1887

Chapter 22 : Hijacking and Use of Host Lipids by Intracellular Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Hijacking and Use of Host Lipids by Intracellular Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap22-2.gif

Abstract:

“Lipids” is the inclusive name for a complex group of molecules composed predominantly of carbon, hydrogen, and oxygen (also nitrogen and phosphorus) that are insoluble in water but soluble in organic solvents. They are characterized as being hydrophobic or amphiphilic. Lipids include fatty acids, glycerolipids, glycerophospholipids, sphingolipids, glycolipids, sterols, polyketides, and prenol lipids. The structures of the lipids discussed in this review are shown in Fig. 1 . The functions of lipids were thought to be limited to being structural components of cell membranes and to being the main form of energy storage in cells. Aside from these important functions, lipids participate in key biological processes that include signaling, organization of the membrane, and trafficking from the membrane to the cytosol. In addition, lipid disorders are key to the pathogenesis of cardiovascular diseases and other metabolic disorders.

Citation: Toledo A, Benach J. 2016. Hijacking and Use of Host Lipids by Intracellular Pathogens, p 637-666. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0001-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structure of cholesterol, ceramide, sphingomyelin, phosphatidylcholine, and GM1 ganglioside.

Citation: Toledo A, Benach J. 2016. Hijacking and Use of Host Lipids by Intracellular Pathogens, p 637-666. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Negative-stain transmission electron microscopy image showing the localization of lipid rafts in . Cholesterol glycolipids were detected by an antibody conjugated to 6-nm gold particles. From reference . Bar represents 100 nm.

Citation: Toledo A, Benach J. 2016. Hijacking and Use of Host Lipids by Intracellular Pathogens, p 637-666. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Schematic representation of the tricarboxylic acid and methyl citrate cycles. In green, the glyoxylate shunt, a variation of the tricarboxylic acid cycle.

Citation: Toledo A, Benach J. 2016. Hijacking and Use of Host Lipids by Intracellular Pathogens, p 637-666. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819286.chap22
1. Mercer J,, Schelhaas M,, Helenius A . 2010. Virus entry by endocytosis. Annu Rev Biochem 79 : 803 833.[PubMed] [CrossRef]
2. Cossart P,, Helenius A . 2014. Endocytosis of viruses and bacteria. Cold Spring Harb Perspect Biol 6 : pii: a016972. [PubMed] [CrossRef]
3. Tweten RK,, Parker MW,, Johnson AE . 2001. The cholesterol-dependent cytolysins. Curr Top Microbiol Immunol 257 : 15 33.[PubMed] [CrossRef]
4. Rosenberger CM,, Brumell JH,, Finlay BB . 2000. Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 10 : R823 R825.[PubMed] [CrossRef]
5. Duncan MJ,, Shin JS,, Abraham SN . 2002. Microbial entry through caveolae: variations on a theme. Cell Microbiol 4 : 783 791.[PubMed] [CrossRef]
6. Manes S,, del Real G,, Martinez AC . 2003. Pathogens: raft hijackers. Nat Rev Immunol 3 : 557 568.[PubMed] [CrossRef]
7. Lafont F,, van der Goot FG . 2005. Bacterial invasion via lipid rafts. Cell Microbiol 7 : 613 620.[PubMed] [CrossRef]
8. Abraham SN,, Duncan MJ,, Li G,, Zaas D . 2005. Bacterial penetration of the mucosal barrier by targeting lipid rafts. J Invest Med 53 : 318 321.[PubMed] [CrossRef]
9. van der Meer-Janssen YP,, van Galen J,, Batenburg JJ,, Helms JB . 2010. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome. Progr Lipid Res 49 : 1 26.[PubMed] [CrossRef]
10. Sabareesh V,, Singh G . 2013. Mass spectrometry based lipid(ome) analyzer and molecular platform: a new software to interpret and analyze electrospray and/or matrix-assisted laser desorption/ionization mass spectrometric data of lipids: a case study from Mycobacterium tuberculosis . J Mass Spectrom 48 : 465 477.[PubMed] [CrossRef]
11. Layre E,, Moody DB . 2013. Lipidomic profiling of model organisms and the world’s major pathogens. Biochimie 95 : 109 115.[PubMed] [CrossRef]
12. Benamara H,, Rihouey C,, Abbes I,, Ben Mlouka MA,, Hardouin J,, Jouenne T,, Alexandre S . 2014. Characterization of membrane lipidome changes in Pseudomonas aeruginosa during biofilm growth on glass wool. PloS One 9 : e108478. doi:10.1371/journal.pone.0108478. [PubMed] [CrossRef]
13. Simons K,, Ikonen E . 1997. Functional rafts in cell membranes. Nature 387 : 569 572.[PubMed] [CrossRef]
14. Brown DA,, London E . 1998. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164 : 103 114.[PubMed] [CrossRef]
15. Brown RE . 1998. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111( Pt 1) : 1 9.[PubMed]
16. Brown DA,, London E . 1998. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14 : 111 136.[PubMed] [CrossRef]
17. Simons K,, Toomre D . 2000. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1 : 31 39.[PubMed] [CrossRef]
18. Brown DA,, Rose JK . 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68 : 533 544.[PubMed] [CrossRef]
19. Epand RM . 2008. Proteins and cholesterol-rich domains. Biochim Biophys Acta 1778 : 1576 1582.[PubMed] [CrossRef]
20. Huttner WB,, Zimmerberg J . 2001. Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 13 : 478 484.[PubMed] [CrossRef]
21. Nichols B . 2003. Caveosomes and endocytosis of lipid rafts. J Cell Sci 116 : 4707 4714.[PubMed] [CrossRef]
22. Salaun C,, James DJ,, Chamberlain LH . 2004. Lipid rafts and the regulation of exocytosis. Traffic 5 : 255 264.[PubMed] [CrossRef]
23. Zaas DW,, Duncan M,, Rae Wright J,, Abraham SN . 2005. The role of lipid rafts in the pathogenesis of bacterial infections. Biochim Biophys Acta 1746 : 305 313.[PubMed] [CrossRef]
24. Riethmuller J,, Riehle A,, Grassme H,, Gulbins E . 2006. Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758 : 2139 2147.[PubMed] [CrossRef]
25. Spiteri G . 2013. Sexually Transmitted Infections in Europe 2011. European Center for Disease Prevention and Control, Stockholm. http://ecdc.europa.eu/en/publications/_layouts/forms/Publication_DispForm.aspx?List=4f55ad51-4aed-4d32-b960-af70113dbb90&ID=898.
