotti LG,, von Andrian UH . 2010. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465 : 10791083.[PubMed] [CrossRef]
29. Akiyama H,, Miller C,, Patel HV,, Hatch SC,, Archer J,, Ramirez NG,, Gummuluru S . 2014. Virus particle release from glycosphingolipid-enriched microdomains is essential for dendritic cell-mediated capture and transfer of HIV-1 and henipavirus. J Virol 88 : 88138825.[PubMed] [CrossRef]
30. Izquierdo-Useros N,, Lorizate M,, Puertas MC,, Rodriguez-Plata MT,, Zangger N,, Erikson E,, Pino M,, Erkizia I,, Glass B,, Clotet B,, Keppler OT,, Telenti A,, Kräusslich HG,, Martinez-Picado J . 2012. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol 10 : e1001448. doi:10.1371/journal.pbio.1001448. [CrossRef]
31. Sewald X,, Ladinsky MS,, Uchil PD,, Beloor J,, Pi R,, Herrmann C,, Motamedi N,, Murooka TT,, Brehm MA,, Greiner DL,, Shultz LD,, Mempel TR,, Bjorkman PJ,, Kumar P,, Mothes W . 2015. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science 350 : 563567.[PubMed] [CrossRef]
32. Honke N,, Shaabani N,, Cadeddu G,, Sorg UR,, Zhang DE,, Trilling M,, Klingel K,, Sauter M,, Kandolf R,, Gailus N,, van Rooijen N,, Burkart C,, Baldus SE,, Grusdat M,, Löhning M,, Hengel H,, Pfeffer K,, Tanaka M,, Häussinger D,, Recher M,, Lang PA,, Lang KS . 2011. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat Immunol 13 : 5157.[PubMed] [CrossRef]
33. Asano K,, Nabeyama A,, Miyake Y,, Qiu CH,, Kurita A,, Tomura M,, Kanagawa O,, Fujii S,, Tanaka M . 2011. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34 : 8595.[PubMed] [CrossRef]
34. Ravishankar B,, Shinde R,, Liu H,, Chaudhary K,, Bradley J,, Lemos HP,, Chandler P,, Tanaka M,, Munn DH,, Mellor AL,, McGaha TL . 2014. Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci U S A 111 : 42154220.[PubMed] [CrossRef]
35. Backer R,, Schwandt T,, Greuter M,, Oosting M,, Jüngerkes F,, Tüting T,, Boon L,, O’Toole T,, Kraal G,, Limmer A,, den Haan JM . 2010. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc Natl Acad Sci U S A 107 : 216221.[PubMed] [CrossRef]
36. Veninga H,, Borg EG,, Vreeman K,, Taylor PR,, Kalay H,, van Kooyk Y,, Kraal G,, Martinez-Pomares L,, den Haan JM . 2015. Antigen targeting reveals splenic CD169+ macrophages as promoters of germinal center B-cell responses. Eur J Immunol 45 : 747757.[PubMed] [CrossRef]
37. Kawasaki N,, Vela JL,, Nycholat CM,, Rademacher C,, Khurana A,, van Rooijen N,, Crocker PR,, Kronenberg M,, Paulson JC . 2013. Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. Proc Natl Acad Sci U S A 110 : 78267831.[PubMed] [CrossRef]
38. Xiong YS,, Cheng Y,, Lin QS,, Wu AL,, Yu J,, Li C,, Sun Y,, Zhong RQ,, Wu LJ . 2014. Increased expression of Siglec-1 on peripheral blood monocytes and its role in mononuclear cell reactivity to autoantigen in rheumatoid arthritis. Rheumatology (Oxford) 53 : 250259.[PubMed] [CrossRef]
39. Bao G,, Han Z,, Yan Z,, Wang Q,, Zhou Y,, Yao D,, Gu M,, Chen B,, Chen S,, Deng A,, Zhong R . 2010. Increased Siglec-1 expression in monocytes of patients with primary biliary cirrhosis. Immunol Invest 39 : 645660.[PubMed] [CrossRef]
