1887

Chapter 5 : Cre Recombinase

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cre Recombinase, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap05-2.gif

Abstract:

The use of Cre recombinase to carry out conditional mutagenesis of transgenes and insert DNA cassettes into eukaryotic chromosomes is widespread ( ). Indeed, a PubMed search for “cre recombinase” in early 2014 returned over 4000 articles. In addition to the numerous and applications that have been reported since Cre was first shown to function in yeast and mammalian cells nearly 30 years ago ( ), the Cre– system has also played an important role in understanding the mechanism of recombination by the tyrosine recombinase family of site-specific recombinases( ). The simplicity of this system, requiring only a single recombinase enzyme and short recombination sequences for robust activity in a variety of contexts ( ), has been an important factor in both cases. Cre has also been used in experiments designed to understand the functions of other recombination systems ( ).

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014

Key Concept Ranking

Sodium Dodecyl Sulfate
0.44418094
Simian virus 40
0.44418094
0.44418094
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The Cre– site-specific recombination reaction. Cre subunits are represented by semi-transparent spheres, with the N-terminal domains (NTDs) in the foreground and the C-terminal domains (CTDs) below. The sites are drawn as observed in crystal structures of intermediates in the Cre– recombination pathway, with the scissile phosphates drawn as yellow spheres and covalently linked phosphotyrosines as cyan spheres. Two Cre subunits bind cooperatively to the substrate sites (Sub1 and Sub2). The structural details of the bending that occurs in the sites at this stage of the reaction are not yet known. The Cre-bound sites associate to form an antiparallel synaptic complex where the bottom (red) strands of are positioned for cleavage (BS-synapse). Cleavage by Tyr324 in the Cre subunits bound to the right half-sites (R) results in formation of covalent 3′-phosphotyrosine linkages to the bottom strands and release of 5′-hydroxyl ends (BS covalent). Exchange of strands between the two sites positions the 5′-hydroxyl groups for attack of the phosphotyrosine linkages on the partner sites, resulting in formation of a four-way Holliday junction intermediate (BS-HJ). Isomerization of BS-HJ to TS-HJ results in activation of the Cre subunits bound to the left half-sites (L), where the top strands (black) are now positioned for cleavage. Cleavage of TS-HJ to form the top-strand covalent intermediate (TS-covalent) and strand exchange to form the top-strand active synapse (TS-synapse) completes the reaction. Dissociation of TS-synapse gives the product sites (Prod1 and Prod2). The structure of TS-synaptic is not currently known; a likely candidate is drawn here (discussed in text). doi:10.1128/microbiolspec.MDNA3-0014-2014.f1

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Cre binding to . (A) Cre bound to a half-site. The two domains of Cre form a “C-shaped clamp” that wraps around the DNA duplex. Helices B and D from the N-terminal domain (NTD) straddle the major groove from one face and helix J sits in the major groove from the opposite face. An asterisk marks the point of insertion of several basic residue side chains (not shown) into the minor groove at the end of the site. (B) Cre bound to the site. The site is composed of two 14-bp recombinase-binding elements (RBEs) arranged as inverted repeats around an asymmetric 6-bp crossover region. The RBEs differ only in the base pairs adjacent to the crossover region. Arrows indicate the cleavage sites. Two primary sources of Cre–Cre interactions on the site are evident: the two NTDs interact via helices A and E and the two C-terminal domains interact where helix-N from one subunit is buried in a hydrophobic pocket of the adjacent subunit. The scissile phosphates are drawn as yellow spheres in (A) and (B) and Tyr324 as yellow sticks in (A). doi:10.1128/microbiolspec.MDNA3-0014-2014.f2

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Cre- specificity. Polar interactions between helix J and the site are shown. The key interaction is between Arg259 and N7/O6 of G10 in the site. The Glu262 side chain carboxyl makes a water-mediated interaction to N4 of C9 as well as an unusual hydrogen bond to a backbone phosphate (implying a neutral carboxyl side chain). Ser257 also makes a backbone hydrogen bond. The sequence is shown for reference, with the conventional site numbering used by most researchers. doi:10.1128/microbiolspec.MDNA3-0014-2014.f3

