Chapter 7 : Small RNAs in Bacterial Virulence and Communication

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Small RNAs in Bacterial Virulence and Communication, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555819286/9781555819279_Chap07-2.gif


Many pathogenic bacteria transit between free-living lifestyles and the markedly different environments presented by their hosts. This requires detection, integration, and response to different external and intracellular conditions and subsequent realignment of physiology and metabolism, as well as virulence factor expression via coordinated gene expression changes. Signals detected by pathogens include not only changes in temperature, pH, or nutrient availability, but also cues from the host and neighboring bacteria. How virulence genes are regulated at the transcriptional level has been studied extensively, and the regulons of several master regulators of virulence and survival gene transcription have been described in detail ( ). This has provided insight into both general regulatory mechanisms used by bacteria, and the lifestyles of pathogenic species.

Citation: Svensson S, Sharma C. 2016. Small RNAs in Bacterial Virulence and Communication, p 169-212. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0028-2015
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Genomic location and regulatory relationships between bacterial riboregulators and their mRNA targets. Riboregulators are depicted in red; target mRNAs are shown in blue. Flanking open reading frames (ORFs) are shown in black. Arrows indicate transcriptional start sites. -encoded antisense RNAs are transcribed from the opposite strand to their target mRNAs and can overlap with target 5′/3′ untranslated regions (UTRs) (top panel) and/or the mRNA ORF (bottom panel). -encoded sRNAs can be expressed from distinct regions of the chromosome from their target genes: either from stand-alone genes encoded intergenically (top panel) or from ORFs/3′UTRs via either processing or internal transcriptional start sites (bottom panel). Extended UTR elements of adjacent operons can allow for coregulation of related genes at the posttranscriptional level. The long-antisense RNA (lasRNA) of the excludon paradigm arises from transcription of an extended 5′UTR that has complementarity to a divergently transcribed operon (top panel). Also, extended 3′UTR elements can potentially base-pair with transcripts expressed from convergently transcribed operons (bottom panel). -elements within mRNAs themselves can regulate expression of their associated transcripts. These include ligand-binding riboswitches (top panel) and temperature-responsive RNA thermosensors (bottom panel).

Citation: Svensson S, Sharma C. 2016. Small RNAs in Bacterial Virulence and Communication, p 169-212. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0028-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mechanisms of posttranscriptional control by regulatory RNAs. Gene repression (left) and activation (right) mechanisms used by base-pairing sRNAs (depicted in red) for direct regulation of target mRNAs (shown in blue) at the level of translation or stability. Base-pairing interaction sites in mRNAs and sRNAs are shown with blue- and red-lined boxes, respectively. Potential RNase cleavage sites are indicated with an orange asterisk. Also participating are ribosomes and RNases. TIR, translation initiation region including RBS and start codon. Potential sRNA interaction sites in regulated target mRNAs, starting from the TSS (transcriptional start site) to the transcriptional terminator (TERM). Targeting/titration of other regulatory molecules by riboregulators acting as so-called sponges to affect gene expression. RNA sponges can be stand-alone sRNAs, regions of mRNAs themselves (either intact or processed), or those derived from housekeeping RNAs such as the 3′ external transcribed spacer (3′ ETS) of tRNAs. They can target either sRNA or protein regulators and have been shown to sequester them away from their targets, trigger their degradation, and/or modulate their regulatory activity.

