1887

Chapter 19 : The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap19-2.gif

Abstract:

The genus includes a diverse group of commensals that colonize mammals on the skin or mucous membranes. Some of the best-known members of this genus, such as and , are also opportunistic pathogens and are responsible for a tremendous burden on the health care system ( ). One of the reasons staphylococci are problematic is their well-known ability to attach to surfaces and develop into recalcitrant community structures, often referred to as “biofilms.” Generally, biofilms are defined as communities of cells encased within an exopolymeric matrix and attached to a surface, and they are recognized as being resistant to antimicrobial therapy and host defenses ( ).

Citation: Paharik A, Horswill A. 2016. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response, p 529-566. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0022-2015
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The biofilm life cycle. Recent studies have identified steps present in early stages of biofilm formation. After attachment, bacteria form a lawn of growth, which undergoes an exodus period that leaves several small foci of cells. The exodus phase is mediated by the SaeRS system via nuclease enzyme activity. The foci of cells then develop into a mature biofilm containing tower structures. Final dispersal is mediated by the system via secreted enzymes and phenol-soluble modulins.

Citation: Paharik A, Horswill A. 2016. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response, p 529-566. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0022-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Cell wall–anchored adhesins. All the cell wall–anchored adhesins contain an N-terminal signal sequence (SS) and a C-terminal portion that is cleaved by sortase A at the LPXTG sequence. MSCRAMMs contain three IgG-like folds (N1, N2, and N3) followed by specific ligand-binding domains. In the Sdr protein subfamily, a variable number of B repeats is found between the IgG-like folds and the SD repeat region. SdrC is shown, which contains two of these B repeats. Similarly, the Isd proteins contain one, two, or three NEAT motifs. IsdA is shown, which has one. In SpA, there are four or five IgG-binding domains, sometimes referred to as domains E, D, A, C, and B. There follows a region containing a variable number of tandem repeats.

Citation: Paharik A, Horswill A. 2016. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response, p 529-566. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0022-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Regulatory networks in biofilm formation. The quorum-sensing system induces expression of secreted staphopain proteases by inhibiting translation of Rot (repressor of toxins), a negative regulator of the proteases. These proteases then degrade proteins on the staphylococcal surface and in the biofilm matrix. The SaeRS system induces production of the nuclease enzyme that cleaves eDNA in the matrix. Sigma factor B (SigB) inhibits expression, while SarA has been shown to directly enhance it.

Citation: Paharik A, Horswill A. 2016. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response, p 529-566. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0022-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Macrophage activation pathways. Biofilm growth of has been shown to favor the M2 phenotype in macrophages, which is characterized by increased arginase and profibrotic activity, as well as decreased antimicrobial clearance. These changes are thought to contribute to the persistence of staphylococci in biofilm infections. This figure is reproduced from reference .

Citation: Paharik A, Horswill A. 2016. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response, p 529-566. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0022-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819286.chap19
1. Becker K,, Heilmann C,, Peters G . 2014. Coagulase-negative staphylococci. Clin Microbiol Rev 27 : 870926.[PubMed] [CrossRef]
2. Lowy FD . 1998. Staphylococcus aureus infections. N Engl J Med 339 : 520532.[PubMed] [CrossRef]
3. Kiedrowski MR,, Horswill AR . 2011. New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci 1241 : 104121.[PubMed] [CrossRef]