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The Cre– synaptic complex. The Cre K201A– synaptic complex is shown, with the same DNA coloring as in Fig. 1 , and Cre subunits drawn in semi-transparent space-filling representations. The site is sharply bent in the left half-sites (purple subunits bound) and is undistorted in the right half-sites (green subunits bound). (A) View is from the N-terminal domain face of the complex, with the same orientation as BS-synaptic in Fig. 1 . Substantial interactions between helices A and E are indicated. (B) View is from the opposite face of the complex, where the interlocking interactions formed between helix-N of one subunit and the C-terminal domain of the adjacent subunit are emphasized. Note that the same interactions responsible for cooperative binding in Fig. 2B are responsible for stabilizing the synaptic complex shown here. doi:10.1128/microbiolspec.MDNA3-0014-2014.f4

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The Cre active site. Hydrogen-bonding interactions between the seven active site residues and the scissile phosphate are shown for the precleavage intermediate, transition state mimic, and covalent intermediate, based on crystal structures of the corresponding complexes. Glu176 forms additional hydrogen bonds to the backbone amides of both Arg173 and Lys201 in each case, which are not shown. The 5′-hydroxyl group is not present in the covalent intermediate structure, but hydrogen bonding to Lys201/Arg173 is likely (not shown). The cleavage reaction proceeds from left to right, whereas the ligation reaction proceeds right to left in this scheme. Note that O1 and O2 of the transition state are labeled in the opposite sense to that used in Gibb et al. ( ). doi:10.1128/microbiolspec.MDNA3-0014-2014.f5

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Schemes to achieve directionality in the Cre reaction. (A) The LE/RE strategy. Recombination between sites with mutated (weakened) right and left half-sites results in a wild-type site and a doubly mutated site, which is a poor substrate. The reverse reaction has reduced efficiency. (B) The recombinase-mediated cassette exchange reaction. The DNA segment to be integrated or exchanged is flanked by incompatible sites in the donor (p-q) and acceptor (r-s) molecules. The sites are incompatible because their crossover sequences differ. Cre-mediated recombination between one site pair results in the integration of the donor (if circular) into the acceptor (the intermediate is not shown). Subsequent recombination between the second pair of sites excises the intervening DNA, resulting in exchange of cassettes between the two molecules. doi:10.1128/microbiolspec.MDNA3-0014-2014.f6

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Reconstitution of active Cre from fragments. (A) Cre fragments 1 to 59 and 60 to 341 are inactive individually, but can be re-associated to form an active enzyme if fused to heterodimerizing partners. In the example shown, rapamycin induces dimerization of the FKBP and FRB domains. (B) Overlapping Cre fragments 1 to 196 and 181 to 341 are also inactive individually, but will associate spontaneously to form an active enzyme. doi:10.1128/microbiolspec.MDNA3-0014-2014.f7