26. Centers for Disease Control and Prevention . 2011. Sexually Transmitted Disease Surveillance 2010. CDC, Atlanta, GA. http://www.cdc.gov/std/stats10/.
27. Workowski KA,, Berman S , Centers for Disease Control and Prevention . 2010. Sexually transmitted diseases treatment guidelines, 2010. MMWR Recomm Rep 59 : 1 110.[PubMed]
28. Taylor-Robinson D . 1998. Chlamydia trachomatis as a probable cause of prostatitis. Int J STD AIDS 9 : 779. [PubMed]
29. Ostaszewska I,, Zdrodowska-Stefanow B,, Badyda J,, Pucilo K,, Trybula J,, Bulhak V . 1998. Chlamydia trachomatis: probable cause of prostatitis. Int J STD AIDS 9 : 350 353.[PubMed] [CrossRef]
30. Marrazzo JM . 2005. Mucopurulent cervicitis: no longer ignored, but still misunderstood. Infect Dis Clin North Am 19 : 333 349, viii.[PubMed] [CrossRef]
31. Sweet RL . 2012. Pelvic inflammatory disease: current concepts of diagnosis and management. Curr Infect Dis Rep. [Epub ahead of print.] [PubMed] [CrossRef]
32. Rours GI,, Duijts L,, Moll HA,, Arends LR,, de Groot R,, Jaddoe VW,, Hofman A,, Steegers EA,, Mackenbach JP,, Ott A,, Willemse HF,, van der Zwaan EA,, Verkooijen RP,, Verbrugh HA . 2011. Chlamydia trachomatis infection during pregnancy associated with preterm delivery: a population-based prospective cohort study. Eur J Epidemiol 26 : 493 502.[PubMed] [CrossRef]
33. Munoz B,, West S . 1997. Trachoma: the forgotten cause of blindness. Epidemiol Rev 19 : 205 217.[PubMed] [CrossRef]
34. Baneke A . 2012. Review: targeting trachoma: strategies to reduce the leading infectious cause of blindness. Travel Med Infect Dis 10 : 92 96.[PubMed] [CrossRef]
35. Cohen MS,, Hoffman IF,, Royce RA,, Kazembe P,, Dyer JR,, Daly CC,, Zimba D,, Vernazza PL,, Maida M,, Fiscus SA,, Eron JJ Jr . 1997. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Research Group. Lancet 349 : 1868 1873.[CrossRef]
36. Kuo CC,, Jackson LA,, Campbell LA,, Grayston JT . 1995. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8 : 451 461.[PubMed]
37. Grayston JT,, Kuo CC,, Coulson AS,, Campbell LA,, Lawrence RD,, Lee MJ,, Strandness ED,, Wang SP . 1995. Chlamydia pneumoniae (TWAR) in atherosclerosis of the carotid artery. Circulation 92 : 3397 3400.[PubMed] [CrossRef]
38. Laurila AL,, Von Hertzen L,, Saikku P . 1997. Chlamydia pneumoniae and chronic lung diseases. Scand J Infect Dis Suppl 104 : 34 36.[PubMed]
39. Chen J,, Zhu M,, Ma G,, Zhao Z,, Sun Z . 2013. Chlamydia pneumoniae infection and cerebrovascular disease: a systematic review and meta-analysis. BMC Neurol 13 : 183. [CrossRef]
40. Moulder JW . 1991. Interaction of chlamydiae and host cells in vitro . Microbiol Rev 55 : 143 190.[PubMed]
41. Clifton DR,, Fields KA,, Grieshaber SS,, Dooley CA,, Fischer ER,, Mead DJ,, Carabeo RA,, Hackstadt T . 2004. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101 : 10166 10171.[CrossRef]
42. Subtil A,, Wyplosz B,, Balana ME,, Dautry-Varsat A . 2004. Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity. J Cell Sci 117 : 3923 3933.[PubMed] [CrossRef]
43. Carabeo RA,, Grieshaber SS,, Hasenkrug A,, Dooley C,, Hackstadt T . 2004. Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells. Traffic 5 : 418 425.[PubMed] [CrossRef]
44. Balana ME,, Niedergang F,, Subtil A,, Alcover A,, Chavrier P,, Dautry-Varsat A . 2005. ARF6 GTPase controls bacterial invasion by actin remodelling. J Cell Sci 118 : 2201 2210.[PubMed] [CrossRef]
45. Korhonen JT,, Puolakkainen M,, Haveri A,, Tammiruusu A,, Sarvas M,, Lahesmaa R . 2012. Chlamydia pneumoniae entry into epithelial cells by clathrin-independent endocytosis. Microb Pathog 52 : 157 164.[PubMed] [CrossRef]
46. Jutras I,, Abrami L,, Dautry-Varsat A . 2003. Entry of the lymphogranuloma venereum strain of Chlamydia trachomatis into host cells involves cholesterol-rich membrane domains. Infect Immun 71 : 260 266.[PubMed] [CrossRef]
47. Gabel BR,, Elwell C,, van Ijzendoorn SC,, Engel JN . 2004. Lipid raft-mediated entry is not required for Chlamydia trachomatis infection of cultured epithelial cells. Infect Immun 72 : 7367 7373.[PubMed] [CrossRef]
48. Norkin LC,, Wolfrom SA,, Stuart ES . 2001. Association of caveolin with Chlamydia trachomatis inclusions at early and late stages of infection. Exp Cell Res 266 : 229 238.[PubMed] [CrossRef]
49. Stuart ES,, Webley WC,, Norkin LC . 2003. Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells. Exp Cell Res 287 : 67 78.[PubMed] [CrossRef]
50. Webley WC,, Norkin LC,, Stuart ES . 2004. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1. BMC Infect Dis 4 : 23. [PubMed] [CrossRef]
51. Gruenheid S,, Finlay BB . 2003. Microbial pathogenesis and cytoskeletal function. Nature 422 : 775 781.[PubMed] [CrossRef]
