Chapter 3 : Iron Acquisition Strategies of Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Iron Acquisition Strategies of Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap03-2.gif


Iron is essential to nearly all life forms on Earth, required for the proper function of enzymes involved in, for example, respiration, photosynthesis, the tricarboxylic acid cycle, nitrogen fixation, electron transport, and amino acid synthesis. The utility of iron in biological processes hinges on its chemical properties as a transition metal, engaging in single electron transfers to interconvert between the ferrous (Fe) and ferric (Fe) states. While this clearly makes iron advantageous, the same property provides the explanation for why excess, or “free,” iron is inherently toxic. Ferrous iron–catalyzed Fenton chemistry results in the generation of the highly toxic hydroxyl radical (OH•) that can compromise cellular integrity through damage to lipids, proteins, and nucleic acids.

Citation: Sheldon J, Laakso H, Heinrichs D. 2016. Iron Acquisition Strategies of Bacterial Pathogens, p 43-85. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed), Virulence Mechanisms of Bacterial Pathogens. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0010-2015
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The host versus pathogen battle for iron. Cartoon representation of the various strategies used by the host to sequester iron from invading pathogens and the counter strategies used by pathogens to obtain host iron. On mucosal surfaces, lactoferrin sequesters iron, yet bacteria can obtain iron from lactoferrin by secreting siderophores (i to iii), directly binding lactoferrin (iv), or by secreting reductases (pink pill) that reduce iron from FeIII to FeII, releasing it from lactoferrin (v to viii). Bacteria can obtain iron bound to heme by secreting hemolysins which release intracellular hemoglobin and heme into the blood. While the host uses hemoglobin- and heme-scavenging proteins to sequester these iron sources, bacteria have mechanisms to counter these systems (1 to 12). Macrophages move iron from the phagosome and the cell using natural resistance macrophage protein 1 and ferroportin, respectively, to keep iron from intracellular pathogens. In response to binding by the iron homeostasis hormone hepcidin, membrane-bound ferroportin is degraded, thus withholding iron in intracellular compartments. FeII that is secreted is rapidly oxidized by ceruloplasmin (Cp), and the FeIII is quickly picked up by transferrin (a, b). Transferrin-bound iron is scavenged by bacteria using transferrin-binding proteins (c) or through secretion of siderophores (d to f). Bacteria can also obtain iron using the mammalian siderophore 2,5-DHBA (g). Neutrophils secrete NGAL (also known as siderocalin, lipocalin 2, or 24p3) (I) which serves to capture some bacterial siderophores (II, III). Some bacteria synthesize and secrete stealth siderophores which are not bound by NGAL and can remove transferrin-bound iron even in the presence of NGAL (IV to VI). Lf, lactoferrin; Tf, transferrin; sid, siderophore; Hp, haptoglobin; Hx, hemopexin; Hb, hemoglobin; Hm, heme; Cp, ceruloplasmin.

Citation: Sheldon J, Laakso H, Heinrichs D. 2016. Iron Acquisition Strategies of Bacterial Pathogens, p 43-85. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed), Virulence Mechanisms of Bacterial Pathogens. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Model of iron uptake mechanisms in Gram-negative and Gram-positive bacteria. Diagrams depicting the envelope proteins required for the uptake of iron, or iron scavenged from siderophores, heme, or transferrin. This is a composite diagram and represents mechanisms used by many pathogenic bacteria, as described in the text. OM, outer membrane; PG, peptidoglycan; CM, cytoplasmic membrane; sid, FeIII-siderophore; Hm, heme; Tf, transferrin; OMP, outer membrane porin; HO, heme oxygenase; Hb, hemoglobin; Hp, haptoglobin. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Microbiology ( ), copyright 2012.

Citation: Sheldon J, Laakso H, Heinrichs D. 2016. Iron Acquisition Strategies of Bacterial Pathogens, p 43-85. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed), Virulence Mechanisms of Bacterial Pathogens. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model of TonB-dependent transport in Gram-negative bacteria. An iron-siderophore complex (blue hexagon) entering through a TonB-dependent transporter (TBDT) in the outer membrane (OM). Although the transport of an iron siderophore complex is shown here, iron, or other iron complexes, use similar uptake mechanisms (e.g., FeIII, heme) (see Fig. 1 ). Movement through the TBDT requires an interaction of the TonB box (located near the N-terminus of the TBDT sequence) with the TonB protein, with the energy for conformational changes provided by the proton motive force captured by the ExbB and ExbD proteins. Once in the periplasm, the iron-loaded siderophore complex is recognized by a substrate-binding protein which delivers the complex to an ABC transporter in the cytoplasmic membrane (CM). Depending on the particular system, iron is released from the siderophore in the cytoplasm by either destruction of the siderophore or reduction on the metal (as shown). Intracellular iron, via Fur, negatively regulates transcription of genes encoding high-affinity iron acquisition systems. In some TBDTs, an N-terminal extension is present to provide an extra layer of control of gene expression, in addition to Fur. This involves an anti-σ factor and extracytoplasmic function σ-factor, allowing for gene expression in response to the uptake of particular iron chelates. Modified with permission from Annual Review of Microbiology, volume 64 © by Annual Reviews, http://www.annualreviews.org. See Noinaj et al. ( ).

Citation: Sheldon J, Laakso H, Heinrichs D. 2016. Iron Acquisition Strategies of Bacterial Pathogens, p 43-85. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed), Virulence Mechanisms of Bacterial Pathogens. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structure of a representative TBDT. A ribbon diagram of the ferric pyoverdine (FpvA) receptor, bound to pyoverdine. The structure (PDB 2W16) illustrates the 22-stranded β-barrel (green) surrounding the N-terminal “plug” domain (yellow), which is attached to the N-terminal extension signaling domain (red). Pyoverdine bound to the receptor is shown using orange space filling. The side and top views of the structure are illustrated. In the latter view, the pyoverdine has been removed.