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819217.chap5
1. Birling M-C,, Gofflot F,, Warot X, . 2009. Site-Specific Recombinases for Manipulation of the Mouse Genome, p 245263. In Cartwright EJ (ed), Transgenesis Techniques. Humana Press, New York. [PubMed] [CrossRef]
2. Wirth D,, Gama-Norton L,, Riemer P,, Sandhu U,, Schucht R,, Hauser H . 2007. Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18 : 411419.[PubMed] [CrossRef]
3. Brault V,, Besson V,, Magnol L,, Duchon A,, Hérault Y, . 2007. Cre/loxP-Mediated Chromosome Engineering of the Mouse Genome, p 2948. In Feil PDR,, Metzger DD (ed), Conditional Mutagenesis: An Approach to Disease Models. Springer, Berlin Heidelberg. [PubMed] [CrossRef]
4. Kos CH . 2004. Methods in Nutrition Science: Cre/loxP System for Generating Tissue-specific Knockout Mouse Models. Nutr Rev 62 : 243246.[PubMed]
5. Branda CS,, Dymecki SM . 2004. Talking about a Revolution: The Impact of Site-Specific Recombinases on Genetic Analyses in Mice. Dev Cell 6 : 728.[PubMed] [CrossRef]
6. Gilbertson L . 2003. Cre–lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol 21 : 550555.[PubMed] [CrossRef]
7. Sauer B . 2002. Cre/lox: one more step in the taming of the genome. Endocrine 19 : 221228.[PubMed] [CrossRef]
8. Wang Y,, Yau Y-Y,, Perkins-Balding D,, Thomson JG . 2011. Recombinase technology: applications and possibilities. Plant Cell Rep 30 : 267285.[PubMed] [CrossRef]
9. Lanza AM,, Dyess TJ,, Alper HS . 2012. Using the Cre/lox system for targeted integration into the human genome: loxFAS-loxP pairing and delayed introduction of Cre DNA improve gene swapping efficiency. Biotechnol J 7 : 898908.[PubMed] [CrossRef]
10. Sauer B,, Henderson N . 1988. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85 : 516670.[PubMed] [CrossRef]
11. Sauer B . 1987. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae . Mol Cell Biol 7 : 20872096.[PubMed]
12. Van Duyne G . 2001. A structural view of Cre-loxP site-specific recombination. Annu Rev Biophys Biomol Struct 30 : 87104.[PubMed] [CrossRef]
13. Van Duyne G . 2002. A structural view of tyrosine recombinase site-specific recombination, p 93117. In Mobile DNA II. ASM Press, Washington DC.
14. Grindley N,, Whiteson K,, Rice P . 2006. Mechanisms of site-specific recombination. Annu Rev Biochem 75 : 567605.[PubMed] [CrossRef]
15. Abremski K,, Hoess R . 1984. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem 259 : 15091514.[PubMed]
16. Kilbride EA,, Burke ME,, Boocock MR,, Stark WM . 2006. Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system. J Mol Biol 355 : 185195.[PubMed] [CrossRef]
17. Warren D,, Laxmikanthan G,, Landy A . 2008. A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci USA 105 : 1827818283.[PubMed] [CrossRef]
18. Gourlay SC,, Colloms SD . 2004. Control of Cre recombination by regulatory elements from Xer recombination systems. Mol Microbiol 52 : 5365.[PubMed] [CrossRef]
19. Ikeda H,, Tomizawa J . 1968. Prophage P1, an extrachromosomal element. Cold Spring Harb Symp Quant Biol 33 : 791798.[PubMed] [CrossRef]
20. Austin S,, Ziese M,, Sternberg N . 1981. A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25 : 72936.[PubMed] [CrossRef]
21. Sternberg N,, Hamilton D,, Austin S,, Yarmolinsky M,, Hoess R . 1981. Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb Symp Quant Biol 1 : 297309.[CrossRef]
22. Sherratt D,, Soballe B,, Barre F,, Filipe S,, Lau I,, Massey T,, Yates J . 2004. Recombination and chromosome segregation. Philos Trans R Soc Lond B Biol Sci 359 : 6169.[PubMed] [CrossRef]
23. Ghosh K,, Guo F,, Van Duyne GD . 2007. Synapsis of loxP sites by Cre recombinase. J Biol Chem 282 : 2400424016.[PubMed] [CrossRef]