4. Costerton JW,, Cheng KJ,, Geesey GG,, Ladd TI,, Nickel JC,, Dasgupta M,, Marrie TJ . 1987. Bacterial biofilms in nature and disease. Annu Rev Microbiol 41 : 435464.[PubMed] [CrossRef]
5. Davies D . 2003. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2 : 114122.[PubMed] [CrossRef]
6. del Pozo JL,, Patel R . 2007. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82 : 204209.[PubMed] [CrossRef]
7. Jacqueline C,, Caillon J . 2014. Impact of bacterial biofilm on the treatment of prosthetic joint infections. J Antimicrob Chemother 69(Suppl 1): i37i40.[PubMed] [CrossRef]
8. Sievert DM,, Ricks P,, Edwards JR,, Schneider A,, Patel J,, Srinivasan A,, Kallen A,, Limbago B,, Fridkin S . 2013. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 34 : 114.[PubMed] [CrossRef]
9. Secor PR,, Jennings LK,, James GA,, Kirker KR,, Pulcini ED,, McInnerney K,, Gerlach R,, Livinghouse T,, Hilmer JK,, Bothner B,, Fleckman P,, Olerud JE,, Stewart PS . 2012. Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression. PloS One 7 : e40973. doi:10.1371/journal.pone.0040973. [CrossRef]
10. Zimmerli W,, Trampuz A,, Ochsner PE . 2004. Prosthetic-joint infections. N Engl J Med 351 : 16451654.[PubMed] [CrossRef]
11. Parsek MR,, Singh PK . 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57 : 677701.[PubMed] [CrossRef]
12. Brady RA,, Leid JG,, Calhoun JH,, Costerton JW,, Shirtliff ME . 2008. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52 : 1322.[PubMed] [CrossRef]
13. Percival SL,, Emanuel C,, Cutting KF,, Williams DW . 2012. Microbiology of the skin and the role of biofilms in infection. Int Wound J 9 : 1432.[PubMed] [CrossRef]
14. Iwase T,, Uehara Y,, Shinji H,, Tajima A,, Seo H,, Takada K,, Agata T,, Mizunoe Y . 2010. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465 : 346349.[PubMed] [CrossRef]
15. Goss CH,, Muhlebach MS . 2011. Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cystic Fibrosis 10 : 298306.[PubMed] [CrossRef]
16. Trautner BW,, Darouiche RO . 2004. Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32 : 177183.[PubMed] [CrossRef]
17. Cheng AG,, DeDent AC,, Schneewind O,, Missiakas D . 2011. A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol 19 : 225232.[PubMed] [CrossRef]
18. Kobayashi SD,, Malachowa N,, Whitney AR,, Braughton KR,, Gardner DJ,, Long D,, Bubeck Wardenburg J,, Schneewind O,, Otto M,, Deleo FR . 2011. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis 204 : 937941.[PubMed] [CrossRef]
19. Salgado-Pabon W,, Breshears L,, Spaulding AR,, Merriman JA,, Stach CS,, Horswill AR,, Peterson ML,, Schlievert PM . 2013. Superantigens are critical for Staphylococcus aureus infective endocarditis, sepsis, and acute kidney injury. mBio 4 : e00494-13. doi:10.1128/mBio.00494-13. [CrossRef]
20. Nowakowska J,, Landmann R,, Khanna N . 2014. Foreign body infection models to study host-pathogen response and antimicrobial tolerance of bacterial biofilm. Antibiotics 3 : 378397.[CrossRef]
21. Cheung AL,, Eberhardt KJ,, Chung E,, Yeaman MR,, Sullam PM,, Ramos M,, Bayer AS . 1994. Diminished virulence of a sar-/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. J Clin Invest 94 : 18151822.[PubMed] [CrossRef]
22. Gillaspy AF,, Hickmon SG,, Skinner RA,, Thomas JR,, Nelson CL,, Smeltzer MS . 1995. Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immuny 63 : 33733380.[PubMed]
23. Periasamy S,, Joo HS,, Duong AC,, Bach TH,, Tan VY,, Chatterjee SS,, Cheung GY,, Otto M . 2012. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci USA 109 : 12811286.[PubMed] [CrossRef]
24. Vuong C,, Kocianova S,, Yao Y,, Carmody AB,, Otto M . 2004. Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo . J Infect Dis 190 : 14981505.[PubMed] [CrossRef]
25. Lister JL,, Horswill AR . 2014. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4 : 178. [PubMed] [CrossRef]
26. Kaplan JB . 2010. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89 : 205218.[PubMed] [CrossRef]
27. Boles BR,, Horswill AR . 2011. Staphylococcal biofilm disassembly. Trends Microbiol 19 : 449455.[PubMed] [CrossRef]
28. Moormeier DE,, Bose JL,, Horswill AR,, Bayles KW . 2014. Temporal and stochastic control of Staphylococcus aureus biofilm development. mBio 5 : e01341-14. doi:10.1128/mBio.01341-14. [PubMed] [CrossRef]
29. Hobley L,, Harkins C,, MacPhee CE,, Stanley-Wall NR . 2015. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39 : 649669.[PubMed] [CrossRef]