Citation: Sheldon J, Laakso H, Heinrichs D. 2016. Iron Acquisition Strategies of Bacterial Pathogens, p 43-85. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed), Virulence Mechanisms of Bacterial Pathogens. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Structure of BtuCDF. A ribbon diagram of the BtuCDF complex (PDB 2QI9), representative of the iron-siderophore/cobalamin family of cytoplasmic membrane transporters. The two lobes of the substrate-binding protein BtuF (magenta) are docked on top of the two permease domains (BtuC, monomers colored yellow and green) which are associated with ATP-binding proteins (BtuD, monomers colored red and blue).

Citation: Sheldon J, Laakso H, Heinrichs D. 2016. Iron Acquisition Strategies of Bacterial Pathogens, p 43-85. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed), Virulence Mechanisms of Bacterial Pathogens. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Structure of TbpB bound to iron-loaded human transferrin. Depicted is a ribbon diagram of PDB 3VE1 illustrating the binding of human transferrin (also illustrated with transparent surface; N lobe colored blue, C lobe colored yellow, iron depicted with red sphere) by TbpB colored from the N terminus (in blue) to the C terminus (in red). Some relevant domains are indicated. More detail on this structure can be found in Calmettes et al. ( ).

Citation: Sheldon J, Laakso H, Heinrichs D. 2016. Iron Acquisition Strategies of Bacterial Pathogens, p 43-85. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed), Virulence Mechanisms of Bacterial Pathogens. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Structures of representative catechol-containing stealth and nonstealth siderophores. Stealth siderophores are not bound by mammalian siderocalin.

Citation: Sheldon J, Laakso H, Heinrichs D. 2016. Iron Acquisition Strategies of Bacterial Pathogens, p 43-85. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed), Virulence Mechanisms of Bacterial Pathogens. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Flo TH,, Smith KD,, Sato S,, Rodriguez DJ,, Holmes MA,, Strong RK,, Akira S,, Aderem A . 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432 : 917921.[PubMed] [CrossRef]
2. Liu Z,, Reba S,, Chen W-D,, Porwal SK,, Boom WH,, Petersen RB,, Rojas R,, Viswanathan R,, Devireddy L . 2014. Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. J Exp Med 211 : 11971213.[PubMed] [CrossRef]
3. Devireddy LR,, Hart DO,, Goetz DH,, Green MR . 2010. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141 : 10061017.[PubMed] [CrossRef]
4. Vujić M . 2014. Molecular basis of HFE-hemochromatosis. Front Pharmacol 5 : 42. [CrossRef]
5. Pietrangelo A . 2015. Genetics, genetic testing and management of hemochromatosis: 15 years since hepcidin. Gastroenterology 149 : 12401251.[PubMed] [CrossRef]
6. Babitt JL,, Lin HY . 2011. The molecular pathogenesis of hereditary hemochromatosis. Semin Liver Dis 31 : 280292.[PubMed] [CrossRef]
7. Anderson GJ . 2001. Ironing out disease: inherited disorders of iron homeostasis. IUBMB Life 51 : 1117.[PubMed] [CrossRef]
8. Levi S,, Finazzi D . 2014. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Drug Metab Transp 5 : 99. [PubMed] [CrossRef]
9. Bartnikas TB . 2012. Known and potential roles of transferrin in iron biology. Biometals 25 : 677686.[PubMed] [CrossRef]
10. Miyajima H . 2015. Investigated and available therapeutic options for treating aceruloplasminemia. Expert Opin Orphan Drugs 3 : 10111020.[CrossRef]
11. Shamsian BS,, Rezaei N,, Arzanian MT,, Alavi S,, Khojasteh O,, Eghbali A . 2009. Severe hypochromic microcytic anemia in a patient with congenital atransferrinemia. Pediatr Hematol Oncol 26 : 356362.[PubMed] [CrossRef]
12. Xiao Q,, Jiang X,, Moore KJ,, Shao Y,, Pi H,, Dubail I,, Charbit A,, Newton SM,, Klebba PE . 2011. Sortase independent and dependent systems for acquisition of haem and haemoglobin in Listeria monocytogenes . Mol Microbiol 80 : 15811597.[PubMed] [CrossRef]
13. Sankaran VG,, Weiss MJ . 2015. Anemia: progress in molecular mechanisms and therapies. Nat Med 21 : 221230.[PubMed] [CrossRef]
14. Edelstein SJ,, Telford JN,, Crepeau RH . 1973. Structure of fibers of sickle cell hemoglobin. Proc Natl Acad Sci USA 70 : 11041107.[PubMed] [CrossRef]
15. Chan GC-F,, Chan S,, Ho P-L,, Ha S-Y . 2009. Effects of chelators (deferoxamine, deferiprone and deferasirox) on the growth of Klebsiella pneumoniae and Aeromonas hydrophila isolated from transfusion-dependent thalassemia patients. Hemoglobin 33 : 352360.[PubMed] [CrossRef]
16. Schubert S,, Autenrieth IB . 2000. Conjugation of hydroxyethyl starch to desferrioxamine (DFO) modulates the dual role of DFO in Yersinia enterocolitica infection. Clin Diagn Lab Immunol 7 : 457462.[PubMed] [CrossRef]
17. Arifin AJ,, Hannauer M,, Welch I,, Heinrichs DE . 2014. Deferoxamine mesylate enhances virulence of community-associated methicillin resistant Staphylococcus aureus . Microbes Infect 16 : 967972.[PubMed] [CrossRef]