24. Hoess R,, Abremski K . 1984. Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP . Proc Natl Acad Sci USA 81 : 10261029.[PubMed] [CrossRef]
25. Mack A,, Sauer B,, Abremski K,, Hoess R . 1992. Stoichiometry of the Cre recombinase bound to the lox recombining site. Nucleic Acids Res 20 : 44514455.[PubMed] [CrossRef]
26. Ringrose L,, Lounnas V,, Ehrlich L,, Buchholz F,, Wade R,, Stewart A . 1998. Comparative kinetic analysis of FLP and cre recombinases: mathematical models for DNA binding and recombination. J Mol Biol 284 : 363384.[PubMed] [CrossRef]
27. Rüfer A,, Neuenschwander P,, Sauer B . 2002. Analysis of Cre-loxP interaction by surface plasmon resonance: influence of spermidine on cooperativity. Anal Biochem 308 : 9099.[PubMed] [CrossRef]
28. Hamilton D,, Abremski K . 1984. Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol 178 : 481486.[PubMed] [CrossRef]
29. Hoess R,, Wierzbicki A,, Abremski K . 1990. Synapsis in the Cre-lox site-specific recombination system, p 203213. In Structure & Methods. Adenine Press, New York.
30. Craig NL . 2002. Mobile DNA II. ASM Press, Washington D.C.
31. Cantor E,, Chong S . 2001. Intein-mediated rapid purification of Cre recombinase. Protein Expr Purif 22 : 135140.[PubMed] [CrossRef]
32. Ghosh K,, Van Duyne G . 2002. Cre-loxP biochemistry. Methods 28 : 374383.[PubMed] [CrossRef]
33. Gibb B,, Gupta K,, Ghosh K,, Sharp R,, Chen J,, Van Duyne GD . 2010. Requirements for catalysis in the Cre recombinase active site. Nucleic Acids Res 38 : 58175832.[PubMed] [CrossRef]
34. Murray SA,, Eppig JT,, Smedley D,, Simpson EM,, Rosenthal N . 2012. Beyond knockouts: cre resources for conditional mutagenesis. Mamm Genome 23 : 587599.[PubMed] [CrossRef]
35. Smedley D,, Salimova E,, Rosenthal N . 2011. Cre recombinase resources for conditional mouse mutagenesis. Methods 53 : 411416.[PubMed] [CrossRef]
36. Jones J,, Shelton K,, Magnuson M . 2004. Strategies for the use of site-specific recombinases in genome engineering. Methods Mol Med 103 : 245258.
37. Thomson JG,, Ow DW . 2006. Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. genesis 44 : 465476.[PubMed] [CrossRef]
38. Sauer B . 2002. Chromosome manipulation by Cre-lox recombination, p 3858. In Mobile DNA II. ASM Press, Washington D.C. [PubMed]
39. Guo F,, Gopaul D,, Van Duyne G . 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389 : 4046.[PubMed] [CrossRef]
40. Guo F,, Gopaul D,, Van Duyne G . 1999. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc Natl Acad Sci USA 96 : 71437148.[PubMed] [CrossRef]
41. Woods K,, Martin S,, Chu V,, Baldwin E . 2001. Quasi-equivalence in site-specific recombinase structure and function: crystal structure and activity of trimeric Cre recombinase bound to a three-way Lox DNA junction. J Mol Biol 313 : 4969.[PubMed] [CrossRef]
42. Martin S,, Pulido E,, Chu V,, Lechner T,, Baldwin E . 2002. The order of strand exchanges in Cre-loxP recombination and its basis suggested by the crystal structure of a Cre-loxP Holliday junction complex. J Mol Biol 319 : 107127.[PubMed] [CrossRef]
43. Ghosh K,, Lau C,, Guo F,, Segall A,, Van Duyne G . 2005. Peptide trapping of the Holliday junction intermediate in Cre-loxP site-specific recombination. J Biol Chem 280 : 82908299.[PubMed] [CrossRef]
44. Kim S,, Kim G,, Lee Y,, Park J . 2001. Characterization of Cre–loxP interaction in the major groove: Hint for structural distortion of mutant Cre and possible strategy for HIV-1 therapy. J Cell Biochem 80 : 321327.[PubMed] [CrossRef]
45. Hartung M,, Kisters-Woike B . 1998. Cre mutants with altered DNA binding properties. J Biol Chem 273 : 2288422891.[PubMed] [CrossRef]
46. Wierzbicki A,, Kendall M,, Abremski K,, Hoess R . 1987. A mutational analysis of the bacteriophage P1 recombinase Cre. J Mol Biol 195 : 785794.[PubMed] [CrossRef]