30. Montanaro L,, Poggi A,, Visai L,, Ravaioli S,, Campoccia D,, Speziale P,, Arciola CR . 2011. Extracellular DNA in biofilms. Int J Artif Organs 34 : 824831.[PubMed] [CrossRef]
31. Mann EE,, Rice KC,, Boles BR,, Endres JL,, Ranjit D,, Chandramohan L,, Tsang LH,, Smeltzer MS,, Horswill AR,, Bayles KW . 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PloS One 4 : e5822. doi:10.1371/journal.pone.0005822. [CrossRef]
32. Speziale P,, Pietrocola G,, Foster TJ,, Geoghegan JA . 2014. Protein-based biofilm matrices in staphylococci. Front Cell Infect Microbiol 4 : 171. [PubMed] [CrossRef]
33. Foulston L,, Elsholz AK,, DeFrancesco AS,, Losick R . 2014. The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. mBio 5 : e01667-14. doi:10.1128/mBio.01667-14. [CrossRef]
34. Otto M . 2013. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64 : 175188.[PubMed] [CrossRef]
35. Jabbouri S,, Sadovskaya I . 2010. Characteristics of the biofilm matrix and its role as a possible target for the detection and eradication of Staphylococcus epidermidis associated with medical implant infections. FEMS Immunol Med Microbiol 59 : 280291.[PubMed] [CrossRef]
36. Heilmann C . 2011. Adhesion mechanisms of staphylococci. Adv Exp Med Biol 715 : 105123.[PubMed] [CrossRef]
37. Becker S,, Frankel MB,, Schneewind O,, Missiakas D . 2014. Release of protein A from the cell wall of Staphylococcus aureus . Proc Natl Acad Sci USA 111 : 15741579.[PubMed] [CrossRef]
38. Bowden MG,, Chen W,, Singvall J,, Xu Y,, Peacock SJ,, Valtulina V,, Speziale P,, Hook M . 2005. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis . Microbiology 151 : 14531464.[PubMed] [CrossRef]
39. Heilbronner S,, Holden MT,, van Tonder A,, Geoghegan JA,, Foster TJ,, Parkhill J,, Bentley SD . 2011. Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. FEMS Microbiol Lett 322 : 6067.[PubMed] [CrossRef]
40. Foster TJ,, Geoghegan JA,, Ganesh VK,, Hook M . 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus . Nat Rev Microbiol 12 : 4962.[PubMed] [CrossRef]
41. Mazmanian SK,, Liu G,, Ton-That H,, Schneewind O . 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285 : 760763.[PubMed] [CrossRef]
42. Patti JM,, Allen BL,, McGavin MJ,, Hook M . 1994. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48 : 585617.[PubMed] [CrossRef]
43. Cardile AP,, Sanchez CJ Jr,, Samberg ME,, Romano DR,, Hardy SK,, Wenke JC,, Murray CK,, Akers KS . 2014. Human plasma enhances the expression of staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance in vitro . BMC Res Notes 7 : 457. [PubMed] [CrossRef]
44. Otto M . 2004. Virulence factors of the coagulase-negative staphylococci. Front Biosci 9 : 841863.[PubMed] [CrossRef]
45. Resch A,, Rosenstein R,, Nerz C,, Gotz F . 2005. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71 : 26632676.[PubMed] [CrossRef]
46. Xue T,, You Y,, Shang F,, Sun B . 2012. Rot and Agr system modulate fibrinogen-binding ability mainly by regulating clfB expression in Staphylococcus aureus NCTC8325. Med Microbiol Immunol 201 : 8192.[PubMed] [CrossRef]
47. Hartford O,, Francois P,, Vaudaux P,, Foster TJ . 1997. The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol Microbiol 25 : 10651076.[PubMed] [CrossRef]
48. Ni Eidhin D,, Perkins S,, Francois P,, Vaudaux P,, Hook M,, Foster TJ . 1998. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus . Mol Microbiol 30 : 245257.[PubMed] [CrossRef]
49. McDevitt D,, Francois P,, Vaudaux P,, Foster TJ . 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus . Mol Microbiol 11 : 237248.[PubMed] [CrossRef]
50. McDevitt D,, Nanavaty T,, House-Pompeo K,, Bell E,, Turner N,, McIntire L,, Foster T,, Hook M . 1997. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur J Biochem 247 : 416424.[PubMed] [CrossRef]
51. Ganesh VK,, Rivera JJ,, Smeds E,, Ko YP,, Bowden MG,, Wann ER,, Gurusiddappa S,, Fitzgerald JR,, Hook M . 2008. A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog 4 : e1000226. doi:10.1586/erd.11.36. [CrossRef]
52. Liu CZ,, Shih MH,, Tsai PJ . 2005. ClfA(221-550), a fibrinogen-binding segment of Staphylococcus aureus clumping factor A, disrupts fibrinogen function. Thromb Haemost 94 : 286294.[PubMed]
53. Liu CZ,, Huang TF,, Tsai PJ,, Tsai PJ,, Chang LY,, Chang MC . 2007. A segment of Staphylococcus aureus clumping factor A with fibrinogen-binding activity (ClfA221-550) inhibits platelet-plug formation in mice. Thromb Res 121 : 183191.[PubMed] [CrossRef]