18. Escolar L,, Pérez-Martin J,, de Lorenzo V . 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181 : 62236229.[PubMed]
19. Hantke K . 2001. Iron and metal regulation in bacteria. Curr Opin Microbiol 4 : 172177.[PubMed] [CrossRef]
20. White A,, Ding X,, vanderSpek JC,, Murphy JR,, Ringe D . 1998. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature 394 : 502506.[PubMed] [CrossRef]
21. De Lorenzo V,, Wee S,, Herrero M,, Neilands JB . 1987. Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169 : 26242630.[PubMed]
22. Boyd J,, Oza MN,, Murphy JR . 1990. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae . Proc Natl Acad Sci USA 87 : 59685972.[PubMed] [CrossRef]
23. Baichoo N,, Helmann JD . 2002. Recognition of DNA by Fur: a reinterpretation of the fur box consensus sequence. J Bacteriol 184 : 58265832.[PubMed] [CrossRef]
24. Carpenter BM,, Whitmire JM,, Merrell DS . 2009. This is not your mother’s repressor: the complex role of fur in pathogenesis. Infect Immun 77 : 25902601.[PubMed] [CrossRef]
25. Fillat MF . 2014. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546 : 4152.[PubMed] [CrossRef]
26. Schmitt MP,, Holmes RK . 1991. Iron-dependent regulation of diphtheria toxin and siderophore expression by the cloned Corynebacterium diphtheriae repressor gene dtxR in C. diphtheriae C7 strains. Infect Immun 59 : 18991904.[PubMed]
27. Troxell B,, Hassan HM . 2013. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 3 : 59. [PubMed] [CrossRef]
28. Skaar EP,, Humayun M,, Bae T,, DeBord KL,, Schneewind O . 2004. Iron-source preference of Staphylococcus aureus infections. Science 305 : 16261628.[PubMed] [CrossRef]
29. Proctor RA,, von Eiff C,, Kahl BC,, Becker K,, McNamara P,, Herrmann M,, Peters G . 2006. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4 : 295305.[PubMed] [CrossRef]
30. Gruss A,, Borezée-Durant E,, Lechardeur D . 2012. Environmental heme utilization by heme-auxotrophic bacteria. Adv Microb Physiol 61 : 69124.[PubMed] [CrossRef]
31. Los FCO,, Randis TM,, Aroian RV,, Ratner AJ . 2013. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 77 : 173207.[PubMed] [CrossRef]
32. Cescau S,, Cwerman H,, Létoffé S,, Delepelaire P,, Wandersman C,, Biville F . 2007. Heme acquisition by hemophores. Biometals 20 : 603613.[PubMed] [CrossRef]
33. Hanson MS,, Pelzel SE,, Latimer J,, Müller-Eberhard U,, Hansen EJ . 1992. Identification of a genetic locus of Haemophilus influenzae type b necessary for the binding and utilization of heme bound to human hemopexin. Proc Natl Acad Sci USA 89 : 19731977.[PubMed] [CrossRef]
34. Wójtowicz H,, Guevara T,, Tallant C,, Olczak M,, Sroka A,, Potempa J,, Solà M,, Olczak T,, Gomis-Rüth FX . 2009. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis . PLoS Pathog 5 : e1000419. doi:10.1371/journal.ppat.1000419. [PubMed] [CrossRef]
35. Létoffé S,, Ghigo JM,, Wandersman C . 1994. Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc Natl Acad Sci USA 91 : 98769880.[PubMed] [CrossRef]
36. Arnoux P,, Haser R,, Izadi N,, Lecroisey A,, Delepierre M,, Wandersman C,, Czjzek M . 1999. The crystal structure of HasA, a hemophore secreted by Serratia marcescens . Nat Struct Biol 6 : 516520.[PubMed] [CrossRef]
37. Létoffé S,, Ghigo JM,, Wandersman C . 1994. Secretion of the Serratia marcescens HasA protein by an ABC transporter. J Bacteriol 176 : 53725377.[PubMed]
38. Wandersman C,, Delepelaire P . 2012. Haemophore functions revisited. Mol Microbiol 85 : 618631.[PubMed] [CrossRef]
39. Izadi-Pruneyre N,, Huche F,, Lukat-Rodgers GS,, Lecroisey A,, Gilli R,, Rodgers KR,, Wandersman C,, Delepelaire P . 2006. The heme transfer from the soluble HasA hemophore to its membrane-bound receptor HasR is driven by protein-protein interaction from a high to a lower affinity binding site. J Biol Chem 281 : 2554125550.[PubMed] [CrossRef]
40. Krieg S,, Huche F,, Diederichs K,, Izadi-Pruneyre N,, Lecroisey A,, Wandersman C,, Delepelaire P,, Welte W . 2009. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc Natl Acad Sci USA 106 : 10451050.[PubMed] [CrossRef]
41. Létoffé S,, Deniau C,, Wolff N,, Dassa E,, Delepelaire P,, Lecroisey A,, Wandersman C . 2001. Haemophore-mediated bacterial haem transport: evidence for a common or overlapping site for haem-free and haem-loaded haemophore on its specific outer membrane receptor. Mol Microbiol 41 : 439450.[PubMed] [CrossRef]
42. Létoffé S,, Debarbieux L,, Izadi N,, Delepelaire P,, Wandersman C . 2003. Ligand delivery by haem carrier proteins: the binding of Serratia marcescens haemophore to its outer membrane receptor is mediated by two distinct peptide regions. Mol Microbiol 50 : 7788.[PubMed] [CrossRef]
43. Wolff N,, Izadi-Pruneyre N,, Couprie J,, Habeck M,, Linge J,, Rieping W,, Wandersman C,, Nilges M,, Delepierre M,, Lecroisey A . 2008. Comparative analysis of structural and dynamic properties of the loaded and unloaded hemophore HasA: functional implications. J Mol Biol 376 : 517525.[PubMed] [CrossRef]