47. Rüfer A,, Sauer B . 2002. Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res 30 : 27642771.[PubMed] [CrossRef]
48. Martin S,, Chu V,, Baldwin E . 2003. Modulation of the active complex assembly and turnover rate by protein-DNA interactions in Cre-loxP recombination. Biochemistry (Mosc) 42 : 68146826.[PubMed] [CrossRef]
49. Gelato K,, Martin S,, Wong S,, Baldwin E . 2006. Multiple levels of affinity-dependent DNA discrimination in Cre-loxP recombination. Biochemistry (Mosc.) 45 : 1221612226.[PubMed] [CrossRef]
50. Lee L,, Chu L,, Sadowski P . 2003. Cre induces an asymmetric DNA bend in its target loxP site. J Biol Chem 278 : 2311823129.[PubMed] [CrossRef]
51. Grainge I,, Pathania S,, Vologodskii A,, Harshey RM,, Jayaram M . 2002. Symmetric DNA Sites are Functionally Asymmetric Within Flp and Cre Site-specific DNA Recombination Synapses. J Mol Biol 320 : 515527.[PubMed] [CrossRef]
52. Hoess R,, Wierzbicki A,, Abremski K . 1987. Isolation and characterization of intermediates in site-specific recombination. Proc Natl Acad Sci USA 84 : 68406844.[PubMed] [CrossRef]
53. Ennifar E,, Meyer J,, Buchholz F,, Stewart A,, Suck D . 2003. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation. Nucleic Acids Res 31 : 54495460.[PubMed] [CrossRef]
54. Gelato K,, Martin S,, Baldwin E . 2005. Reversed DNA strand cleavage specificity in initiation of Cre-loxP recombination induced by the His289Ala active-site substitution. J Mol Biol 354 : 233245.[PubMed] [CrossRef]
55. Lee L,, Sadowski P . 2003. Sequence of the loxP site determines the order of strand exchange by the Cre recombinase. J Mol Biol 326 : 397412.[PubMed] [CrossRef]
56. Lee L,, Sadowski P . 2005. Strand selection by the tyrosine recombinases. Prog Nucleic Acid Res Mol Biol 80 : 142.[PubMed] [CrossRef]
57. Burgin A,, Nash H . 1995. Suicide substrates reveal properties of the homology-dependent steps during integrative recombination of bacteriophage lambda. Curr Biol 5 : 13121321.[PubMed] [CrossRef]
58. Ghosh K,, Lau C,, Gupta K,, Van Duyne G . 2005. Preferential synapsis of loxP sites drives ordered strand exchange in Cre-loxP site-specific recombination. Nat Chem Biol 1 : 275282.[PubMed] [CrossRef]
59. Pinkney JNM,, Zawadzki P,, Mazuryk J,, Arciszewska LK,, Sherratt DJ,, Kapanidis AN . 2012. Capturing reaction paths and intermediates in Cre-loxP recombination using single-molecule fluorescence. Proc Natl Acad Sci USA 109 : 2087120876.[PubMed] [CrossRef]
60. Krogh B,, Shuman S . 2000. Catalytic mechanism of DNA topoisomerase IB. Mol Cell 5 : 10351041.[PubMed] [CrossRef]
61. Abremski K,, Hoess R . 1992. Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng 5 : 8791.[PubMed] [CrossRef]
62. Lee L,, Sadowski P . 2003. Identification of Cre residues involved in synapsis, isomerization, and catalysis. J Biol Chem 278 : 3690536915.[PubMed] [CrossRef]
63. Shoura MJ,, Vetcher AA,, Giovan SM,, Bardai F,, Bharadwaj A,, Kesinger MR,, Levene SD . 2012. Measurements of DNA-loop formation via Cre-mediated recombination. Nucleic Acids Res 40 : 74527464.[PubMed] [CrossRef]
64. Fan H-F . 2012. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination. Nucleic Acids Res 40 : 62086222.[PubMed] [CrossRef]
65. Crisona NJ,, Weinberg RL,, Peter BJ,, Sumners DW,, Cozzarelli NR . 1999. The Topological Mechanism of Phage λ Integrase. J Mol Biol 289 : 747775.[PubMed] [CrossRef]
66. Vetcher AA,, Lushnikov AY,, Navarra-Madsen J,, Scharein RG,, Lyubchenko YL,, Darcy IK,, Levene SD . 2006. DNA topology and geometry in Flp and Cre recombination. J Mol Biol 357 : 10891104.[PubMed] [CrossRef]