54. Flick MJ,, Du X,, Prasad JM,, Raghu H,, Palumbo JS,, Smeds E,, Hook M,, Degen JL . 2013. Genetic elimination of the binding motif on fibrinogen for the S. aureus virulence factor ClfA improves host survival in septicemia. Blood 121 : 17831794.[PubMed] [CrossRef]
55. Moreillon P,, Entenza JM,, Francioli P,, McDevitt D,, Foster TJ,, Francois P,, Vaudaux P . 1995. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 63 : 47384743.[PubMed]
56. Cheng AG,, Kim HK,, Burts ML,, Krausz T,, Schneewind O,, Missiakas DM . 2009. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 23 : 33933404.[PubMed] [CrossRef]
57. Nilsson M,, Frykberg L,, Flock JI,, Pei L,, Lindberg M,, Guss B . 1998. A fibrinogen-binding protein of Staphylococcus epidermidis . Infect Immun 66 : 26662673.[PubMed]
58. Pei L,, Palma M,, Nilsson M,, Guss B,, Flock JI . 1999. Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis . Infect Immun 67 : 45254530.[PubMed]
59. Ponnuraj K,, Bowden MG,, Davis S,, Gurusiddappa S,, Moore D,, Choe D,, Xu Y,, Hook M,, Narayana SV . 2003. A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115 : 217228.[PubMed] [CrossRef]
60. Bowden MG,, Heuck AP,, Ponnuraj K,, Kolosova E,, Choe D,, Gurusiddappa S,, Narayana SV,, Johnson AE,, Hook M . 2008. Evidence for the “dock, lock, and latch” ligand binding mechanism of the staphylococcal microbial surface component recognizing adhesive matrix molecules (MSCRAMM) SdrG. J Biol Chem 283 : 638647.[PubMed] [CrossRef]
61. Pei L,, Flock JI . 2001. Lack of fbe, the gene for a fibrinogen-binding protein from Staphylococcus epidermidis, reduces its adherence to fibrinogen coated surfaces. Microb Pathog 31 : 185193.[PubMed] [CrossRef]
62. Hartford O,, O’Brien L,, Schofield K,, Wells J,, Foster TJ . 2001. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 147 : 25452552.[PubMed] [CrossRef]
63. Brennan MP,, Loughman A,, Devocelle M,, Arasu S,, Chubb AJ,, Foster TJ,, Cox D . 2009. Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation. J Thromb Haemost 7 : 13641372.[PubMed] [CrossRef]
64. Guo B,, Zhao X,, Shi Y,, Zhu D,, Zhang Y . 2007. Pathogenic implication of a fibrinogen-binding protein of Staphylococcus epidermidis in a rat model of intravascular-catheter-associated infection. Infect Immun 75 : 29912995.[PubMed] [CrossRef]
65. Nilsson M,, Bjerketorp J,, Guss B,, Frykberg L . 2004. A fibrinogen-binding protein of Staphylococcus lugdunensis . FEMS Microbiol Lett 241 : 8793.[PubMed] [CrossRef]
66. Mitchell J,, Tristan A,, Foster TJ . 2004. Characterization of the fibrinogen-binding surface protein Fbl of Staphylococcus lugdunensis . Microbiology 150 : 38313841.[PubMed] [CrossRef]
67. Geoghegan JA,, Ganesh VK,, Smeds E,, Liang X,, Hook M,, Foster TJ . 2010. Molecular characterization of the interaction of staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMM) ClfA and Fbl with fibrinogen. J Biol Chem 285 : 62086216.[PubMed] [CrossRef]
68. Pereira EM,, Oliveira FL,, Schuenck RP,, Zoletti GO,, Dos Santos KR . 2010. Detection of Staphylococcus lugdunensis by a new species-specific PCR based on the fbl gene. FEMS Immunol Med Microbiol 58 : 295298.[PubMed] [CrossRef]
69. Chatzigeorgiou KS,, Siafakas N,, Petinaki E,, Zerva L . 2010. fbl gene as a species-specific target for Staphylococcus lugdunensis identification. J Clin Lab Anal 24 : 119122.[PubMed] [CrossRef]
70. Ganesh VK,, Barbu EM,, Deivanayagam CC,, Le B,, Anderson AS,, Matsuka YV,, Lin SL,, Foster TJ,, Narayana SV,, Hook M . 2011. Structural and biochemical characterization of Staphylococcus aureus clumping factor B/ligand interactions. J Biol Chem 286 : 2596325972.[PubMed] [CrossRef]
71. McAleese FM,, Walsh EJ,, Sieprawska M,, Potempa J,, Foster TJ . 2001. Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276 : 2996929978.[PubMed] [CrossRef]
72. Perkins S,, Walsh EJ,, Deivanayagam CC,, Narayana SV,, Foster TJ,, Hook M . 2001. Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus . J Biol Chem 276 : 4472144728.[PubMed] [CrossRef]
73. Abraham NM,, Jefferson KK . 2012. Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. Microbiology 158 : 15041512.[PubMed] [CrossRef]
74. Entenza JM,, Foster TJ,, Ni Eidhin D,, Vaudaux P,, Francioli P,, Moreillon P . 2000. Contribution of clumping factor B to pathogenesis of experimental endocarditis due to Staphylococcus aureus . Infect Immun 68 : 54435446.[PubMed] [CrossRef]