40. York MR,, Nagai T,, Mangini AJ,, Lemaire R,, van Seventer JM,, Lafyatis R . 2007. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and Toll-like receptor agonists. Arthritis Rheum 56 : 10101020.[PubMed] [CrossRef]
41. Biesen R,, Demir C,, Barkhudarova F,, Grün JR,, Steinbrich-Zöllner M,, Backhaus M,, Häupl T,, Rudwaleit M,, Riemekasten G,, Radbruch A,, Hiepe F,, Burmester GR,, Grützkau A . 2008. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum 58 : 11361145.[PubMed] [CrossRef]
42. Ohnishi K,, Komohara Y,, Saito Y,, Miyamoto Y,, Watanabe M,, Baba H,, Takeya M . 2013. CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci 104 : 12371244.[PubMed] [CrossRef]
43. Ohnishi K,, Yamaguchi M,, Erdenebaatar C,, Saito F,, Tashiro H,, Katabuchi H,, Takeya M,, Komohara Y . 2016. Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma. Cancer Sci 107 : 846852.[PubMed] [CrossRef]
44. Ikezumi Y,, Suzuki T,, Hayafuji S,, Okubo S,, Nikolic-Paterson DJ,, Kawachi H,, Shimizu F,, Uchiyama M . 2005. The sialoadhesin (CD169) expressing a macrophage subset in human proliferative glomerulonephritis. Nephrol Dial Transplant 20 : 27042713.[PubMed] [CrossRef]
45. Kidder D,, Richards HE,, Lyons PA,, Crocker PR . 2013. Sialoadhesin deficiency does not influence the severity of lupus nephritis in New Zealand black x New Zealand white F1 mice. Arthritis Res Ther 15 : R175. doi:10.1186/ar4364. [PubMed] [CrossRef]
46. Groh J,, Ribechini E,, Stadler D,, Schilling T,, Lutz MB,, Martini R . 2016. Sialoadhesin promotes neuroinflammation-related disease progression in two mouse models of CLN disease. Glia 64 : 792809.[PubMed] [CrossRef]
47. Ip CW,, Kroner A,, Crocker PR,, Nave KA,, Martini R . 2007. Sialoadhesin deficiency ameliorates myelin degeneration and axonopathic changes in the CNS of PLP overexpressing mice. Neurobiol Dis 25 : 105111.[PubMed] [CrossRef]
48. Kobsar I,, Oetke C,, Kroner A,, Wessig C,, Crocker P,, Martini R . 2006. Attenuated demyelination in the absence of the macrophage-restricted adhesion molecule sialoadhesin (Siglec-1) in mice heterozygously deficient in P0. Mol Cell Neurosci 31 : 685691.[PubMed] [CrossRef]
49. Jiang HR,, Hwenda L,, Makinen K,, Oetke C,, Crocker PR,, Forrester JV . 2006. Sialoadhesin promotes the inflammatory response in experimental autoimmune uveoretinitis. J Immunol 177 : 22582264.[PubMed] [CrossRef]
50. Wu C,, Rauch U,, Korpos E,, Song J,, Loser K,, Crocker PR,, Sorokin LM . 2009. Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression. J Immunol 182 : 65086516.[PubMed] [CrossRef]
51. Kidder D,, Richards HE,, Ziltener HJ,, Garden OA,, Crocker PR . 2013. Sialoadhesin ligand expression identifies a subset of CD4+Foxp3 T cells with a distinct activation and glycosylation profile. J Immunol 190 : 25932602.[PubMed] [CrossRef]