67. Hoess R,, Wierzbicki A,, Abremski K . 1986. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res 14 : 22872300.[PubMed] [CrossRef]
68. Lee G,, Saito I . 1998. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216 : 5565.[CrossRef]
69. Sheren J,, Langer S,, Leinwand L . 2007. A randomized library approach to identifying functional lox site domains for the Cre recombinase. Nucleic Acids Res 35 : 54645473.[PubMed] [CrossRef]
70. Gopaul D,, Guo F,, Van Duyne G . 1998. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J 17 : 41754187.[PubMed] [CrossRef]
71. Nunes-Duby S,, Azaro M,, Landy A . 1995. Swapping DNA strands and sensing homology without branch migration in lambda site-specific recombination. Curr Biol 5 : 139148.[PubMed] [CrossRef]
72. Rajeev L,, Malanowska K,, Gardner JF . 2009. Challenging a Paradigm: the Role of DNA Homology in Tyrosine Recombinase Reactions. Microbiol Mol Biol Rev 73 : 300309.[PubMed] [CrossRef]
73. Sauer B . 1996. Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucleic Acids Res 24 : 46084613.[PubMed] [CrossRef]
74. Aranda M,, Kanellopoulou C,, Christ N,, Peitz M,, Rajewsky K,, Dröge P . 2001. Altered directionality in the cre-loxP site-specific recombination pathway. J Mol Biol 311 : 453459.[PubMed] [CrossRef]
75. Jung U-J,, Park S,, Lee G,, Shin H-J,, Kwon M-H . 2007. Analysis of spacer regions derived from intramolecular recombination between heterologous loxP sites. Biochem Biophys Res Commun 363 : 183189.[PubMed] [CrossRef]
76. Martin S,, Wachi S,, Baldwin E . 2003. Vanadate-based transition-state analog inhibitors of Cre-loxP recombination. Biochem Biophys Res Commun 308 : 529534.[PubMed] [CrossRef]
77. Krogh B,, Shuman S . 2002. Proton relay mechanism of general acid catalysis by DNA topoisomerase IB. J Biol Chem 277 : 57115714.[PubMed] [CrossRef]
78. Chen Y,, Rice PA . 2003. The Role of the Conserved Trp330 in Flp-mediated Recombination functional and structural analysis. J Biol Chem 278 : 2480024807.[PubMed] [CrossRef]
79. Ma C-H,, Kwiatek A,, Bolusani S,, Voziyanov Y,, Jayaram M . 2007. Unveiling hidden catalytic contributions of the conserved His/Trp-III in tyrosine recombinases: assembly of a novel active site in Flp recombinase harboring alanine at this position. J Mol Biol 368 : 183196.[PubMed] [CrossRef]
80. Ma C-H,, Kachroo AH,, Macieszak A,, Chen T-Y,, Guga P,, Jayaram M . 2009. Reactions of Cre with methylphosphonate DNA: similarities and contrasts with Flp and vaccinia topoisomerase. PLoS ONE 4 : e7248. [PubMed] [CrossRef]
81. Kachroo AH,, Ma C-H,, Rowley PA,, Maciaszek AD,, Guga P,, Jayaram M . 2010. Restoration of catalytic functions in Cre recombinase mutants by electrostatic compensation between active site and DNA substrate. Nucleic Acids Res 38 : 65896601.[PubMed] [CrossRef]
82. Buchholz F,, Stewart A . 2001. Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol 19 : 10471052.[PubMed] [CrossRef]
83. Santoro S,, Schultz P . 2002. Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci USA 99 : 41854190.[PubMed] [CrossRef]
84. Baldwin E,, Martin S,, Abel J,, Gelato K,, Kim H,, Schultz P,, Santoro S . 2003. A specificity switch in selected cre recombinase variants is mediated by macromolecular plasticity and water. Chem Biol 10 : 10851094.[PubMed] [CrossRef]
85. Sarkar I,, Hauber I,, Hauber J,, Buchholz F . 2007. HIV-1 proviral DNA excision using an evolved recombinase. Science 316 : 19121915.[PubMed] [CrossRef]
86. Saraf-Levy T,, Santoro SW,, Volpin H,, Kushnirsky T,, Eyal Y,, Schultz PG,, Gidoni D,, Carmi N . 2006. Site-specific recombination of asymmetric lox sites mediated by a heterotetrameric Cre recombinase complex. Bioorg Med Chem 14 : 30813089.[PubMed] [CrossRef]