52. Fessler MB,, Arndt PG,, Frasch SC,, Lieber JG,, Johnson CA,, Murphy RC,, Nick JA,, Bratton DL,, Malcolm KC,, Worthen GS . 2004. Lipid rafts regulate lipopolysaccharide-induced activation of Cdc42 and inflammatory functions of the human neutrophil. J Biol Chem 279 : 39989 39998.[PubMed] [CrossRef]
53. Brumell JH,, Grinstein S . 2003. Role of lipid-mediated signal transduction in bacterial internalization. Cell Microbiol 5 : 287 297.[PubMed] [CrossRef]
54. Naroeni A,, Porte F . 2002. Role of cholesterol and the ganglioside GM(1) in entry and short-term survival of Brucella suis in murine macrophages. Infect Immun 70 : 1640 1644.[PubMed] [CrossRef]
55. Watarai M,, Makino S,, Michikawa M,, Yanagisawa K,, Murakami S,, Shirahata T . 2002. Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice. Infect Immun 70 : 4818 4825.[PubMed] [CrossRef]
56. Kim S,, Watarai M,, Suzuki H,, Makino S,, Kodama T,, Shirahata T . 2004. Lipid raft microdomains mediate class A scavenger receptor-dependent infection of Brucella abortus . Microb Pathog 37 : 11 19.[PubMed] [CrossRef]
57. Martin-Martin AI,, Vizcaino N,, Fernandez-Lago L . 2010. Cholesterol, ganglioside GM1 and class A scavenger receptor contribute to infection by Brucella ovis and Brucella canis in murine macrophages. Microbes Infect 12 : 246 251.[PubMed] [CrossRef]
58. French CT,, Panina EM,, Yeh SH,, Griffith N,, Arambula DG,, Miller JF . 2009. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol 11 : 1735 1749.[PubMed] [CrossRef]
59. Tamilselvam B,, Daefler S . 2008. Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages. J Immunol 180 : 8262 8271.[PubMed] [CrossRef]
60. Lafont F,, Tran Van Nhieu G,, Hanada K,, Sansonetti P,, van der Goot FG . 2002. Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J 21 : 4449 4457.[PubMed] [CrossRef]
61. Gilk SD,, Cockrell DC,, Luterbach C,, Hansen B,, Knodler LA,, Ibarra JA,, Steele-Mortimer O,, Heinzen RA . 2013. Bacterial colonization of host cells in the absence of cholesterol. PLoS Pathog 9 : e1003107. doi:10.1371/journal.ppat.1003107. [PubMed] [CrossRef]
62. Schraw W,, Li Y,, McClain MS,, van der Goot FG,, Cover TL . 2002. Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J Biol Chem 277 : 34642 34650.[PubMed] [CrossRef]
63. Lai CH,, Chang YC,, Du SY,, Wang HJ,, Kuo CH,, Fang SH,, Fu HW,, Lin HH,, Chiang AS,, Wang WC . 2008. Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. Infect Immun 76 : 3293 3303.[PubMed] [CrossRef]
64. Hutton ML,, Kaparakis-Liaskos M,, Turner L,, Cardona A,, Kwok T,, Ferrero RL . 2010. Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun 78 : 4523 4531.[PubMed] [CrossRef]
65. Grassme H,, Jendrossek V,, Riehle A,, von Kurthy G,, Berger J,, Schwarz H,, Weller M,, Kolesnick R,, Gulbins E . 2003. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9 : 322 330.[PubMed] [CrossRef]
66. Yamamoto N,, Yamamoto N,, Petroll MW,, Cavanagh HD,, Jester JV . 2005. Internalization of Pseudomonas aeruginosa is mediated by lipid rafts in contact lens-wearing rabbit and cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci 46 : 1348 1355.[PubMed] [CrossRef]
67. Zaidi T,, Bajmoczi M,, Zaidi T,, Golan DE,, Pier GB . 2008. Disruption of CFTR-dependent lipid rafts reduces bacterial levels and corneal disease in a murine model of Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 49 : 1000 1009.[PubMed] [CrossRef]
68. Kannan S,, Audet A,, Huang H,, Chen LJ,, Wu M . 2008. Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during Pseudomonas aeruginosa infection. J Immunol 180 : 2396 2408.[PubMed] [CrossRef]
69. Bomberger JM,, Maceachran DP,, Coutermarsh BA,, Ye S,, O’Toole GA,, Stanton BA . 2009. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5 : e1000382. doi:10.1371/journal.ppat.1000382. [PubMed] [CrossRef]
70. Wylie JL,, Hatch GM,, McClarty G . 1997. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis . J Bacteriol 179 : 7233 7242.[PubMed]
71. Hatch GM,, McClarty G . 1998. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect Immun 66 : 3727 3735.[PubMed]
72. Carabeo RA,, Mead DJ,, Hackstadt T . 2003. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci USA 100 : 6771 6776.[PubMed] [CrossRef]
73. Stephens RS,, Kalman S,, Lammel C,, Fan J,, Marathe R,, Aravind L,, Mitchell W,, Olinger L,, Tatusov RL,, Zhao Q,, Koonin EV,, Davis RW . 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science 282 : 754 759.[PubMed] [CrossRef]
74. Robertson DK,, Gu L,, Rowe RK,, Beatty WL . 2009. Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis. PLoS Pathog 5 : e1000664. doi:10.1371/journal.ppat.1000664. [PubMed] [CrossRef]
75. van Ooij C,, Kalman L,, van I,, Nishijima M,, Hanada K,, Mostov K,, Engel JN . 2000. Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis . Cell Microbiol 2 : 627 637.[PubMed] [CrossRef]
76. Valdivia RH . 2008. Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol 11 : 53 59.[PubMed] [CrossRef]