52. Black LV,, Saunderson SC,, Coutinho FP,, Muhsin-Sharafaldine MR,, Damani TT,, Dunn AC,, McLellan AD . 2015. The CD169 sialoadhesin molecule mediates cytotoxic T-cell responses to tumour apoptotic vesicles. Immunol Cell Biol 94 : 430438.[PubMed] [CrossRef]
53. Saunderson SC,, Dunn AC,, Crocker PR,, McLellan AD . 2014. CD169 mediates the capture of exosomes in spleen and lymph node. Blood 123 : 208216.[PubMed] [CrossRef]
54. Jones C,, Virji M,, Crocker PR . 2003. Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 49 : 12131225.[PubMed] [CrossRef]
55. Heikema AP,, Bergman MP,, Richards H,, Crocker PR,, Gilbert M,, Samsom JN,, van Wamel WJ,, Endtz HP,, van Belkum A . 2010. Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides. Infect Immun 78 : 32373246.[PubMed] [CrossRef]
56. Monteiro VG,, Lobato CS,, Silva AR,, Medina DV,, de Oliveira MA,, Seabra SH,, de Souza W,, DaMatta RA . 2005. Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages. Parasitol Res 97 : 380385.[PubMed] [CrossRef]
57. Klaas M,, Oetke C,, Lewis LE,, Erwig LP,, Heikema AP,, Easton A,, Willison HJ,, Crocker PR . 2012. Sialoadhesin promotes rapid proinflammatory and type I IFN responses to a sialylated pathogen, Campylobacter jejuni . J Immunol 189 : 24142422.[PubMed] [CrossRef]
58. Chang YC,, Olson J,, Louie A,, Crocker PR,, Varki A,, Nizet V . 2014. Role of macrophage sialoadhesin in host defense against the sialylated pathogen group B Streptococcus . J Mol Med (Berl) 92 : 951959.[PubMed] [CrossRef]
59. Erikson E,, Wratil PR,, Frank M,, Ambiel I,, Pahnke K,, Pino M,, Azadi P,, Izquierdo-Useros N,, Martinez-Picado J,, Meier C,, Schnaar RL,, Crocker PR,, Reutter W,, Keppler OT . 2015. Mouse Siglec-1 mediates trans-infection of surface-bound murine leukemia virus in a sialic acid N-acyl side chain-dependent manner. J Biol Chem 290 : 2734527359.[PubMed] [CrossRef]
60. Akiyama H,, Ramirez NG,, Gudheti MV,, Gummuluru S . 2015. CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies. PLoS Pathog 11 : e1004751. doi:10.1371/journal.ppat.1004751. [CrossRef]
61. Puryear WB,, Akiyama H,, Geer SD,, Ramirez NP,, Yu X,, Reinhard BM,, Gummuluru S . 2013. Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLoS Pathog 9 : e1003291. doi:10.1371/journal.ppat.1003291. [PubMed] [CrossRef]
62. Zou Z,, Chastain A,, Moir S,, Ford J,, Trandem K,, Martinelli E,, Cicala C,, Crocker P,, Arthos J,, Sun PD . 2011. Siglecs facilitate HIV-1 infection of macrophages through adhesion with viral sialic acids. PLoS One 6 : e24559. doi:10.1371/journal.pone.0024559. [PubMed] [CrossRef]
63. Izquierdo-Useros N,, Lorizate M,, McLaren PJ,, Telenti A,, Kräusslich HG,, Martinez-Picado J . 2014. HIV-1 capture and transmission by dendritic cells: the role of viral glycolipids and the cellular receptor Siglec-1. PLoS Pathog 10 : e1004146. doi:10.1371/journal.ppat.1004146. [PubMed] [CrossRef]
64. Zheng Q,, Hou J,, Zhou Y,, Yang Y,, Xie B,, Cao X . 2015. Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res 25 : 11211136.[PubMed] [CrossRef]