75. O’Brien LM,, Walsh EJ,, Massey RC,, Peacock SJ,, Foster TJ . 2002. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol 4 : 759770.[PubMed] [CrossRef]
76. Walsh EJ,, O’Brien LM,, Liang X,, Hook M,, Foster TJ . 2004. Clumping factor B, a fibrinogen-binding MSCRAMM (microbial surface components recognizing adhesive matrix molecules) adhesin of Staphylococcus aureus, also binds to the tail region of type I cytokeratin 10. J Biol Chem 279 : 5069150699.[PubMed] [CrossRef]
77. Haim M,, Trost A,, Maier CJ,, Achatz G,, Feichtner S,, Hintner H,, Bauer JW,, Onder K . 2010. Cytokeratin 8 interacts with clumping factor B: a new possible virulence factor target. Microbiology 156 : 37103721.[PubMed] [CrossRef]
78. Mulcahy ME,, Geoghegan JA,, Monk IR,, O’Keeffe KM,, Walsh EJ,, Foster TJ,, McLoughlin RM . 2012. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog 8 : e1003092. doi:10.1371/journal.ppat.1003092. [CrossRef]
79. Wertheim HF,, Walsh E,, Choudhurry R,, Melles DC,, Boelens HA,, Miajlovic H,, Verbrugh HA,, Foster T,, van Belkum A . 2008. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med 5 : e17. [PubMed] [CrossRef]
80. Josefsson E,, McCrea KW,, Ni Eidhin D,, O’Connell D,, Cox J,, Hook M,, Foster TJ . 1998. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus . Microbiology 144 : 33873395.[PubMed] [CrossRef]
81. Barbu EM,, Ganesh VK,, Gurusiddappa S,, Mackenzie RC,, Foster TJ,, Sudhof TC,, Hook M . 2010. beta-Neurexin is a ligand for the Staphylococcus aureus MSCRAMM SdrC. PLoS Pathog 6 : e1000726. doi:10.1371/journal.ppat.1000726. [PubMed] [CrossRef]
82. Barbu EM,, Mackenzie C,, Foster TJ,, Hook M . 2014. SdrC induces staphylococcal biofilm formation through a homophilic interaction. Mol Microbiol 94 : 172185.[PubMed] [CrossRef]
83. Josefsson E,, O’Connell D,, Foster TJ,, Durussel I,, Cox JA . 1998. The binding of calcium to the B-repeat segment of SdrD, a cell surface protein of Staphylococcus aureus . J Biol Chem 273 : 3114531152.[PubMed] [CrossRef]
84. Corrigan RM,, Miajlovic H,, Foster TJ . 2009. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9 : 22. [PubMed] [CrossRef]
85. O’Brien L,, Kerrigan SW,, Kaw G,, Hogan M,, Penades J,, Litt D,, Fitzgerald DJ,, Foster TJ,, Cox D . 2002. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol Microbiol 44 : 10331044.[PubMed] [CrossRef]
86. Sharp JA,, Echague CG,, Hair PS,, Ward MD,, Nyalwidhe JO,, Geoghegan JA,, Foster TJ,, Cunnion KM . 2012. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PloS One 7 : e38407. doi:10.1371/journal.pone.0038407. [CrossRef]
87. Hair PS,, Foley CK,, Krishna NK,, Nyalwidhe JO,, Geoghegan JA,, Foster TJ,, Cunnion KM . 2013. Complement regulator C4BP binds to Staphylococcus aureus surface proteins SdrE and Bbp inhibiting bacterial opsonization and killing. Results Immunol 3 : 114121.[PubMed] [CrossRef]
88. Arrecubieta C,, Lee MH,, Macey A,, Foster TJ,, Lowy FD . 2007. SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. J Biol Chem 282 : 1876718776.[PubMed] [CrossRef]
89. Arrecubieta C,, Toba FA,, von Bayern M,, Akashi H,, Deng MC,, Naka Y,, Lowy FD . 2009. SdrF, a Staphylococcus epidermidis surface protein, contributes to the initiation of ventricular assist device driveline-related infections. PLoS Pathog 5 : e1000411. doi:10.1371/journal.ppat.1000411. [CrossRef]
90. Toba FA,, Visai L,, Trivedi S,, Lowy FD . 2013. The role of ionic interactions in the adherence of the Staphylococcus epidermidis adhesin SdrF to prosthetic material. FEMS Microbiol Lett 338 : 2430.[PubMed] [CrossRef]
91. McCrea KW,, Hartford O,, Davis S,, Eidhin DN,, Lina G,, Speziale P,, Foster TJ,, Hook M . 2000. The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis . Microbiology 146 : 15351546.[PubMed] [CrossRef]
92. Liu Y,, Ames B,, Gorovits E,, Prater BD,, Syribeys P,, Vernachio JH,, Patti JM . 2004. SdrX, a serine-aspartate repeat protein expressed by Staphylococcus capitis with collagen VI binding activity. Infect Immun 72 : 62376244.[PubMed] [CrossRef]
93. Sakinc T,, Kleine B,, Gatermann SG . 2006. SdrI, a serine-aspartate repeat protein identified in Staphylococcus saprophyticus strain 7108, is a collagen-binding protein. Infect Immun 74 : 46154623.[PubMed] [CrossRef]
94. Sakinc T,, Kleine B,, Michalski N,, Kaase M,, Gatermann SG . 2009. SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site. FEMS Microbiol Lett 301 : 2834.[PubMed] [CrossRef]