77. Li Z,, Chen C,, Chen D,, Wu Y,, Zhong Y,, Zhong G . 2008. Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect Immun 76 : 2746 2757.[PubMed] [CrossRef]
78. Bannantine JP,, Griffiths RS,, Viratyosin W,, Brown WJ,, Rockey DD . 2000. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2 : 35 47.[PubMed] [CrossRef]
79. Hackstadt T,, Scidmore MA,, Rockey DD . 1995. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci USA 92 : 4877 4881.[PubMed] [CrossRef]
80. Hackstadt T,, Rockey DD,, Heinzen RA,, Scidmore MA . 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15 : 964 977.[PubMed]
81. Beatty WL . 2008. Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect Immun 76 : 2872 2881.[PubMed] [CrossRef]
82. Elwell CA,, Jiang S,, Kim JH,, Lee A,, Wittmann T,, Hanada K,, Melancon P,, Engel JN . 2011. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog 7 : e1002198. doi:10.1371/journal.ppat.1002198. [PubMed] [CrossRef]
83. Rockey DD,, Fischer ER,, Hackstadt T . 1996. Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy. Infect Immun 64 : 4269 4278.[PubMed]
84. Wolf K,, Hackstadt T . 2001. Sphingomyelin trafficking in Chlamydia pneumoniae-infected cells. Cell Microbiol 3 : 145 152.[PubMed] [CrossRef]
85. Beatty WL . 2006. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis . J Cell Sci 119 : 350 359.[PubMed] [CrossRef]
86. Moore ER,, Fischer ER,, Mead DJ,, Hackstadt T . 2008. The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic 9 : 2130 2140.[PubMed] [CrossRef]
87. Derre I,, Swiss R,, Agaisse H . 2011. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER- Chlamydia inclusion membrane contact sites. PLoS Pathog 7 : e1002092. doi:10.1371/journal.ppat.1002092. [PubMed] [CrossRef]
88. Agaisse H,, Derre I . 2014. Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. Infect Immun 82 : 2037 2047.[PubMed] [CrossRef]
89. Christian JG,, Heymann J,, Paschen SA,, Vier J,, Schauenburg L,, Rupp J,, Meyer TF,, Hacker G,, Heuer D . 2011. Targeting of a chlamydial protease impedes intracellular bacterial growth. PLoS Pathog 7 : e1002283. doi:10.1371/journal.ppat.1002283. [PubMed] [CrossRef]
90. Heuer D,, Rejman Lipinski A,, Machuy N,, Karlas A,, Wehrens A,, Siedler F,, Brinkmann V,, Meyer TF . 2009. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457 : 731 735.[PubMed] [CrossRef]
91. Rejman Lipinski A,, Heymann J,, Meissner C,, Karlas A,, Brinkmann V,, Meyer TF,, Heuer D . 2009. Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog 5 : e1000615. doi:10.1371/journal.ppat.1000615. [PubMed] [CrossRef]
92. Moorhead AM,, Jung JY,, Smirnov A,, Kaufer S,, Scidmore MA . 2010. Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Infect Immun 78 : 1990 2007.[PubMed] [CrossRef]
93. Mital J,, Hackstadt T . 2011. Role for the SRC family kinase Fyn in sphingolipid acquisition by chlamydiae. Infect Immun 79 : 4559 4568.[PubMed] [CrossRef]
94. Rzomp KA,, Scholtes LD,, Briggs BJ,, Whittaker GR,, Scidmore MA . 2003. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect Immun 71 : 5855 5870.[PubMed] [CrossRef]
95. Cortes C,, Rzomp KA,, Tvinnereim A,, Scidmore MA,, Wizel B . 2007. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect Immun 75 : 5586 5596.[PubMed] [CrossRef]
96. Capmany A,, Damiani MT . 2010. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. PloS One 5 : e14084. doi:10.1371/journal.pone.0014084. [PubMed] [CrossRef]
97. Moore ER,, Mead DJ,, Dooley CA,, Sager J,, Hackstadt T . 2011. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. Microbiology 157 : 830 838.[PubMed] [CrossRef]
98. Kumar Y,, Cocchiaro J,, Valdivia RH . 2006. The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol 16 : 1646 1651.[PubMed] [CrossRef]
99. Cocchiaro JL,, Kumar Y,, Fischer ER,, Hackstadt T,, Valdivia RH . 2008. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci USA 105 : 9379 9384.[PubMed] [CrossRef]
100. Lin M,, Rikihisa Y . 2003. Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 71 : 5324 5331.[PubMed] [CrossRef]
101. Xiong Q,, Wang X,, Rikihisa Y . 2007. High-cholesterol diet facilitates Anaplasma phagocytophilum infection and up-regulates macrophage inflammatory protein-2 and CXCR2 expression in apolipoprotein E-deficient mice. J Infect Dis 195 : 1497 1503.[PubMed] [CrossRef]
102. Lin M,, Rikihisa Y . 2003. Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell Microbiol 5 : 809 820.[PubMed] [CrossRef]
103. Xiong QM,, Lin MQ,, Rikihisa Y . 2009. Cholesterol-dependent Anaplasma phagocytophilum exploits the low-density lipoprotein uptake pathway. PLoS Pathog 5 : e1000329. doi:10.1371/journal.ppat.1000329. [PubMed] [CrossRef]
104. Howe D,, Heinzen RA . 2006. Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol 8 : 496 507.[PubMed] [CrossRef]