65. Wu Y,, Lan C,, Ren D,, Chen GY . 2016. Induction of Siglec-1 by endotoxin tolerance suppresses the innate immune response by promoting TGF-β1 production. J Biol Chem 291 : 1237012382.[PubMed] [CrossRef]
66. Taylor VC,, Buckley CD,, Douglas M,, Cody AJ,, Simmons DL,, Freeman SD . 1999. The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem 274 : 1150511512.[PubMed] [CrossRef]
67. Freeman SD,, Kelm S,, Barber EK,, Crocker PR . 1995. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 85 : 20052012.[PubMed]
68. Walter RB,, Häusermann P,, Raden BW,, Teckchandani AM,, Kamikura DM,, Bernstein ID,, Cooper JA . 2008. Phosphorylated ITIMs enable ubiquitylation of an inhibitory cell surface receptor. Traffic 9 : 267279.[PubMed] [CrossRef]
69. Walter RB,, Raden BW,, Kamikura DM,, Cooper JA,, Bernstein ID . 2005. Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood 105 : 12951302.[PubMed] [CrossRef]
70. Walter RB,, Raden BW,, Zeng R,, Häusermann P,, Bernstein ID,, Cooper JA . 2008. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. J Leukoc Biol 83 : 200211.[PubMed] [CrossRef]
71. Raj T,, Ryan KJ,, Replogle JM,, Chibnik LB,, Rosenkrantz L,, Tang A,, Rothamel K,, Stranger BE,, Bennett DA,, Evans DA,, De Jager PL,, Bradshaw EM . 2014. CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum Mol Genet 23 : 27292736.[PubMed] [CrossRef]
72. Bradshaw EM,, Chibnik LB,, Keenan BT,, Ottoboni L,, Raj T,, Tang A,, Rosenkrantz LL,, Imboywa S,, Lee M,, Von Korff A,, Morris MC,, Evans DA,, Johnson K,, Sperling RA,, Schneider JA,, Bennett DA,, De Jager PL , Alzheimer Disease Neuroimaging Initiative . 2013. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16 : 848850.[PubMed] [CrossRef]
73. Griciuc A,, Serrano-Pozo A,, Parrado AR,, Lesinski AN,, Asselin CN,, Mullin K,, Hooli B,, Choi SH,, Hyman BT,, Tanzi RE . 2013. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78 : 631643.[PubMed] [CrossRef]
74. Tchilian EZ,, Beverley PC,, Young BD,, Watt SM . 1994. Molecular cloning of two isoforms of the murine homolog of the myeloid CD33 antigen. Blood 83 : 31883198.[PubMed]
75. Blasius AL,, Cella M,, Maldonado J,, Takai T,, Colonna M . 2006. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107 : 24742476.[PubMed] [CrossRef]
76. Angata T,, Hayakawa T,, Yamanaka M,, Varki A,, Nakamura M . 2006. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20 : 19641973.[PubMed] [CrossRef]
77. Angata T,, Tabuchi Y,, Nakamura K,, Nakamura M . 2007. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17 : 838846.[PubMed] [CrossRef]
78. Cao H,, Lakner U,, de Bono B,, Traherne JA,, Trowsdale J,, Barrow AD . 2008. SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 38 : 23032315.[PubMed] [CrossRef]
79. Brinkman-Van der Linden EC,, Angata T,, Reynolds SA,, Powell LD,, Hedrick SM,, Varki A . 2003. CD33/Siglec-3 binding specificity, expression pattern, and consequences of gene deletion in mice. Mol Cell Biol 23 : 41994206.[PubMed] [CrossRef]