95. Kleine B,, Ali L,, Wobser D,, Sakiotanc T . 2015. The N-terminal repeat and the ligand binding domain A of SdrI protein is involved in hydrophobicity of S. saprophyticus . Microbiol Res 172 : 8894.[PubMed] [CrossRef]
96. Kline KA,, Ingersoll MA,, Nielsen HV,, Sakinc T,, Henriques-Normark B,, Gatermann S,, Caparon MG,, Hultgren SJ . 2010. Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect Immun 78 : 19431951.[PubMed] [CrossRef]
97. Ryden C,, Yacoub AI,, Maxe I,, Heinegard D,, Oldberg A,, Franzen A,, Ljungh A,, Rubin K . 1989. Specific binding of bone sialoprotein to Staphylococcus aureus isolated from patients with osteomyelitis. Eur J Biochem 184 : 331336.[PubMed] [CrossRef]
98. Yacoub A,, Lindahl P,, Rubin K,, Wendel M,, Heinegard D,, Ryden C . 1994. Purification of a bone sialoprotein-binding protein from Staphylococcus aureus . Eur J Biochem 222 : 919925.[PubMed] [CrossRef]
99. Tung H,, Guss B,, Hellman U,, Persson L,, Rubin K,, Ryden C . 2000. A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family. Biochem J 345 : 611619.[PubMed] [CrossRef]
100. Aamot HV,, Blomfeldt A,, Skramm I,, Muller F,, Monecke S . 2012. Molecular characterisation of methicillin-sensitive Staphylococcus aureus from deep surgical site infections in orthopaedic patients. Eur J Clin Microbiol Infect Dis 31 : 19992004.[PubMed] [CrossRef]
101. Wisniewska K,, Piorkowska A,, Kasprzyk J,, Bronk M,, Swiec K . 2014. Clonal distribution of bone sialoprotein-binding protein gene among Staphylococcus aureus isolates associated with bloodstream infections. Folia Microbiol (Praha) 59 : 465471.[PubMed] [CrossRef]
102. Persson L,, Johansson C,, Ryden C . 2009. Antibodies to Staphylococcus aureus bone sialoprotein-binding protein indicate infectious osteomyelitis. Clin Vaccine Immunol 16 : 949952.[PubMed] [CrossRef]
103. Jonsson K,, Signas C,, Muller HP,, Lindberg M . 1991. Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene. Eur J Biochem 202 : 10411048.[PubMed] [CrossRef]
104. Roche FM,, Downer R,, Keane F,, Speziale P,, Park PW,, Foster TJ . 2004. The N-terminal A domain of fibronectin-binding proteins A and B promotes adhesion of Staphylococcus aureus to elastin. J Biol Chem 279 : 3843338440.[PubMed] [CrossRef]
105. Keane FM,, Loughman A,, Valtulina V,, Brennan M,, Speziale P,, Foster TJ . 2007. Fibrinogen and elastin bind to the same region within the A domain of fibronectin binding protein A, an MSCRAMM of Staphylococcus aureus . Mol Microbiol 63 : 711723.[PubMed] [CrossRef]
106. Schwarz-Linek U,, Werner JM,, Pickford AR,, Gurusiddappa S,, Kim JH,, Pilka ES,, Briggs JA,, Gough TS,, Hook M,, Campbell ID,, Potts JR . 2003. Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423 : 177181.[PubMed] [CrossRef]
107. Peacock SJ,, Foster TJ,, Cameron BJ,, Berendt AR . 1999. Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145 : 34773486.[PubMed] [CrossRef]
108. Sinha B,, Francois PP,, Nusse O,, Foti M,, Hartford OM,, Vaudaux P,, Foster TJ,, Lew DP,, Herrmann M,, Krause KH . 1999. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol 1 : 101117.[PubMed] [CrossRef]
109. Edwards AM,, Potter U,, Meenan NA,, Potts JR,, Massey RC . 2011. Staphylococcus aureus keratinocyte invasion is dependent upon multiple high-affinity fibronectin-binding repeats within FnBPA. PloS One 6 : e18899. doi:10.1371/journal.pone.0018899. [CrossRef]
110. McCourt J,, O’Halloran DP,, McCarthy H,, O’Gara JP,, Geoghegan JA . 2014. Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett 353 : 157164.[PubMed] [CrossRef]
111. Geoghegan JA,, Monk IR,, O’Gara JP,, Foster TJ . 2013. Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J Bacteriol 195 : 26752683.[PubMed] [CrossRef]
112. Herman-Bausier P,, El-Kirat-Chatel S,, Foster TJ,, Geoghegan JA,, Dufrene YF . 2015. Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. mBio 6 : e00413-15. doi:10.1128/mBio.00413-15. [CrossRef]
113. Menzies BE . 2003. The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. Curr Opin Infect Dis 16 : 225229.[PubMed] [CrossRef]
114. Patti JM,, Boles JO,, Hook M . 1993. Identification and biochemical characterization of the ligand binding domain of the collagen adhesin from Staphylococcus aureus . Biochemistry 32 : 1142811435.[PubMed] [CrossRef]
115. Zong Y,, Xu Y,, Liang X,, Keene DR,, Hook A,, Gurusiddappa S,, Hook M,, Narayana SV . 2005. A ‘collagen hug’ model for Staphylococcus aureus CNA binding to collagen. EMBO J 24 : 42244236.[PubMed] [CrossRef]