105. Howe D,, Heinzen RA . 2005. Replication of Coxiella burnetii is inhibited in CHO K-1 cells treated with inhibitors of cholesterol metabolism. Ann N Y Acad Sci 1063 : 123 129.[PubMed] [CrossRef]
106. Gilk SD,, Beare PA,, Heinzen RA . 2010. Coxiella burnetii expresses a functional Delta24 sterol reductase. J Bacteriol 192 : 6154 6159.[PubMed] [CrossRef]
107. Gilk SD . 2012. Role of lipids in Coxiella burnetii infection. Adv Exp Med Biol 984 : 199 213.[PubMed] [CrossRef]
108. Rasmussen JW,, Cello J,, Gil H,, Forestal CA,, Furie MB,, Thanassi DG,, Benach JL . 2006. Mac-1+ cells are the predominant subset in the early hepatic lesions of mice infected with Francisella tularensis . Infect Immun 74 : 6590 6598.[PubMed] [CrossRef]
109. Law HT,, Lin AE,, Kim Y,, Quach B,, Nano FE,, Guttman JA . 2011. Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci Rep 1 : 192. [PubMed] [CrossRef]
110. Seveau S,, Bierne H,, Giroux S,, Prevost MC,, Cossart P . 2004. Role of lipid rafts in E-cadherin—and HGF-R/Met—mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166 : 743 753.[PubMed] [CrossRef]
111. Gekara NO,, Weiss S . 2004. Lipid rafts clustering and signalling by listeriolysin O. Biochem Soc Trans 32 : 712 714.[PubMed] [CrossRef]
112. Allen-Vercoe E,, Waddell B,, Livingstone S,, Deans J,, DeVinney R . 2006. Enteropathogenic Escherichia coli Tir translocation and pedestal formation requires membrane cholesterol in the absence of bundle-forming pili. Cell Microbiol 8 : 613 624.[PubMed] [CrossRef]
113. Duncan MJ,, Li G,, Shin JS,, Carson JL,, Abraham SN . 2004. Bacterial penetration of bladder epithelium through lipid rafts. J Biol Chem 279 : 18944 18951.[PubMed] [CrossRef]
114. Riff JD,, Callahan JW,, Sherman PM . 2005. Cholesterol-enriched membrane microdomains are required for inducing host cell cytoskeleton rearrangements in response to attaching-effacing Escherichia coli . Infect Immun 73 : 7113 7125.[PubMed] [CrossRef]
115. Kansau I,, Berger C,, Hospital M,, Amsellem R,, Nicolas V,, Servin AL,, Bernet-Camard MF . 2004. Zipper-like internalization of Dr-positive Escherichia coli by epithelial cells is preceded by an adhesin-induced mobilization of raft-associated molecules in the initial step of adhesion. Infect Immun 72 : 3733 3742.[PubMed] [CrossRef]
116. Catron DM,, Sylvester MD,, Lange Y,, Kadekoppala M,, Jones BD,, Monack DM,, Falkow S,, Haldar K . 2002. The Salmonella-containing vacuole is a major site of intracellular cholesterol accumulation and recruits the GPI-anchored protein CD55. Cell Microbiol 4 : 315 328.[PubMed] [CrossRef]
117. Rogers TJ,, Thorpe CM,, Paton AW,, Paton JC . 2012. Role of lipid rafts and flagellin in invasion of colonic epithelial cells by Shiga-toxigenic Escherichia coli O113:H21. Infect Immun 80 : 2858 2867.[PubMed] [CrossRef]
118. Hayward RD,, Cain RJ,, McGhie EJ,, Phillips N,, Garner MJ,, Koronakis V . 2005. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 56 : 590 603.[PubMed] [CrossRef]
119. van der Goot FG,, Tran van Nhieu G,, Allaoui A,, Sansonetti P,, Lafont F . 2004. Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J Biol Chem 279 : 47792 47798.[PubMed] [CrossRef]
120. Gatfield J,, Pieters J . 2000. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288 : 1647 1650.[PubMed] [CrossRef]
121. Perez-Guzman C,, Vargas MH,, Quinonez F,, Bazavilvazo N,, Aguilar A . 2005. A cholesterol-rich diet accelerates bacteriologic sterilization in pulmonary tuberculosis. Chest 127 : 643 651.[PubMed] [CrossRef]
122. Maldonado-Garcia G,, Chico-Ortiz M,, Lopez-Marin LM,, Sanchez-Garcia FJ . 2004. High-polarity Mycobacterium avium-derived lipids interact with murine macrophage lipid rafts. Scand J Immunol 60 : 463 470.[PubMed] [CrossRef]
123. Pandey AK,, Sassetti CM . 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105 : 4376 4380.[PubMed] [CrossRef]
124. Edward DG,, Fitzgerald WA . 1951. Cholesterol in the growth of organisms of the pleuropneumonia group. J Gen Microbiol 5 : 576 586.[PubMed] [CrossRef]
125. Argaman M,, Razin S . 1965. Cholesterol and cholesterol esters in Mycoplasma . J Gen Microbiol 38 : 153 160.[PubMed] [CrossRef]
126. Smith PF,, Mayberry WR . 1968. Identification of the major glycolipid from Mycoplasma sp., strain J as 3,4,6-triacyl-beta-glucopyranose. Biochemistry 7 : 2706 2710.[PubMed] [CrossRef]
127. Smith PF . 1971. Biosynthesis of cholesteryl glucoside by Mycoplasma gallinarum . J Bacteriol 108 : 986 991.[PubMed]
128. Slutzky GM,, Razin S,, Kahane I,, Eisenberg S . 1977. Cholesterol transfer from serum lipoproteins to Mycoplasma membranes. Biochemistry 16 : 5158 5163.[PubMed] [CrossRef]
129. Rottem S,, Verkleij AJ . 1982. Possible association of segregated lipid domains of Mycoplasma gallisepticum membranes with cell resistance to osmotic lysis. J Bacteriol 149 : 338 345.[PubMed]