80. Angata T,, Ishii T,, Motegi T,, Oka R,, Taylor RE,, Soto PC,, Chang YC,, Secundino I,, Gao CX,, Ohtsubo K,, Kitazume S,, Nizet V,, Varki A,, Gemma A,, Kida K,, Taniguchi N . 2013. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci 70 : 31993210.[PubMed] [CrossRef]
81. Ali SR,, Fong JJ,, Carlin AF,, Busch TD,, Linden R,, Angata T,, Areschoug T,, Parast M,, Varki N,, Murray J,, Nizet V,, Varki A . 2014. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus . J Exp Med 211 : 12311242.[PubMed] [CrossRef]
82. Fong JJ,, Sreedhara K,, Deng L,, Varki NM,, Angata T,, Liu Q,, Nizet V,, Varki A . 2015. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J 34 : 27752788.[PubMed] [CrossRef]
83. Falco M,, Biassoni R,, Bottino C,, Vitale M,, Sivori S,, Augugliaro R,, Moretta L,, Moretta A . 1999. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med 190 : 793802.[PubMed] [CrossRef]
84. Nicoll G,, Ni J,, Liu D,, Klenerman P,, Munday J,, Dubock S,, Mattei MG,, Crocker PR . 1999. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem 274 : 3408934095.[PubMed] [CrossRef]
85. Mizrahi S,, Gibbs BF,, Karra L,, Ben-Zimra M,, Levi-Schaffer F . 2014. Siglec-7 is an inhibitory receptor on human mast cells and basophils. J Allergy Clin Immunol 134 : 230233.[PubMed] [CrossRef]
86. Angata T,, Varki A . 2000. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways. J Biol Chem 275 : 2212722135.[PubMed] [CrossRef]
87. Zhang JQ,, Nicoll G,, Jones C,, Crocker PR . 2000. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem 275 : 2212122126.[PubMed] [CrossRef]
88. Yamaji T,, Teranishi T,, Alphey MS,, Crocker PR,, Hashimoto Y . 2002. A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to α2,8-disialyl and branched α2,6-sialyl residues: a comparison with Siglec-9. J Biol Chem 277 : 63246332.[PubMed] [CrossRef]
89. Campanero-Rhodes MA,, Childs RA,, Kiso M,, Komba S,, Le Narvor C,, Warren J,, Otto D,, Crocker PR,, Feizi T . 2006. Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochem Biophys Res Commun 344 : 11411146.[PubMed] [CrossRef]
90. Secundino I,, Lizcano A,, Roupé KM,, Wang X,, Cole JN,, Olson J,, Ali SR,, Dahesh S,, Amayreh LK,, Henningham A,, Varki A,, Nizet V . 2016. Host and pathogen hyaluronan signal through human Siglec-9 to suppress neutrophil activation. J Mol Med (Berl) 94 : 219233.[PubMed] [CrossRef]
91. Redelinghuys P,, Antonopoulos A,, Liu Y,, Campanero-Rhodes MA,, McKenzie E,, Haslam SM,, Dell A,, Feizi T,, Crocker PR . 2011. Early murine T-lymphocyte activation is accompanied by a switch from N-glycolyl- to N-acetyl-neuraminic acid and generation of ligands for siglec-E. J Biol Chem 286 : 3452234532.[PubMed] [CrossRef]
92. McMillan SJ,, Sharma RS,, McKenzie EJ,, Richards HE,, Zhang J,, Prescott A,, Crocker PR . 2013. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b β2-integrin-dependent signaling. Blood 121 : 20842094.[PubMed] [CrossRef]
93. McMillan SJ,, Sharma RS,, Richards HE,, Hegde V,, Crocker PR . 2014. Siglec-E promotes β2-integrin-dependent NADPH oxidase activation to suppress neutrophil recruitment to the lung. J Biol Chem 289 : 2037020376.[PubMed] [CrossRef]