116. Kang M,, Ko YP,, Liang X,, Ross CL,, Liu Q,, Murray BE,, Hook M . 2013. Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of Gram-positive bacteria inhibit complement activation via the classical pathway. J Biol Chem 288 : 2052020531.[PubMed] [CrossRef]
117. Rhem MN,, Lech EM,, Patti JM,, McDevitt D,, Hook M,, Jones DB,, Wilhelmus KR . 2000. The collagen-binding adhesin is a virulence factor in Staphylococcus aureus keratitis. Infect Immun 68 : 37763779.[PubMed] [CrossRef]
118. Elasri MO,, Thomas JR,, Skinner RA,, Blevins JS,, Beenken KE,, Nelson CL,, Smeltzer MS . 2002. Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis. Bone 30 : 275280.[PubMed] [CrossRef]
119. Xu Y,, Rivas JM,, Brown EL,, Liang X,, Hook M . 2004. Virulence potential of the staphylococcal adhesin CNA in experimental arthritis is determined by its affinity for collagen. J Infect Dis 189 : 23232333.[PubMed] [CrossRef]
120. Hienz SA,, Schennings T,, Heimdahl A,, Flock JI . 1996. Collagen binding of Staphylococcus aureus is a virulence factor in experimental endocarditis. J Infect Dis 174 : 8388.[PubMed] [CrossRef]
121. Bowden MG,, Visai L,, Longshaw CM,, Holland KT,, Speziale P,, Hook M . 2002. Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem 277 : 4301743023.[PubMed] [CrossRef]
122. Hammer ND,, Skaar EP . 2011. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 65 : 129147.[PubMed] [CrossRef]
123. Pluym M,, Muryoi N,, Heinrichs DE,, Stillman MJ . 2008. Heme binding in the NEAT domains of IsdA and IsdC of Staphylococcus aureus . J Inorg Biochem 102 : 480488.[PubMed] [CrossRef]
124. Clarke SR,, Mohamed R,, Bian L,, Routh AF,, Kokai-Kun JF,, Mond JJ,, Tarkowski A,, Foster SJ . 2007. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1 : 199212.[PubMed] [CrossRef]
125. Clarke SR,, Wiltshire MD,, Foster SJ . 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol Microbiol 51 : 15091519.[PubMed] [CrossRef]
126. Pishchany G,, Dickey SE,, Skaar EP . 2009. Subcellular localization of the Staphylococcus aureus heme iron transport components IsdA and IsdB. Infect Immun 77 : 26242634.[PubMed] [CrossRef]
127. Missineo A,, Di Poto A,, Geoghegan JA,, Rindi S,, Heilbronner S,, Gianotti V,, Arciola CR,, Foster TJ,, Speziale P,, Pietrocola G . 2014. IsdC from Staphylococcus lugdunensis induces biofilm formation under low-iron growth conditions. Infect Immun 82 : 24482459.[PubMed] [CrossRef]
128. Shopsin B,, Gomez M,, Montgomery SO,, Smith DH,, Waddington M,, Dodge DE,, Bost DA,, Riehman M,, Naidich S,, Kreiswirth BN . 1999. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37 : 35563563.[PubMed]
129. Moks T,, Abrahmsen L,, Nilsson B,, Hellman U,, Sjoquist J,, Uhlen M . 1986. Staphylococcal protein A consists of five IgG-binding domains. Eur J Biochem 156 : 637643.[PubMed] [CrossRef]
130. Falugi F,, Kim HK,, Missiakas DM,, Schneewind O . 2013. Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus . mBio 4 : e00575-13. doi:10.1128/mBio.00575-13. [PubMed] [CrossRef]
131. Merino N,, Toledo-Arana A,, Vergara-Irigaray M,, Valle J,, Solano C,, Calvo E,, Lopez JA,, Foster TJ,, Penades JR,, Lasa I . 2009. Protein A-mediated multicellular behavior in Staphylococcus aureus . J Bacteriol 191 : 832843.[PubMed] [CrossRef]
132. O’Halloran DP,, Wynne K,, Geoghegan JA . 2015. Protein A is released into the Staphylococcus aureus culture supernatant with an unprocessed sorting signal. Infect Immun 83 : 15981609.[PubMed] [CrossRef]
133. Conrady DG,, Wilson JJ,, Herr AB . 2013. Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci USA 110 : E202E211.[PubMed] [CrossRef]
134. Schaeffer CR,, Woods KM,, Longo GM,, Kiedrowski MR,, Paharik AE,, Buttner H,, Christner M,, Boissy RJ,, Horswill AR,, Rohde H,, Fey PD . 2015. Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect Immun 83 : 214226.[PubMed] [CrossRef]
135. Conlon BP,, Geoghegan JA,, Waters EM,, McCarthy H,, Rowe SE,, Davies JR,, Schaeffer CR,, Foster TJ,, Fey PD,, O’Gara JP . 2014. Role for the A domain of unprocessed accumulation-associated protein (Aap) in the attachment phase of the Staphylococcus epidermidis biofilm phenotype. J Bacteriol 196 : 42684275.[PubMed] [CrossRef]
136. Macintosh RL,, Brittan JL,, Bhattacharya R,, Jenkinson HF,, Derrick J,, Upton M,, Handley PS . 2009. The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J Bacteriol 191 : 70077016.[PubMed] [CrossRef]