130. Razin S,, Efrati H,, Kutner S,, Rottem S . 1982. Cholesterol and phospholipid uptake by mycoplasmas. Rev Infect Dis 4( Suppl) : S85 S92.[PubMed] [CrossRef]
131. Inamine JM,, Denny TP,, Loechel S,, Schaper U,, Huang CH,, Bott KF,, Hu PC . 1988. Nucleotide sequence of the P1 attachment-protein gene of Mycoplasma pneumoniae . Gene 64 : 217 229.[PubMed] [CrossRef]
132. Dallo SF,, Chavoya A,, Baseman JB . 1990. Characterization of the gene for a 30-kilodalton adhesion-related protein of Mycoplasma pneumoniae . Infect Immun 58 : 4163 4165.[PubMed]
133. Tarshis M,, Salman M,, Rottem S . 1993. Cholesterol is required for the fusion of single unilamellar vesicles with Mycoplasma capricolum . Biophys J 64 : 709 715.[PubMed] [CrossRef]
134. Deutsch J,, Salman M,, Rottem S . 1995. An unusual polar lipid from the cell membrane of Mycoplasma fermentans . Eur J Biochem 227 : 897 902.[PubMed] [CrossRef]
135. Dybvig K,, Voelker LL . 1996. Molecular biology of mycoplasmas. Annu Rev Microbiol 50 : 25 57.[PubMed] [CrossRef]
136. Murray HW,, Masur H,, Senterfit LB,, Roberts RB . 1975. The protean manifestations of Mycoplasma pneumoniae infection in adults. Am J Med 58 : 229 242.[PubMed] [CrossRef]
137. Baseman JB,, Tully JG . 1997. Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg Infect Dis 3 : 21 32.[PubMed] [CrossRef]
138. LaRocca TJ,, Pathak P,, Chiantia S,, Toledo A,, Silvius JR,, Benach JL,, London E . 2013. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9 : e1003353. doi:10.1371/journal.ppat.1003353. [PubMed] [CrossRef]
139. Belisle JT,, Brandt ME,, Radolf JD,, Norgard MV . 1994. Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J Bacteriol 176 : 2151 2157.[PubMed]
140. Jones JD,, Bourell KW,, Norgard MV,, Radolf JD . 1995. Membrane topology of Borrelia burgdorferi and Treponema pallidum lipoproteins. Infect Immun 63 : 2424 2434.[PubMed]
141. Radolf JD,, Goldberg MS,, Bourell K,, Baker SI,, Jones JD,, Norgard MV . 1995. Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 63 : 2154 2163.[PubMed]
142. Stubs G,, Fingerle V,, Wilske B,, Gobel UB,, Zahringer U,, Schumann RR,, Schroder NW . 2009. Acylated cholesteryl galactosides are specific antigens of borrelia causing Lyme disease and frequently induce antibodies in late stages of disease. J Biol Chem 284 : 13326 13334.[PubMed] [CrossRef]
143. Stubs G,, Fingerle V,, Zahringer U,, Schumann RR,, Rademann J,, Schroder NW . 2011. Acylated cholesteryl galactosides are ubiquitous glycolipid antigens among Borrelia burgdorferi sensu lato. FEMS Immunol Med Microbiol 63 : 140 143.[PubMed] [CrossRef]
144. Ben-Menachem G,, Kubler-Kielb J,, Coxon B,, Yergey A,, Schneerson R . 2003. A newly discovered cholesteryl galactoside from Borrelia burgdorferi . Proc Natl Acad Sci USA 100 : 7913 7918.[PubMed] [CrossRef]
145. Schroder NW,, Schombel U,, Heine H,, Gobel UB,, Zahringer U,, Schumann RR . 2003. Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J Biol Chem 278 : 33645 33653.[PubMed] [CrossRef]
146. Garcia-Monco JC,, Seidman RJ,, Benach JL . 1995. Experimental immunization with Borrelia burgdorferi induces development of antibodies to gangliosides. Infect Immun 63 : 4130 4137.[PubMed]
147. LaRocca TJ,, Crowley JT,, Cusack BJ,, Pathak P,, Benach J,, London E,, Garcia-Monco JC,, Benach JL . 2010. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 8 : 331 342.[PubMed] [CrossRef]
148. Coleman JL,, Crowley JT,, Toledo AM,, Benach JL . 2013. The HtrA protease of Borrelia burgdorferi degrades outer membrane protein BmpD and chemotaxis phosphatase CheX. Mol Microbiol 88 : 619 633.[PubMed] [CrossRef]
149. Toledo A,, Crowley JT,, Coleman JL,, LaRocca TJ,, Chiantia S,, London E,, Benach JL . 2014. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi . mBio 5 : e00899-14. doi:10.1128/mBio.00899-14. [PubMed] [CrossRef]
150. Crowley JT,, Toledo AM,, LaRocca TJ,, Coleman JL,, London E,, Benach JL . 2013. Lipid exchange between Borrelia burgdorferi and host cells. PLoS Pathog 9 : e1003109. doi:10.1371/journal.ppat.1003109. [PubMed] [CrossRef]
151. Ostberg Y,, Berg S,, Comstedt P,, Wieslander A,, Bergstrom S . 2007. Functional analysis of a lipid galactosyltransferase synthesizing the major envelope lipid in the Lyme disease spirochete Borrelia burgdorferi . FEMS Microbiol Lett 272 : 22 29.[PubMed] [CrossRef]
152. Ansorg R,, Muller KD,, von Recklinghausen G,, Nalik HP . 1992. Cholesterol binding of Helicobacter pylori . Zentralbl Bakteriol 276 : 323 329.[PubMed] [CrossRef]
153. Trampenau C,, Muller KD . 2003. Affinity of Helicobacter pylori to cholesterol and other steroids. Microb Infect 5 : 13 17.[PubMed] [CrossRef]