94. Schwarz F,, Pearce OM,, Wang X,, Samraj AN,, Läubli H,, Garcia JO,, Lin H,, Fu X,, Garcia-Bingman A,, Secrest P,, Romanoski CE,, Heyser C,, Glass CK,, Hazen SL,, Varki N,, Varki A,, Gagneux P . 2015. Siglec receptors impact mammalian lifespan by modulating oxidative stress. eLife 4 : 4. doi:10.7554/eLife.06184. [CrossRef]
95. Boyd CR,, Orr SJ,, Spence S,, Burrows JF,, Elliott J,, Carroll HP,, Brennan K,, Ní Gabhann J,, Coulter WA,, Jones C,, Crocker PR,, Johnston JA,, Jefferies CA . 2009. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production. J Immunol 183 : 77037709.[PubMed] [CrossRef]
96. Claude J,, Linnartz-Gerlach B,, Kudin AP,, Kunz WS,, Neumann H . 2013. Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J Neurosci 33 : 1827018276.[PubMed] [CrossRef]
97. Chen GY,, Brown NK,, Wu W,, Khedri Z,, Yu H,, Chen X,, van de Vlekkert D,, D’Azzo A,, Zheng P,, Liu Y . 2014. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. eLife 3 : e04066. doi:10.7554/eLife.04066. [CrossRef]
98. Läubli H,, Pearce OM,, Schwarz F,, Siddiqui SS,, Deng L,, Stanczak MA,, Deng L,, Verhagen A,, Secrest P,, Lusk C,, Schwartz AG,, Varki NM,, Bui JD,, Varki A . 2014. Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci U S A 111 : 1421114216.[PubMed] [CrossRef]
99. Perdicchio M,, Ilarregui JM,, Verstege MI,, Cornelissen LA,, Schetters ST,, Engels S,, Ambrosini M,, Kalay H,, Veninga H,, den Haan JM,, van Berkel LA,, Samsom JN,, Crocker PR,, Sparwasser T,, Berod L,, Garcia-Vallejo JJ,, van Kooyk Y,, Unger WW . 2016. Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proc Natl Acad Sci U S A 113 : 33293334.[PubMed] [CrossRef]
100. Spence S,, Greene MK,, Fay F,, Hams E,, Saunders SP,, Hamid U,, Fitzgerald M,, Beck J,, Bains BK,, Smyth P,, Themistou E,, Small DM,, Schmid D,, O’Kane CM,, Fitzgerald DC,, Abdelghany SM,, Johnston JA,, Fallon PG,, Burrows JF,, McAuley DF,, Kissenpfennig A,, Scott CJ . 2015. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci Transl Med 7 : 303ra140. doi:10.1126/scitranslmed.aab3459. [CrossRef]
101. Hudak JE,, Canham SM,, Bertozzi CR . 2014. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol 10 : 6975.[PubMed] [CrossRef]
102. Jandus C,, Boligan KF,, Chijioke O,, Liu H,, Dahlhaus M,, Démoulins T,, Schneider C,, Wehrli M,, Hunger RE,, Baerlocher GM,, Simon HU,, Romero P,, Münz C,, von Gunten S . 2014. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest 124 : 18101820.[PubMed] [CrossRef]
103. Nicoll G,, Avril T,, Lock K,, Furukawa K,, Bovin N,, Crocker PR . 2003. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur J Immunol 33 : 16421648.[PubMed] [CrossRef]
104. Carlin AF,, Uchiyama S,, Chang YC,, Lewis AL,, Nizet V,, Varki A . 2009. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113 : 33333336.[PubMed] [CrossRef]
105. Chang YC,, Olson J,, Beasley FC,, Tung C,, Zhang J,, Crocker PR,, Varki A,, Nizet V . 2014. Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo . PLoS Pathog 10 : e1003846. doi:10.1371/journal.ppat.1003846.