44. Létoffé S,, Wecker K,, Delepierre M,, Delepelaire P,, Wandersman C . 2005. Activities of the Serratia marcescens heme receptor HasR and isolated plug and beta-barrel domains: the beta-barrel forms a heme-specific channel. J Bacteriol 187 : 46374645.[PubMed] [CrossRef]
45. Bracken CS,, Baer MT,, Abdur-Rashid A,, Helms W,, Stojiljkovic I . 1999. Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. J Bacteriol 181 : 60636072.[PubMed]
46. Burkhard KA,, Wilks A . 2007. Characterization of the outer membrane receptor ShuA from the heme uptake system of Shigella dysenteriae: substrate specificity and identification of the heme protein ligands. J Biol Chem 282 : 1512615136.[PubMed] [CrossRef]
47. Simpson W,, Olczak T,, Genco CA . 2000. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis . J Bacteriol 182 : 57375748.[PubMed] [CrossRef]
48. Ghigo JM,, Létoffé S,, Wandersman C . 1997. A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli . J Bacteriol 179 : 35723579.[PubMed]
49. Paquelin A,, Ghigo JM,, Bertin S,, Wandersman C . 2001. Characterization of HasB, a Serratia marcescens TonB-like protein specifically involved in the haemophore-dependent haem acquisition system. Mol Microbiol 42 : 9951005.[PubMed] [CrossRef]
50. Benevides-Matos N,, Wandersman C,, Biville F . 2008. HasB, the Serratia marcescens TonB paralog, is specific to HasR. J Bacteriol 190 : 2127.[PubMed] [CrossRef]
51. Cwerman H,, Wandersman C,, Biville F . 2006. Heme and a five-amino-acid hemophore region form the bipartite stimulus triggering the has signaling cascade. J Bacteriol 188 : 33573364.[PubMed] [CrossRef]
52. Rossi MS,, Paquelin A,, Ghigo JM,, Wandersman C . 2003. Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules. Mol Microbiol 48 : 14671480.[CrossRef]
53. Biville F,, Cwerman H,, Létoffé S,, Rossi M-S,, Drouet V,, Ghigo JM,, Wandersman C . 2004. Haemophore-mediated signalling in Serratia marcescens: a new mode of regulation for an extra cytoplasmic function (ECF) sigma factor involved in haem acquisition. Mol Microbiol 53 : 12671277.[PubMed] [CrossRef]
54. Rossi MS,, Fetherston JD,, Létoffé S,, Carniel E,, Perry RD,, Ghigo JM . 2001. Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis . Infect Immun 69 : 67076717.[PubMed] [CrossRef]
55. Cope LD,, Thomas SE,, Latimer JL,, Slaughter CA,, Müller-Eberhard U,, Hansen EJ . 1994. The 100 kDa haem:haemopexin-binding protein of Haemophilus influenzae: structure and localization. Mol Microbiol 13 : 863873.[PubMed] [CrossRef]
56. Cope LD,, Thomas SE,, Hrkal Z,, Hansen EJ . 1998. Binding of heme-hemopexin complexes by soluble HxuA protein allows utilization of this complexed heme by Haemophilus influenzae . Infect Immun 66 : 45114516.[PubMed]
57. Cope LD,, Yogev R,, Müller-Eberhard U,, Hansen EJ . 1995. A gene cluster involved in the utilization of both free heme and heme:hemopexin by Haemophilus influenzae type b. J. Bacteriol 177 : 26442653.[PubMed]
58. Baelen S,, Dewitte F,, Clantin B,, Villeret V . 2013. Structure of the secretion domain of HxuA from Haemophilus influenzae . Acta Crystallograph Sect F Struct Biol Cryst Commun 69 : 13221327.[PubMed] [CrossRef]
59. Wong JC,, Patel R,, Kendall D,, Whitby PW,, Smith A,, Holland J,, Williams P . 1995. Affinity, conservation, and surface exposure of hemopexin-binding proteins in Haemophilus influenzae . Infect Immun 63 : 23272333.[PubMed]
60. Fournier C,, Smith A,, Delepelaire P . 2011. Haem release from haemopexin by HxuA allows Haemophilus influenzae to escape host nutritional immunity. Mol Microbiol 80 : 133148.[PubMed] [CrossRef]
61. Morton DJ,, Seale TW,, Madore LL,, VanWagoner TM,, Whitby PW,, Stull TL . 2007. The haem-haemopexin utilization gene cluster (hxuCBA) as a virulence factor of Haemophilus influenzae . Microbiology 153 : 215224.[PubMed] [CrossRef]
62. Cope LD,, Love RP,, Guinn SE,, Gilep A,, Usanov S,, Estabrook RW,, Hrkal Z,, Hansen EJ . 2001. Involvement of HxuC outer membrane protein in utilization of hemoglobin by Haemophilus influenzae . Infect Immun 69 : 23532363.[PubMed] [CrossRef]
63. Whitby PW,, Sim KE,, Morton DJ,, Patel JA,, Stull TL . 1997. Transcription of genes encoding iron and heme acquisition proteins of Haemophilus influenzae during acute otitis media. Infect Immun 65 : 46964700.[PubMed]
64. Gat O,, Zaide G,, Inbar I,, Grosfeld H,, Chitlaru T,, Levy H,, Shafferman A . 2008. Characterization of Bacillus anthracis iron-regulated surface determinant (Isd) proteins containing NEAT domains. Mol Microbiol 70 : 983999.[PubMed]
65. Maresso AW,, Garufi G,, Schneewind O . 2008. Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin. PLoS Pathog 4 : e1000132. doi:10.1371/journal.ppat.1000132. [CrossRef]
66. Andrade MA,, Ciccarelli FD,, Perez-Iratxeta C,, Bork P . 2002. NEAT: a domain duplicated in genes near the components of a putative Fe3+ siderophore transporter from Gram-positive pathogenic bacteria. Genome Biol 3 : research00471research00475.