137. Roche FM,, Meehan M,, Foster TJ . 2003. The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149 : 27592767.[PubMed] [CrossRef]
138. Conrady DG,, Brescia CC,, Horii K,, Weiss AA,, Hassett DJ,, Herr AB . 2008. A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci USA 105 : 1945619461.[PubMed] [CrossRef]
139. Rohde H,, Burdelski C,, Bartscht K,, Hussain M,, Buck F,, Horstkotte MA,, Knobloch JK,, Heilmann C,, Herrmann M,, Mack D . 2005. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55 : 18831895.[PubMed] [CrossRef]
140. Decker R,, Burdelski C,, Zobiak M,, Buttner H,, Franke G,, Christner M,, Sass K,, Zobiak B,, Henke HA,, Horswill AR,, Bischoff M,, Bur S,, Hartmann T,, Schaeffer CR,, Fey PD,, Rohde H . 2015. An 18 kDa scaffold protein is critical for Staphylococcus epidermidis biofilm formation. PLoS Pathog 11 : e1004735. doi:10.1371/journal.ppat.1004735. [CrossRef]
141. Cucarella C,, Solano C,, Valle J,, Amorena B,, Lasa I,, Penades JR . 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183 : 28882896.[PubMed] [CrossRef]
142. Tormo MA,, Knecht E,, Gotz F,, Lasa I,, Penades JR . 2005. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151 : 24652475.[PubMed] [CrossRef]
143. Valle J,, Latasa C,, Gil C,, Toledo-Arana A,, Solano C,, Penades JR,, Lasa I . 2012. Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog 8 : e1002843. doi:10.1371/journal.ppat.1002843. [CrossRef]
144. Bensing BA,, Sullam PM . 2002. An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol 44 : 10811094.[PubMed] [CrossRef]
145. Lizcano A,, Sanchez CJ,, Orihuela CJ . 2012. A role for glycosylated serine-rich repeat proteins in Gram-positive bacterial pathogenesis. Mol Oral Microbiol 27 : 257269.[PubMed] [CrossRef]
146. Zhang YQ,, Ren SX,, Li HL,, Wang YX,, Fu G,, Yang J,, Qin ZQ,, Miao YG,, Wang WY,, Chen RS,, Shen Y,, Chen Z,, Yuan ZH,, Zhao GP,, Qu D,, Danchin A,, Wen YM . 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49 : 15771593.[PubMed] [CrossRef]
147. Takeuchi F,, Watanabe S,, Baba T,, Yuzawa H,, Ito T,, Morimoto Y,, Kuroda M,, Cui L,, Takahashi M,, Ankai A,, Baba S,, Fukui S,, Lee JC,, Hiramatsu K . 2005. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187 : 72927308.[PubMed] [CrossRef]
148. Sanchez CJ,, Shivshankar P,, Stol K,, Trakhtenbroit S,, Sullam PM,, Sauer K,, Hermans PW,, Orihuela CJ . 2010. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 6 : e1001044. doi:10.1371/journal.ppat.1001044. [CrossRef]
149. Yang YH,, Jiang YL,, Zhang J,, Wang L,, Bai XH,, Zhang SJ,, Ren YM,, Li N,, Zhang YH,, Zhang Z,, Gong Q,, Mei Y,, Xue T,, Zhang JR,, Chen Y,, Zhou CZ . 2014. Structural insights into SraP-mediated Staphylococcus aureus adhesion to host cells. PLoS Pathog 10 : e1004169. doi:10.1371/journal.ppat.1004169. [PubMed] [CrossRef]
150. King NP,, Beatson SA,, Totsika M,, Ulett GC,, Alm RA,, Manning PA,, Schembri MA . 2011. UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells. Microbiology 157 : 11611175.[PubMed] [CrossRef]
151. Li M,, Du X,, Villaruz AE,, Diep BA,, Wang D,, Song Y,, Tian Y,, Hu J,, Yu F,, Lu Y,, Otto M . 2012. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med 18 : 816819.[PubMed] [CrossRef]
152. Liu Q,, Du X,, Hong X,, Li T,, Zheng B,, He L,, Wang Y,, Otto M,, Li M . 2015. Targeting surface protein SasX by active and passive vaccination to reduce Staphylococcus aureus colonization and infection. Infect Immun 83 : 21682174.[PubMed] [CrossRef]
153. Schroeder K,, Jularic M,, Horsburgh SM,, Hirschhausen N,, Neumann C,, Bertling A,, Schulte A,, Foster S,, Kehrel BE,, Peters G,, Heilmann C . 2009. Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PloS One 4 : e7567. doi:10.1371/journal.pone.0007567. [CrossRef]
154. Roche FM,, Massey R,, Peacock SJ,, Day NP,, Visai L,, Speziale P,, Lam A,, Pallen M,, Foster TJ . 2003. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149 : 643654.[PubMed] [CrossRef]
155. Heilmann C,, Hussain M,, Peters G,, Gotz F . 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24 : 10131024.[PubMed] [CrossRef]
156. Takahashi J,, Komatsuzawa H,, Yamada S,, Nishida T,, Labischinski H,, Fujiwara T,, Ohara M,, Yamagishi J,, Sugai M . 2002. Molecular characterization of an atl null mutant of Staphylococcus aureus . Microbiol Immunol 46 : 601612.[PubMed] [CrossRef]
157. Biswas R,, Voggu L,, Simon UK,,