106. Floyd H,, Ni J,, Cornish AL,, Zeng Z,, Liu D,, Carter KC,, Steel J,, Crocker PR . 2000. Siglec-8. A novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem 275 : 861866.[PubMed] [CrossRef]
107. Kikly KK,, Bochner BS,, Freeman SD,, Tan KB,, Gallagher KT,, D’alessio KJ,, Holmes SD,, Abrahamson JA,, Erickson-Miller CL,, Murdock PR,, Tachimoto H,, Schleimer RP,, White JR . 2000. Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J Allergy Clin Immunol 105 : 10931100.[PubMed] [CrossRef]
108. Bochner BS,, Alvarez RA,, Mehta P,, Bovin NV,, Blixt O,, White JR,, Schnaar RL . 2005. Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem 280 : 43074312.[PubMed] [CrossRef]
109. Jia Y,, Yu H,, Fernandes SM,, Wei Y,, Gonzalez-Gil A,, Motari MG,, Vajn K,, Stevens WW,, Peters AT,, Bochner BS,, Kern RC,, Schleimer RP,, Schnaar RL . 2015. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells. J Allergy Clin Immunol 135 : 799810.e7. doi:10.1016/j.jaci.2015.01.004. [PubMed] [CrossRef]
110. Patnode ML,, Cheng CW,, Chou CC,, Singer MS,, Elin MS,, Uchimura K,, Crocker PR,, Khoo KH,, Rosen SD . 2013. Galactose 6-O-sulfotransferases are not required for the generation of Siglec-F ligands in leukocytes or lung tissue. J Biol Chem 288 : 2653326545.[PubMed] [CrossRef]
111. Yokoi H,, Choi OH,, Hubbard W,, Lee HS,, Canning BJ,, Lee HH,, Ryu SD,, von Gunten S,, Bickel CA,, Hudson SA,, Macglashan DW Jr,, Bochner BS . 2008. Inhibition of FcεRI-dependent mediator release and calcium flux from human mast cells by sialic acid-binding immunoglobulin-like lectin 8 engagement. J Allergy Clin Immunol 121 : 499505.[PubMed] [CrossRef]
112. Hudson SA,, Bovin NV,, Schnaar RL,, Crocker PR,, Bochner BS . 2009. Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6′-sulfated sialyl Lewis X. J Pharmacol Exp Ther 330 : 608612.[PubMed] [CrossRef]
113. Nutku E,, Aizawa H,, Hudson SA,, Bochner BS . 2003. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101 : 50145020.[PubMed] [CrossRef]
114. Gao PS,, Shimizu K,, Grant AV,, Rafaels N,, Zhou LF,, Hudson SA,, Konno S,, Zimmermann N,, Araujo MI,, Ponte EV,, Cruz AA,, Nishimura M,, Su SN,, Hizawa N,, Beaty TH,, Mathias RA,, Rothenberg ME,, Barnes KC,, Bochner BS . 2010. Polymorphisms in the sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8) gene are associated with susceptibility to asthma. Eur J Hum Genet 18 : 713719.[PubMed] [CrossRef]
115. Angata T,, Hingorani R,, Varki NM,, Varki A . 2001. Cloning and characterization of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters. J Biol Chem 276 : 4512845136.[PubMed] [CrossRef]
116. Tateno H,, Crocker PR,, Paulson JC . 2005. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6′-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 15 : 11251135.[PubMed] [CrossRef]
117. Zhang JQ,, Biedermann B,, Nitschke L,, Crocker PR . 2004. The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur J Immunol 34 : 11751184.[PubMed] [CrossRef]
118. Mao H,, Kano G,, Hudson SA,, Brummet M,, Zimmermann N,, Zhu Z,, Bochner BS . 2013. Mechanisms of Siglec-F-induced eosinophil apoptosis: a role for caspases but not for SHP-1, Src kinases, NADPH oxidase or reactive oxygen. PLoS One 8 : e68143. doi:10.1371/journal.pone.0068143. [CrossRef]
119. McMillan SJ,, Richards HE,, Crocker PR . 2014. Siglec-F-dependent negative regulation of allergen-induced eosinophilia depends critically on the experimental model. Immunol Lett 160 : 1116.[PubMed] [CrossRef]
120. Zhang M,, Angata T,, Cho JY,, Miller M,, Broide DH,, Varki A . 2007. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 109 : 42804287.[PubMed] [CrossRef]