87. Gelato K,, Martin S,, Liu P,, Saunders A,, Baldwin E . 2008. Spatially directed assembly of a heterotetrameric Cre-Lox synapse restricts recombination specificity. J Mol Biol 378 : 653665.[PubMed] [CrossRef]
88. Eroshenko N,, Church GM . 2013. Mutants of Cre recombinase with improved accuracy. Nat Commun 4 : 2509. [PubMed] [CrossRef]
89. Albert H,, Dale EC,, Lee E,, Ow DW . 1995. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7 : 649659.[PubMed] [CrossRef]
90. Thomson JG,, Rucker EB,, Piedrahita JA . 2003. Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. genesis 36 : 162167.[PubMed] [CrossRef]
91. Oberdoerffer P,, Otipoby KL,, Maruyama M,, Rajewsky K . 2003. Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res 31 : e140e140.[PubMed] [CrossRef]
92. Zhang Z,, Lutz B . 2002. Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res 30 : e90e90.[PubMed] [CrossRef]
93. Bouhassira EE,, Westerman K,, Leboulch P . 1997. Transcriptional Behavior of LCR Enhancer Elements Integrated at the Same Chromosomal Locus by Recombinase-Mediated Cassette Exchange. Blood 90 : 33323344.[PubMed]
94. Soukharev S,, Miller J,, Sauer B . 1999. Segmental genomic replacement in embryonic stem cells by double lox targeting. Nucleic Acids Res 27 : e21. [PubMed] [CrossRef]
95. Feng Y-Q,, Seibler J,, Alami R,, Eisen A,, Westerman KA,, Leboulch P,, Fiering S,, Bouhassira EE . 1999. Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol 292 : 779785.[PubMed] [CrossRef]
96. Schlake T,, Bode J . 1994. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry (Mosc) 33 : 1274612751.[CrossRef]
97. Turan S,, Galla M,, Ernst E,, Qiao J,, Voelkel C,, Schiedlmeier B,, Zehe C,, Bode J . 2011. Recombinase-Mediated Cassette Exchange (RMCE): Traditional Concepts and Current Challenges. J Mol Biol 407 : 193221.[PubMed] [CrossRef]
98. Araki K,, Araki M,, Yamamura K . 2002. Site-directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites. Nucleic Acids Res 30 : e103e103.[PubMed] [CrossRef]
99. Lauth M,, Spreafico F,, Dethleffsen K,, Meyer M . 2002. Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucleic Acids Res 30 : e115e115.[PubMed] [CrossRef]
100. Osterwalder M,, Galli A,, Rosen B,, Skarnes WC,, Zeller R,, Lopez-Rios J . 2010. Dual RMCE for efficient re-engineering of mouse mutant alleles. Nat Methods 7 : 893895.[PubMed] [CrossRef]
101. Kameyama Y,, Kawabe Y,, Ito A,, Kamihira M . 2010. An accumulative site-specific gene integration system using cre recombinase-mediated cassette exchange. Biotechnol Bioeng 105 : 11061114.[PubMed]
102. Obayashi H,, Kawabe Y,, Makitsubo H,, Watanabe R,, Kameyama Y,, Huang S,, Takenouchi Y,, Ito A,, Kamihira M . 2012. Accumulative gene integration into a pre-determined site using Cre/loxP . J Biosci Bioeng 113 : 381388.[PubMed] [CrossRef]
103. Heffner CS,, Herbert Pratt C,, Babiuk RP,, Sharma Y,, Rockwood SF,, Donahue LR,, Eppig JT,, Murray SA . 2012. Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat Commun 3 : 1218. [PubMed] [CrossRef]
104. Naiche LA,, Papaioannou VE . 2007. Cre activity causes widespread apoptosis and lethal anemia during embryonic development. genesis 45 : 768775.[PubMed] [CrossRef]
105. Jeannotte L,, Aubin J,, Bourque S,, Lemieux M,, Montaron S,, Provencher St-Pierre A . 2011. Unsuspected effects of a lung-specific cre deleter mouse line. genesis 49 : 152159.[PubMed] [CrossRef]
106. Lewis AE,, Vasudevan HN,, O’Neill AK,, Soriano P,, Bush JO . 2013. The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Dev Biol 379 : 229234.
107. Harno E,, Cottrell EC,, White A . 2013. Metabolic Pitfalls of CNS Cre-Based Technology. Cell Metab 18 : 2128.[PubMed] [CrossRef]
108. Janbandhu VC,, Moik D,, Fässler R . 2013. Cre recombinase induces DNA damage and tetraploidy in the absence of loxP sites. Cell Cycle 13 : 462470.[PubMed] [CrossRef]