154. Jimenez-Soto LF,, Rohrer S,, Jain U,, Ertl C,, Sewald X,, Haas R . 2012. Effects of cholesterol on Helicobacter pylori growth and virulence properties in vitro . Helicobacter 17 : 133 139.[PubMed] [CrossRef]
155. Shimomura H,, Hosoda K,, Hayashi S,, Yokota K,, Hirai Y . 2012. Phosphatidylethanolamine of Helicobacter pylori functions as a steroid-binding lipid in the assimilation of free cholesterol and 3beta-hydroxl steroids into the bacterial cell membrane. J Bacteriol 194 : 2658 2667.[PubMed] [CrossRef]
156. Wunder C,, Churin Y,, Winau F,, Warnecke D,, Vieth M,, Lindner B,, Zahringer U,, Mollenkopf HJ,, Heinz E,, Meyer TF . 2006. Cholesterol glucosylation promotes immune evasion by Helicobacter pylori . Nat Med 12 : 1030 1038.[PubMed] [CrossRef]
157. Lebrun AH,, Wunder C,, Hildebrand J,, Churin Y,, Zahringer U,, Lindner B,, Meyer TF,, Heinz E,, Warnecke D . 2006. Cloning of a cholesterol-alpha-glucosyltransferase from Helicobacter pylori . J Biol Chem 281 : 27765 27772.[PubMed] [CrossRef]
158. McGee DJ,, George AE,, Trainor EA,, Horton KE,, Hildebrandt E,, Testerman TL . 2011. Cholesterol enhances Helicobacter pylori resistance to antibiotics and LL-37. Antimicrob Agents Chemother 55 : 2897 2904.[PubMed] [CrossRef]
159. Shimomura H,, Hosoda K,, McGee DJ,, Hayashi S,, Yokota K,, Hirai Y . 2013. Detoxification of 7-dehydrocholesterol fatal to Helicobacter pylori is a novel role of cholesterol glucosylation. J Bacteriol 195 : 359 367.[PubMed] [CrossRef]
160. Hildebrandt E,, McGee DJ . 2009. Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent. BMC Microbiol 9 : 258. [PubMed] [CrossRef]
161. Odenbreit S,, Puls J,, Sedlmaier B,, Gerland E,, Fischer W,, Haas R . 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287 : 1497 1500.[PubMed] [CrossRef]
162. Wang HJ,, Cheng WC,, Cheng HH,, Lai CH,, Wang WC . 2012. Helicobacter pylori cholesteryl glucosides interfere with host membrane phase and affect type IV secretion system function during infection in AGS cells. Mol Microbiol 83 : 67 84.[PubMed] [CrossRef]
163. Bloch H,, Segal W . 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro . J Bacteriol 72 : 132 141.[PubMed]
164. Kolattukudy PE,, Fernandes ND,, Azad AK,, Fitzmaurice AM,, Sirakova TD . 1997. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24 : 263 270.[PubMed] [CrossRef]
165. Cole ST,, Brosch R,, Parkhill J,, Garnier T,, Churcher C,, Harris D,, Gordon SV,, Eiglmeier K,, Gas S,, Barry CE 3rd,, Tekaia F,, Badcock K,, Basham D,, Brown D,, Chillingworth T,, Connor R,, Davies R,, Devlin K,, Feltwell T,, Gentles S,, Hamlin N,, Holroyd S,, Hornsby T,, Jagels K,, Krogh A,, McLean J,, Moule S,, Murphy L,, Oliver K,, Osborne J,, Quail MA,, Rajandream MA,, Rogers J,, Rutter S,, Seeger K,, Skelton J,, Squares R,, Squares S,, Sulston JE,, Taylor K,, Whitehead S,, Barrell BG . 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393 : 537 544.[PubMed] [CrossRef]
166. Liu K,, Yu J,, Russell DG . 2003. pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149 : 1829 1835.[PubMed] [CrossRef]
167. Marrero J,, Rhee KY,, Schnappinger D,, Pethe K,, Ehrt S . 2010. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107 : 9819 9824.[PubMed] [CrossRef]
168. McKinney JD,, Honer zu Bentrup K,, Munoz-Elias EJ,, Miczak A,, Chen B,, Chan WT,, Swenson D,, Sacchettini JC,, Jacobs WR Jr,, Russell DG . 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406 : 735 738.[PubMed] [CrossRef]
169. Sassetti CM,, Rubin EJ . 2003. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100 : 12989 12994.[PubMed] [CrossRef]
170. de Carvalho LP,, Fischer SM,, Marrero J,, Nathan C,, Ehrt S,, Rhee KY . 2010. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17 : 1122 1131.[PubMed] [CrossRef]
171. Raynaud C,, Guilhot C,, Rauzier J,, Bordat Y,, Pelicic V,, Manganelli R,, Smith I,, Gicquel B,, Jackson M . 2002. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis . Mol Microbiol 45 : 203 217.[PubMed] [CrossRef]
172. Viana-Niero C,, de Haas PE,, van Soolingen D,, Leao SC . 2004. Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiology 150 : 967 978.[PubMed] [CrossRef]
173. Trivedi OA,, Arora P,, Sridharan V,, Tickoo R,, Mohanty D,, Gokhale RS . 2004. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428 : 441 445.[PubMed] [CrossRef]
174. Jackson M,, Stadthagen G,, Gicquel B . 2007. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis 87 : 78 86.[PubMed] [CrossRef]
175. Joshi SM,, Pandey AK,, Capite N,, Fortune SM,, Rubin EJ,, Sassetti CM . 2006. Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci USA 103 : 11760 11765.[PubMed] [CrossRef]
176. Van der Geize R,, Yam K,, Heuser T,, Wilbrink MH,, Hara H,, Anderton MC,, Sim E,, Dijkhuizen L,, Davies JE,, Mohn WW,, Eltis LD . 2007. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104 : 1947 1952.[PubMed] [CrossRef]