121. Li N,, Zhang W,, Wan T,, Zhang J,, Chen T,, Yu Y,, Wang J,, Cao X . 2001. Cloning and characterization of Siglec-10, a novel sialic acid binding member of the Ig superfamily, from human dendritic cells. J Biol Chem 276 : 2810628112.[PubMed] [CrossRef]
122. Munday J,, Kerr S,, Ni J,, Cornish AL,, Zhang JQ,, Nicoll G,, Floyd H,, Mattei MG,, Moore P,, Liu D,, Crocker PR . 2001. Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem J 355 : 489497.[PubMed] [CrossRef]
123. Whitney G,, Wang S,, Chang H,, Cheng KY,, Lu P,, Zhou XD,, Yang WP,, McKinnon M,, Longphre M . 2001. A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33. Eur J Biochem 268 : 60836096.[PubMed] [CrossRef]
124. Zhang P,, Lu X,, Tao K,, Shi L,, Li W,, Wang G,, Wu K . 2015. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J Surg Res 194 : 107113.[PubMed] [CrossRef]
125. Duong BH,, Tian H,, Ota T,, Completo G,, Han S,, Vela JL,, Ota M,, Kubitz M,, Bovin N,, Paulson JC,, Nemazee D . 2010. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J Exp Med 207 : 173187.[PubMed] [CrossRef]
126. Escalona Z,, Álvarez B,, Uenishi H,, Toki D,, Yuste M,, Revilla C,, del Moral MG,, Alonso F,, Ezquerra A,, Domínguez J . 2015. Molecular characterization of porcine Siglec-10 and analysis of its expression in blood and tissues. Dev Comp Immunol 48 : 116123.[PubMed] [CrossRef]
127. Hutzler S,, Özgör L,, Naito-Matsui Y,, Kläsener K,, Winkler TH,, Reth M,, Nitschke L . 2014. The ligand-binding domain of Siglec-G is crucial for its selective inhibitory function on B1 cells. J Immunol 192 : 54065414.[PubMed] [CrossRef]
128. Pfrengle F,, Macauley MS,, Kawasaki N,, Paulson JC . 2013. Copresentation of antigen and ligands of Siglec-G induces B cell tolerance independent of CD22. J Immunol 191 : 17241731.[PubMed] [CrossRef]
129. Hoffmann A,, Kerr S,, Jellusova J,, Zhang J,, Weisel F,, Wellmann U,, Winkler TH,, Kneitz B,, Crocker PR,, Nitschke L . 2007. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat Immunol 8 : 695704.[PubMed] [CrossRef]
130. Chen GY,, Tang J,, Zheng P,, Liu Y . 2009. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323 : 17221725.[PubMed] [CrossRef]
131. Chen GY,, Brown NK,, Zheng P,, Liu Y . 2014. Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology 24 : 800806.[PubMed] [CrossRef]
132. Stephenson HN,, Mills DC,, Jones H,, Milioris E,, Copland A,, Dorrell N,, Wren BW,, Crocker PR,, Escors D,, Bajaj-Elliott M . 2014. Pseudaminic acid on Campylobacter jejuni flagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interaction. J Infect Dis 210 : 14871498.[PubMed] [CrossRef]
133. Angata T,, Kerr SC,, Greaves DR,, Varki NM,, Crocker PR,, Varki A . 2002. Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277 : 2446624474.[PubMed] [CrossRef]
134. Wang Y,, Neumann H . 2010. Alleviation of neurotoxicity by microglial human Siglec-11. J Neurosci 30 : 34823488.[PubMed] [CrossRef]
135. Shahraz A,, Kopatz J,, Mathy R,, Kappler J,, Winter D,, Kapoor S,, Schütza V,, Scheper T,, Gieselmann V,, Neumann H . 2015. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages. Sci Rep 5 : 16800. doi:10.1038/srep16800. [PubMed] [CrossRef]
136. Wang X,, Mitra N,, Cruz P,, Deng L,, NISC Comparative Sequencing Program, Varki N,, Angata T,, Green ED,, Mullikin J,, Hayakawa T,, Varki A,, Varki A . 2012. Evolution of Siglec-11 and Siglec-16 genes in hominins. Mol Biol Evol 29 : 20732086.[PubMed] [CrossRef]
137. Takamiya R,, Ohtsubo K,, Takamatsu S,, Taniguchi N,, Angata T . 2013. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 23 : 178187.[PubMed] [CrossRef]
138. Hiruma Y,, Hirai T,, Tsuda E . 2011. Siglec-15, a member of the sialic ac