67. Honsa ES,, Maresso AW,, Highlander SK . 2014. Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains. PloS One 9 : e104794. doi:10.1371/journal.pone.0104794. [PubMed] [CrossRef]
68. Grigg JC,, Ukpabi G,, Gaudin CF,, Murphy ME . 2010. Structural biology of heme binding in the Staphylococcus aureus Isd system. J Inorg Biochem 104 : 341348.[PubMed] [CrossRef]
69. Honsa ES,, Maresso AW . 2011. Mechanisms of iron import in anthrax. Biometals 24 : 533545.[PubMed] [CrossRef]
70. Grigg JC,, Vermeiren CL,, Heinrichs DE,, Murphy ME . 2007. Haem recognition by a Staphylococcus aureus NEAT domain. Mol Microbiol 63 : 139149.[PubMed] [CrossRef]
71. Fabian M,, Solomaha E,, Olson JS,, Maresso AW . 2009. Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis . J Biol Chem 284 : 3213832146.[PubMed] [CrossRef]
72. Honsa ES,, Fabian M,, Cardenas AM,, Olson JS,, Maresso AW . 2011. The five near-iron transporter (NEAT) domain anthrax hemophore, IsdX2, scavenges heme from hemoglobin and transfers heme to the surface protein IsdC. J Biol Chem 286 : 3365233660.[PubMed] [CrossRef]
73. Malmirchegini GR,, Sjodt M,, Shnitkind S,, Sawaya MR,, Rosinski J,, Newton SM,, Klebba PE,, Clubb RT . 2014. Novel mechanism of hemin capture by Hbp2, the hemoglobin-binding hemophore from Listeria monocytogenes . J Biol Chem 289 : 3488634899.[PubMed] [CrossRef]
74. Mukherjee S . 1985. The role of crevicular fluid iron in periodontal disease. J Periodontol 56 : 2227.[PubMed] [CrossRef]
75. Shizukuishi S,, Tazaki K,, Inoshita E,, Kataoka K,, Hanioka T,, Amano A . 1995. Effect of concentration of compounds containing iron on the growth of Porphyromonas gingivalis . FEMS Microbiol Lett 131 : 313317.[PubMed] [CrossRef]
76. Smalley JW,, Silver J,, Marsh PJ,, Birss AJ . 1998. The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the mu-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J 331 : 681685.[PubMed] [CrossRef]
77. Li N,, Collyer CA . 2011. Gingipains from Porphyromonas gingivalis: complex domain structures confer diverse functions. Eur J Microbiol Immunol 1 : 4158.[PubMed] [CrossRef]
78. Smalley JW,, Birss AJ,, Szmigielski B,, Potempa J . 2007. Sequential action of R- and K-specific gingipains of Porphyromonas gingivalis in the generation of the heam-containing pigment from oxyhaemoglobin. Arch Biochem Biophys 465 : 4449.[PubMed] [CrossRef]
79. Smalley JW,, Birss AJ,, Szmigielski B,, Potempa J . 2008. Mechanism of methaemoglobin breakdown by the lysine-specific gingipain of the periodontal pathogen Porphyromonas gingivalis . Biol Chem 389 : 12351238.[PubMed] [CrossRef]
80. Olczak T,, Sroka A,, Potempa J,, Olczak M . 2008. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol 189 : 197210.[PubMed] [CrossRef]
81. Smalley JW,, Byrne DP,, Birss AJ,, Wójtowicz H,, Sroka A,, Potempa J,, Olczak T . 2011. HmuY haemophore and gingipain proteases constitute a unique syntrophic system of haem acquisition by Porphyromonas gingivalis . PLoS One 6 : e17182. doi:10.1371/journal.pone.0017182. [CrossRef]
82. Sroka A,, Sztukowska M,, Potempa J,, Travis J,, Genco CA . 2001. Degradation of host heme proteins by lysine- and arginine-specific cysteine proteinases (gingipains) of Porphyromonas gingivalis . J Bacteriol 183 : 56095616.[PubMed] [CrossRef]
83. Lewis JP,, Plata K,, Yu F,, Rosato A,, Anaya C . 2006. Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. Microbiology 152 : 33673382.[PubMed] [CrossRef]
84. Dautin N . 2010. Serine protease autotransporters of Enterobacteriaceae (SPATEs): biogenesis and function. Toxins 2 : 11791206.[PubMed] [CrossRef]
85. Drago-Serrano ME,, Parra SG,, Manjarrez-Hernández HA . 2006. EspC, an autotransporter protein secreted by enteropathogenic Escherichia coli (EPEC), displays protease activity on human hemoglobin. FEMS Microbiol Lett 265 : 3540.[PubMed] [CrossRef]
86. Otto BR,, van Dooren SJ,, Nuijens JH,, Luirink J,, Oudega B . 1998. Characterization of a hemoglobin protease secreted by the pathogenic Escherichia coli strain EB1. J Exp Med 188 : 10911103.[PubMed] [CrossRef]
87. Otto BR,, van Dooren SJM,, Dozois CM,, Luirink J,, Oudega B . 2002. Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis . Infect Immun 70 : 510.[PubMed] [CrossRef]
88. Nikaido H . 1992. Porins and specific channels of bacterial outer membranes. Mol Microbiol 6 : 435442.[PubMed] [CrossRef]
89. Braun V,, Günter K,, Hantke K . 1991. Transport of iron across the outer membrane. Biol Met 4 : 1422.[PubMed] [CrossRef]
90. Schauer K,, Rodionov DA,, de Reuse H . 2008. New substrates for TonB-dependent transport: do we only see the “tip of the iceberg”? Trends Biochem Sci 33 : 330338.[PubMed] [CrossRef]
91. Noinaj N,, Guillier M,, Barnard TJ,, Buchanan SK . 2010. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64 : 4360.[PubMed] [CrossRef]
92. Härle C,, Kim I,, Angerer A,, Braun V . 1995. Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. EMBO J 14 : 14301438.[PubMed]
93. Lamont IL,, Beare PA,, Ochsner U,, Vasil AI,, Vasil ML . 2002. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa . Proc Natl Acad Sci USA 99 : 70727077.[PubMed] [CrossRef]
94. Kim I,, Stiefel A,, Plantör S,, Angerer A,, Braun V . 1997. Transcription induction of the ferric citrate transport genes via the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane. Mol Microbiol 23 : 333344.[PubMed] [CrossRef]