109. Jullien N,, Sampieri F,, Enjalbert A,, Herman J-P . 2003. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res 31 : e131e131.[PubMed] [CrossRef]
110. Chen J,, Zheng XF,, Brown EJ,, Schreiber SL . 1995. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92 : 49474951.[PubMed] [CrossRef]
111. Jullien N,, Goddard I,, Selmi-Ruby S,, Fina J-L,, Cremer H,, Herman J-P . 2007. Conditional transgenesis using Dimerizable Cre (DiCre). PloS One 2 : e1355. [PubMed] [CrossRef]
112. Hirrlinger J,, Scheller A,, Hirrlinger PG,, Kellert B,, Tang W,, Wehr MC,, Goebbels S,, Reichenbach A,, Sprengel R,, Rossner MJ,, Kirchhoff F . 2009. Split-Cre Complementation Indicates Coincident Activity of Different Genes in vivo . PLoS ONE 4 : e4286. [PubMed] [CrossRef]
113. Casanova E,, Lemberger T,, Fehsenfeld S,, Mantamadiotis T,, Schütz G . 2003. α Complementation in the Cre recombinase enzyme. genesis 37 : 2529.[PubMed] [CrossRef]
114. Seidi A,, Mie M,, Kobatake E . 2007. Novel recombination system using Cre recombinase alpha complementation. Biotechnol Lett 29 : 13151322.[PubMed] [CrossRef]
115. Seidi A,, Mie M,, Kobatake E . 2009. Recombination system based on cre alpha complementation and leucine zipper fusions. Appl Biochem Biotechnol 158 : 334342.[PubMed] [CrossRef]
116. Sando R III,, Baumgaertel K,, Pieraut S,, Torabi-Rander N,, Wandless TJ,, Mayford M,, Maximov A . 2013. Inducible control of gene expression with destabilized Cre. Nat Methods 10 : 10851088.[PubMed] [CrossRef]
117. Iwamoto M,, Björklund T,, Lundberg C,, Kirik D,, Wandless TJ . 2010. A General Chemical Method to Regulate Protein Stability in the Mammalian Central Nervous System. Chem Biol 17 : 981988.[PubMed] [CrossRef]
118. Jo D,, Nashabi A,, Doxsee C,, Lin Q,, Unutmaz D,, Chen J,, Ruley HE . 2001. Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol 19 : 929933.[PubMed] [CrossRef]
119. Lin Y-Z,, Yao S,, Veach RA,, Torgerson TR,, Hawiger J . 1995. Inhibition of Nuclear Translocation of Transcription Factor NF-κB by a Synthetic Peptide Containing a Cell Membrane-permeable Motif and Nuclear Localization Sequence. J Biol Chem 270 : 1425514258.[CrossRef]
120. Will E,, Klump H,, Heffner N,, Schwieger M,, Schiedlmeier B,, Ostertag W,, Baum C,, Stocking C . 2002. Unmodified Cre recombinase crosses the membrane. Nucleic Acids Res 30 : e59e59.[PubMed] [CrossRef]
121. Peitz M,, Pfannkuche K,, Rajewsky K,, Edenhofer F . 2002. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: A tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci USA 99 : 44894494.[PubMed] [CrossRef]
122. Joshi SK,, Hashimoto K,, Koni PA . 2002. Induced DNA recombination by Cre recombinase protein transduction. genesis 33 : 4854.[PubMed] [CrossRef]
123. Nagahara H,, Vocero-Akbani AM,, Snyder EL,, Ho A,, Latham DG,, Lissy NA,, Becker-Hapak M,, Ezhevsky SA,, Dowdy SF . 1998. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4 : 14491452.[PubMed] [CrossRef]
124. Nolden L,, Edenhofer F,, Haupt S,, Koch P,, Wunderlich FT,, Siemen H,, Brüstle O . 2006. Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nat Methods 3 : 461467.[PubMed] [CrossRef]
125. Edwards WF,, Young DD,, Deiters A . 2009. Light-Activated Cre Recombinase as a Tool for the Spatial and Temporal Control of Gene Function in Mammalian Cells. ACS Chem Biol 4 : 441445.[PubMed] [CrossRef]

Tables

Generic image for table
Table 1

Selected Cre variants

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014
Generic image for table
Table 2

Selected variants

Citation: van Duyne G. 2015. Cre Recombinase, p 119-138. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0014-2014

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error