177. Yang X,, Nesbitt NM,, Dubnau E,, Smith I,, Sampson NS . 2009. Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis . Biochemistry 48 : 3819 3821.[PubMed] [CrossRef]
178. Munoz-Elias EJ,, Upton AM,, Cherian J,, McKinney JD . 2006. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60 : 1109 1122.[PubMed] [CrossRef]
179. Savvi S,, Warner DF,, Kana BD,, McKinney JD,, Mizrahi V,, Dawes SS . 2008. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190 : 3886 3895.[PubMed] [CrossRef]
180. Russell DG,, VanderVen BC,, Lee W,, Abramovitch RB,, Kim MJ,, Homolka S,, Niemann S,, Rohde KH . 2010. Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8 : 68 76.[PubMed] [CrossRef]
181. Williams KJ,, Boshoff HI,, Krishnan N,, Gonzales J,, Schnappinger D,, Robertson BD . 2011. The Mycobacterium tuberculosis beta-oxidation genes echA5 and fadB3 are dispensable for growth in vitro and in vivo . Tuberculosis 91 : 549 555.[PubMed] [CrossRef]
182. Graham JE,, Clark-Curtiss JE . 1999. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 96 : 11554 11559.[PubMed] [CrossRef]
183. Honer Zu Bentrup K,, Miczak A,, Swenson DL,, Russell DG . 1999. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis . J Bacteriol 181 : 7161 7167.[PubMed]
184. Munoz-Elias EJ,, McKinney JD . 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11 : 638 644.[PubMed] [CrossRef]
185. Gould TA,, van de Langemheen H,, Munoz-Elias EJ,, McKinney JD,, Sacchettini JC . 2006. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis . Mol Microbiol 61 : 940 947.[PubMed] [CrossRef]
186. Eoh H,, Rhee KY . 2014. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci USA 111 : 4976 4981.[PubMed] [CrossRef]
187. Nandakumar M,, Nathan C,, Rhee KY . 2014. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis . Nat Commun 5 : 4306. [PubMed] [CrossRef]
188. Eoh H,, Rhee KY . 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis . Proc Natl Acad Sci USA 110 : 6554 6559.[PubMed] [CrossRef]
189. Dixon GH,, Kornberg HL,, Lund P . 1960. Purification and properties of malate synthetase. Biochim Biophys Acta 41 : 217 233.[PubMed] [CrossRef]
190. Quartararo CE,, Blanchard JS . 2011. Kinetic and chemical mechanism of malate synthase from Mycobacterium tuberculosis . Biochemistry 50 : 6879 6887.[PubMed] [CrossRef]
191. Kinhikar AG,, Vargas D,, Li H,, Mahaffey SB,, Hinds L,, Belisle JT,, Laal S . 2006. Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol 60 : 999 1013.[PubMed] [CrossRef]
192. May EE,, Leitao A,, Tropsha A,, Oprea TI . 2013. A systems chemical biology study of malate synthase and isocitrate lyase inhibition in Mycobacterium tuberculosis during active and NRP growth. Comput Biol Chem 47 : 167 180.[PubMed] [CrossRef]
193. Bauza A,, Quinonero D,, Deya PM,, Frontera A . 2014. Long-range effects in anion-pi interactions: their crucial role in the inhibition mechanism of Mycobacterium tuberculosis malate synthase. Chemistry 20 : 6985 6990.[PubMed] [CrossRef]
194. Kratky M,, Vinsova J,, Novotna E,, Mandikova J,, Wsol V,, Trejtnar F,, Ulmann V,, Stolarikova J,, Fernandes S,, Bhat S,, Liu JO . 2012. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis 92 : 434 439.[PubMed] [CrossRef]
195. Sriram D,, Yogeeswari P,, Senthilkumar P,, Dewakar S,, Rohit N,, Debjani B,, Bhat P,, Veugopal B,, Pavan VV,, Thimmappa HM . 2009. Novel phthalazinyl derivatives: synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis isocitrate lyase enzyme. Med Chem 5 : 422 433.[PubMed] [CrossRef]
196. Peyron P,, Vaubourgeix J,, Poquet Y,, Levillain F,, Botanch C,, Bardou F,, Daffe M,, Emile JF,, Marchou B,, Cardona PJ,, de Chastellier C,, Altare F . 2008. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4 : e1000204. doi:10.1371/journal.ppat.1000204. [PubMed] [CrossRef]
197. Russell DG,, Cardona PJ,, Kim MJ,, Allain S,, Altare F . 2009. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10 : 943 948.[PubMed] [CrossRef]
198. Daniel J,, Maamar H,, Deb C,, Sirakova TD,, Kolattukudy PE . 2011. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7 : e1002093. doi:10.1371/journal.ppat.1002093. [PubMed] [CrossRef]
199. Tailleux L,, Waddell SJ,, Pelizzola M,, Mortellaro A,, Withers M,, Tanne A,, Castagnoli PR,, Gicquel B,, Stoker NG,, Butcher PD,, Foti M,, Neyrolles O . 2008. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PloS One 3 : e1403. doi:10.1371/journal.pone.0001403. [PubMed] [CrossRef]
200. Kim MJ,, Wainwright HC,, Locketz M,, Bekker LG,, Walther GB,, Dittrich C,, Visser A,, Wang W,, Hsu FF,, Wiehart U,, Tsenova L,, Kaplan G,, Russell DG . 2010. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2 : 258 274.[PubMed] [CrossRef]
201. Podinovskaia M,, Lee W,, Caldwell S,, Russell DG . 2013. Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell Microbiol 15 : 843 859.[PubMed] [CrossRef]