95. Braun V,, Mahren S,, Ogierman M . 2003. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr Opin Microbiol 6 : 173180.[PubMed] [CrossRef]
96. Welz D,, Braun V . 1998. Ferric citrate transport of Escherichia coli: functional regions of the FecR transmembrane regulatory protein. J Bacteriol 180 : 23872394.[PubMed]
97. Bradbeer C . 1993. The proton motive force drives the outer membrane transport of cobalamin in Escherichia coli . J Bacteriol 175 : 31463150.[PubMed]
98. Krewulak KD,, Vogel HJ . 2011. TonB or not TonB: is that the question? Biochem Cell Biol Biochim Biol Cell 89 : 8797.[PubMed] [CrossRef]
99. Braun V . 1995. Energy-coupled transport and signal transduction through the Gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 16 : 295307.[PubMed] [CrossRef]
100. Pawelek PD,, Croteau N,, Ng-Thow-Hing C,, Khursigara CM,, Moiseeva N,, Allaire M,, Coulton JW . 2006. Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312 : 13991402.[PubMed] [CrossRef]
101. Shultis DD,, Purdy MD,, Banchs CN,, Wiener MC . 2006. Outer membrane active transport: structure of the BtuB:TonB complex. Science 312 : 13961399.[PubMed] [CrossRef]
102. Udho E,, Jakes KS,, Finkelstein A . 2012. TonB-dependent transporter FhuA in planar lipid bilayers: partial exit of its plug from the barrel. Biochemistry 51 : 67536759.[PubMed] [CrossRef]
103. Schalk IJ,, Mislin GLA,, Brillet K . 2012. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr Top Membr 69 : 3766.[PubMed] [CrossRef]
104. Davidson AL,, Dassa E,, Orelle C,, Chen J . 2008. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72 : 317364.[PubMed] [CrossRef]
105. Tong Y,, Guo M . 2009. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 481 : 115.[PubMed] [CrossRef]
106. Berntsson RPA,, Smits SHJ,, Schmitt L,, Slotboom D-J,, Poolman B . 2010. A structural classification of substrate-binding proteins. FEBS Lett 584 : 26062617.[PubMed] [CrossRef]
107. Borths EL,, Locher KP,, Lee AT,, Rees DC . 2002. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci USA 99 : 1664216647.[PubMed] [CrossRef]
108. Stojiljkovic I,, Hantke K . 1994. Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica . Mol Microbiol 13 : 719732.[PubMed] [CrossRef]
109. Stojiljkovic I,, Hantke K . 1992. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in Gram-negative bacteria. EMBO J 11 : 43594367.[PubMed]
110. Schneider S,, Paoli M . 2005. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica . Acta Crystallograph Sect F Struct Biol Cryst Commun 61 : 802805.[PubMed] [CrossRef]
111. Hornung JM,, Jones HA,, Perry RD . 1996. The hmu locus of Yersinia pestis is essential for utilization of free haemin and haem-protein complexes as iron sources. Mol Microbiol 20 : 725739.[PubMed] [CrossRef]
112. Thompson JM,, Jones HA,, Perry RD . 1999. Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect Immun 67 : 38793892.[PubMed]
113. Wyckoff EE,, Duncan D,, Torres AG,, Mills M,, Maase K,, Payne SM . 1998. Structure of the Shigella dysenteriae haem transport locus and its phylogenetic distribution in enteric bacteria. Mol Microbiol 28 : 11391152.[PubMed] [CrossRef]
114. Occhino DA,, Wyckoff EE,, Henderson DP,, Wrona TJ,, Payne SM . 1998. Vibrio cholerae iron transport: haem transport genes are linked to one of two sets of tonB, exbB, exbD genes. Mol Microbiol 29 : 14931507.[PubMed] [CrossRef]
115. Ochsner UA,, Johnson Z,, Vasil ML . 2000. Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa . Microbiology 146 : 185198.[PubMed] [CrossRef]
116. Ho WW,, Li H,, Eakanunkul S,, Tong Y,, Wilks A,, Guo M,, Poulos TL . 2007. Holo- and apo-bound structures of bacterial periplasmic heme-binding proteins. J Biol Chem 282 : 3579635802.[PubMed] [CrossRef]
117. Mattle D,, Zeltina A,, Woo J-S,, Goetz BA,, Locher KP . 2010. Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis . J Mol Biol 404 : 220231.[PubMed] [CrossRef]
118. Woo J-S,, Zeltina A,, Goetz BA,, Locher KP . 2012. X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat Struct Mol Biol 19 : 13101315.[PubMed] [CrossRef]
119. Lewinson O,, Lee AT,, Locher KP,, Rees DC . 2010. A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation. Nat Struct Mol Biol 17 : 332338.[PubMed] [CrossRef]
120. ter Beek J,, Guskov A,, Slotboom DJ . 2014. Structural diversity of ABC transporters. J Gen Physiol 143 : 419435.[PubMed] [CrossRef]
121. Wyckoff EE,, Lopreato GF,, Tipton KA,, Payne SM . 2005. Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol 187 : 56585664.[PubMed] [CrossRef]
122. Tripathi S,, O’Neill MJ,, Wilks A,, Poulos TL . 2013. Crystal structure of the Pseudomonas aeruginosa cytoplasmic heme binding protein, Apo-PhuS. J Inorg Biochem 128 : 131136.[PubMed] [CrossRef]
123. Beveridge TJ,, Matias VRF, . 2006. Ultrastructure of Gram-positive cell walls, p 311. In Fischetti V,, Novick R,, Ferretti J,, Portnoy D,, Rood J (ed), Gram-Positive Pathogens, 2nd ed. ASM Press, Washington, DC. [CrossRef]
124. Pishchany G,, Sheldon JR,, Dickson CF,, Alam MT,, Read TD,, Gell DA,, Heinrichs DE,, Skaar EP . 2014. IsdB-dependent hemoglobin binding is required for acquisition of heme by Staphylococcus aureus . J Infect Dis 209 : 17641772.[PubMed] [CrossRef]
125. Sheldon JR,, Heinrichs DE . 2015. Recent developments in understanding the iron acquisition strategies of Gram positive pathogens. FEMS Microbiol Rev 39 : 592630.[PubMed] [CrossRef]
126. Mazmanian SK,, Ton-That H,, Su K,, Schneewind O . 2002. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc Natl Acad Sci USA 99 : 22932298.[PubMed] [CrossRef]
127. Mazmanian SK,, Skaar EP,, Gaspar AH,, Humayun M,, Gornicki P,, Jelenska J,, Joachmiak A,, Missiakas DM,, Schneewind O . 2003. Passage of heme-iron across the envelope of Staphylococcus aureus . Science 299 : 906909.[PubMed] [CrossRef]
128. Torres VJ,, Pishchany G,, Humayun M,, Schneewind O,, Skaar EP . 2006. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J Bacteriol 188 : 84218429.[PubMed] [CrossRef]
129. Dryla A,, Hoffmann B,, Gelbmann D,, Giefing C,, Hanner M,, Meinke A,, Anderson AS,, Koppensteiner W,, Konrat R,, von Gabain A,, Nagy E . 2007. High-affinity binding of the staphylococcal HarA protein to haptoglobin and hemoglobin involves a domain with an antiparallel eight-stranded beta-barrel fold. J Bacteriol 189 : 254264.[PubMed] [CrossRef]
130. Muryoi N,, Tiedemann MT,, Pluym M,, Cheung J,, Heinrichs DE,, Stillman MJ . 2008. Demonstration of the iron-regulated surface determinant (Isd) heme transfer pathway in Staphylococcus aureus . J Biol Chem 283 : 2812528136.[PubMed] [CrossRef]
131. Liu M,, Tanaka WN,, Zhu H,, Xie G,, Dooley DM,, Lei B . 2008. Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus . J Biol Chem 283 : 66686676.[PubMed] [CrossRef]
132. Tiedemann MT,, Heinrichs DE,, Stillman MJ . 2012. Multiprotein heme shuttle pathway in Staphylococcus aureus: iron-regulated surface determinant cog-wheel kinetics. J Am Chem Soc 134 : 1657816585.[PubMed] [CrossRef]
133. Grigg JC,, Vermeiren CL,, Heinrichs DE,, Murphy ME . 2007. Heme coordination by Staphylococcus aureus IsdE. J Biol Chem 282 : 2881528822.[PubMed] [CrossRef]
134. Pluym M,, Vermeiren CL,, Mack J,, Heinrichs DE,, Stillman MJ . 2007. Heme binding properties of Staphylococcus aureus IsdE. Biochemistry 46 : 1277712877.[PubMed] [CrossRef]
135. Moriwaki Y,, Terada T,, Caaveiro JMM,, Takaoka Y,, Hamachi I,, Tsumoto K,, Shimizu K . 2013. Heme binding mechanism of structurally similar iron-regulated surface determinant near transporter domains of Staphylococcus aureus exhibiting different affinities for heme. Biochemistry 52 : 88668877.[PubMed] [CrossRef]
136. Villareal VA,, Pilpa RM,, Robson SA,, Fadeev EA,, Clubb RT . 2008. The IsdC protein from Staphylococcus aureus uses a flexible binding pocket to capture heme. J Biol Chem 283 : 3159131600.[PubMed] [CrossRef]
137. Abe R,, Caaveiro JMM,, Kozuka-Hata H,, Oyama M,, Tsumoto K . 2012. Mapping ultra-weak protein-protein interactions between heme transporters of Staphylococcus aureus . J Biol Chem 287 : 1647716487.[PubMed] [CrossRef]
138. Grigg JC,, Mao CX,, Murphy MEP . 2011. Iron-coordinating tyrosine is a key determinant of NEAT domain heme transfer. J Mol Biol 413 : 684698.[PubMed] [CrossRef]
139. Reniere ML,, Skaar EP . 2008. Staphylococcus aureus haem oxygenases are differentially regulated by iron and haem. Mol Microbiol 69 : 13041315.[PubMed] [CrossRef]
140. Cheng AG,, Kim HK,, Burts ML,, Krausz T,, Schneewind O,, Missiakas DM . 2009. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 23 : 33933404.[PubMed] [CrossRef]
141. Visai L,, Yanagisawa N,, Josefsson E,, Tarkowski A,, Pezzali I,, Rooijakkers SH,, Foster TJ,, Speziale P . 2009. Immune evasion by Staphylococcus aureus conferred by iron-regulated surface determinant protein IsdH. Microbiology 155 : 667679.[PubMed] [CrossRef]
142. Pilpa RM,, Fadeev EA,, Villareal VA,, Wong ML,, Phillips M,, Clubb RT . 2006. Solution structure of the NEAT (NEAr Transporter) domain from IsdH/HarA: the human hemoglobin receptor in Staphylococcus aureus . J Mol Biol 360 : 435447.[PubMed] [CrossRef]
143. Sharp KH,, Schneider S,, Cockayne A,, Paoli M . 2007. Crystal structure of the heme-IsdC complex, the central conduit of the Isd iron/heme uptake system in Staphylococcus aureus . J Biol Chem 282 : 1062510631.[PubMed] [CrossRef]
144. Watanabe M,, Tanaka Y,, Suenaga A,, Kuroda M,, Yao M,, Watanabe N,, Arisaka F,, Ohta T,, Tanaka I,, Tsumoto K . 2008. Structural basis for multimeric heme complexation through a specific protein-heme interaction: the case of the third neat domain of IsdH from Staphylococcus aureus . J Biol Chem 283 : 2864928659.[PubMed] [CrossRef]
145. Gaudin CFM,, Grigg JC,, Arrieta AL,, Murphy MEP . 2011. Unique heme-iron coordination by the hemoglobin receptor IsdB of Staphylococcus aureus . Biochemistry 50 : 54435452.[PubMed] [CrossRef]
146. Dryla A,, Gelbmann D,, von Gabain A,, Nagy E . 2003. Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. Mol Microbiol 49 : 3753.[PubMed] [CrossRef]
147. Pilpa RM,, Robson SA,, Villareal VA,, Wong ML,, Phillips M,, Clubb RT . 2009. Functionally distinct NEAT (NEAr Transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin. J Biol Chem 284 : 11661176.[PubMed] [CrossRef]
148. Dickson CF,, Krishna Kumar K,, Jacques DA,, Malmirchegini GR,, Spirig T,, Mackay JP,, Clubb RT,, Guss JM,, Gell DA . 2014. Structure of the hemoglobin-IsdH complex reveals the molecular basis of iron capture by Staphylococcus aureus . J Biol Chem 289 : 67286738.[PubMed] [CrossRef]
149. Krishna Kumar K,, Jacques DA,, Pishchany G,, Caradoc-Davies T,, Spirig T,, Malmirchegini GR,, Langley DB,, Dickson CF,, Mackay JP,, Clubb RT,, Skaar EP,, Guss JM,, Gell DA . 2011. Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein, IsdH. J Biol Chem 286 : 3843938447.[PubMed] [CrossRef]
150. Bowden CFM,, Verstraete MM,, Eltis LD,, Murphy MEP . 2014. Hemoglobin binding and catalytic heme extraction by IsdB near iron transporter domains. Biochemistry 53 : 22862294.[PubMed] [CrossRef]
151. Pluym M . 2008. Heme binding in the NEAT domains of IsdA and IsdC of Staphylococcus aureus . J Inorg Biochem 102 : 480488.[PubMed] [CrossRef]
152. Fonner BA,, Tripet BP,, Eilers B,, Stanisich J,, Sullivan-Springhetti RK,, Moore R,, Liu M,, Lei B,, Copie V . 2014. Solution structure and molecular determinants of hemoglobin binding of the first NEAT domain of IsdB in Staphylococcus aureus . Biochemistry 53 : 39223933.[PubMed] [CrossRef]
153. Spirig T,, Malmirchegini GR,, Zhang J,, Robson SA,, Sjodt M,, Liu M,, Krishna Kumar K,, Dickson CF,, Gell DA,, Lei B,, Loo JA,, Clubb RT . 2013. Staphylococcus aureus uses a novel multidomain receptor to break apart human hemoglobin and steal its heme. J Biol Chem 288 : 10651078.[PubMed] [CrossRef]
154. Zhu H,, Li D,, Liu M,, Copié V,, Lei B . 2014. Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin. PLoS One 9 : e100744. doi:10.1371/journal.pone.0100744. [CrossRef]
155. Haley KP,, Janson EM,, Heilbronner S,, Foster TJ,, Skaar EP . 2011. Staphylococcus lugdunensis IsdG liberates iron from host heme. J Bacteriol 193 : 47494757.[PubMed] [CrossRef]
156. Zapotoczna M,, Heilbronner S,, Speziale P,, Foster TJ . 2012. Iron-regulated surface determinant (Isd) proteins of Staphylococcus lugdunensis . J Bacteriol 194 : 64536467.[PubMed] [CrossRef]
157. Brozyna JR,, Sheldon JR,, Heinrichs DE . 2014. Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis, by heme, hemoglobin, and coculture with Staphylococcus aureus . MicrobiologyOpen 3 : 182195.[PubMed] [CrossRef]
158. Maresso AW,, Chapa TJ,, Schneewind O . 2006. Surface protein IsdC and Sortase B are required for heme-iron scavenging of Bacillus anthracis . J Bacteriol 188 : 81458152.[PubMed] [CrossRef]
159. Tarlovsky Y,, Fabian M,, Solomaha E,, Honsa E,, Olson JS,, Maresso AW . 2010. A Bacillus anthracis S-layer homology protein that binds heme and mediates heme delivery to IsdC. J Bacteriol 192 : 35033511.[PubMed] [CrossRef]
160. Bates CS,, Montañez GE,, Woods CR,, Vincent RM,, Eichenbaum Z . 2003. Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron. Infect Immun 71 : 10421055.[PubMed] [CrossRef]
161. Drazek ES,, Hammack CA,, Schmitt MP . 2000. Corynebacterium diphtheriae genes required for acquisition of iron from haemin and haemoglobin are homologous to ABC haemin transporters. Mol Microbiol 36 : 6884.[PubMed] [CrossRef]
162. Ouattara M,, Cunha EB,, Li X,, Huang Y-S,, Dixon D,, Eichenbaum Z . 2010. Shr of group A Streptococcus is a new type of composite NEAT protein involved in sequestering haem from methaemoglobin. Mol Microbiol 78 : 739756.[PubMed] [CrossRef]
163. Lei B,, Liu M,, Voyich JM,, Prater CI,, Kala SV,, DeLeo FR,, Musser JM . 2003. Identification and characterization of HtsA, a second heme-binding protein made by Streptococcus pyogenes . Infect Immun 71 : 59625969.[PubMed] [CrossRef]
164. Dahesh S,, Nizet V,, Cole JN . 2012. Study of streptococcal hemoprotein receptor (Shr) in iron acquisition and virulence of M1T1 group A streptococcus. Virulence 3 : 566575.[PubMed] [CrossRef]
165. Allen CE,, Schmitt MP . 2009. HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae . J Bacteriol 191 : 26382648.[PubMed] [CrossRef]
166. Allen CE,, Schmitt MP . 2011. Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J Bacteriol 193 : 53745385.[PubMed] [CrossRef]
167. Allen CE,, Schmitt MP . 2014. Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin/haptoglobin complex. J Bacteriol 197 : 553562.[PubMed] [CrossRef]
168. Allen CE,, Burgos JM,, Schmitt MP . 2013. Analysis of novel iron-regulated, surface-anchored hemin-binding proteins in Corynebacterium diphtheriae . J Bacteriol 195 : 28522863.[PubMed] [CrossRef]
169. Wilks A . 2002. Heme oxygenase: evolution, structure, and mechanism. Antioxid Redox Signal 4 : 603614.[PubMed] [CrossRef]
170. Schmitt MP . 1997. Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol 179 : 838845.[PubMed]
171. Wilks A,, Schmitt MP . 1998. Expression and characterization of a heme oxygenase (HmuO) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem 273 : 837841.[PubMed] [CrossRef]
172. Zhu W,, Wilks A,, Stojiljkovic I . 2000. Degradation of heme in Gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol 182 : 67836790.[PubMed] [CrossRef]
173. Ratliff M,, Zhu W,, Deshmukh R,, Wilks A,, Stojiljkovic I . 2001. Homologues of neisserial heme oxygenase in Gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa . J Bacteriol 183 : 63946403.[PubMed] [CrossRef]
174. Nambu S,, Matsui T,, Goulding CW,, Takahashi S,, Ikeda-Saito M . 2013. A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J Biol Chem 288 : 1010110109.[PubMed] [CrossRef]
175. Wilks A,, Heinzl G . 2014. Heme oxygenation and the widening paradigm of heme degradation. Arch Biochem Biophys 544 : 8795.[PubMed] [CrossRef]
176. Wilks A,, Ikeda-Saito M . 2014. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Acc Chem Res 47 : 22912298.[PubMed] [CrossRef]