Citation: Svensson S, Sharma C. 2016. Small RNAs in Bacterial Virulence and Communication, p 169-212. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0028-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Numerous riboregulators participate in quorum sensing and virulence regulation of . Riboregulation of the ToxT virulence regulon in response to temperature. The central transcriptional regulator ToxT (blue circles, center) activates virulence and colonization factor genes, such as (toxin-coregulated pilus), (cholera toxin), and (accessory colonization factor). ToxT also autoregulates its own transcription. Levels of ToxT are also modulated in response to temperature by a FourU RNA thermometer, with increased translation at the 37°C host temperature. ToxT also activates the sRNAs TarB, which represses translation of the ORF of mRNA, and TarA, which represses mRNA (glucose uptake). The VrrA sRNA also represses . The Qrr sRNAs mediate the switch between low and high cell-density physiologies via reciprocal posttranscriptional regulation of the master regulators AphA and HapR. autoinducers (AI-2 and CAI-1) are made by LuxS and CqsA, respectively, and accumulate extracellularly. Phosphorelay systems headed by LuxPQ or CqsS (AI-2 and CAI-1, respectively) detect autoinducers. Left panel: Low bacterial density. Continued phosphorylation of LuxO at low autoinducer conditions leads to transcription of the Qrr sRNAs, which act along with the RNA chaperone Hfq to activate translation of mRNA. In turn, AphA expression induces the ToxT virulence regulon (see panel ), as well as genes required for biofilm formation (). The Qrrs also repress the mRNA, which encodes the high-density master regulator (see right panel). Right panel: High bacterial density. High autoinducer concentration reduces levels of phosphorylated LuxO and, thus, Qrr expression. The mRNA is no longer destabilized, allowing translation of the HapR regulator. HapR activates genes that mediate biofilm dispersal and competence. In addition, genes activated by AphA at low density, such as , as well as itself and its regulated genes, are repressed by HapR. Genes encoding the type VI secretion system are also induced. Finally, feedback regulation occurs via HapR activation of Qrr expression and Qrr repression of the mRNA. The sRNA VqmR is activated by the transcriptional regulator VqmA and posttranscriptionally represses mRNA and mRNA, encoding the RTX toxin, as well as six other mRNAs.

Citation: Svensson S, Sharma C. 2016. Small RNAs in Bacterial Virulence and Communication, p 169-212. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0028-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The dual-function sRNA RNAIII of reciprocally regulates expression of secreted virulence factors and surface proteins in response to cell density. (A) Genomic context and transcriptional regulation of the quorum sensing locus, including the dual-function RNAIII. The RNAII mRNA (black) encodes proteins required for synthesis and detection of the peptide pheromone (, green and red open reading frames [ORFs]). Under high cell density and high autoinducer concentration, phosphorylated AgrA (red) activates transcription of the RNAIII sRNA (blue). RNAIII encodes δ-haemolysin ( ORF) and is the major mediator of Agr regulation. (B) Overall integration of RNAIII posttranscriptional activities promotes toxin expression and represses expression of secreted proteins. Center: General structure of RNAIII with the coding region (light blue) and C-rich loops (red). The RNAIII molecule directly activates the mRNA encoding α-haemolysin (). Also, together with the double-strand-specific RNase III, the sRNA directly represses numerous genes encoding surface-associated proteins (, , SA2353, SA1000). RNAIII also represses translation of Rot, a repressor of toxin gene expression.

Citation: Svensson S, Sharma C. 2016. Small RNAs in Bacterial Virulence and Communication, p 169-212. In Kudva I, Cornick N, Plummer P, Zhang Q, Nicholson T, Bannantine J, Bellaire B (ed),

Virulence Mechanisms of Bacterial Pathogens, Fifth Edition

. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.VMBF-0028-2015
Permissions and Reprints Request Permissions
Download as Powerpoint


1. de las Heras A,, Cain RJ,, Bielecka MK,, Vazquez-Boland JA . 2011. Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol 14 : 118127.[PubMed] [CrossRef]
2. Bradley ES,, Bodi K,, Ismail AM,, Camilli A . 2011. A genome-wide approach to discovery of small RNAs involved in regulation of virulence in Vibrio cholerae . PLoS Pathog 7 : e1002126. doi:10.1371/journal.ppat.1002126. [PubMed] [CrossRef]
3. Storz G,, Vogel J,, Wassarman KM . 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43 : 880891.[PubMed] [CrossRef]
4. Caldelari I,, Chao Y,, Romby P,, Vogel J . 2013. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harbor Perspect Med 3 : a010298. [PubMed] [CrossRef]
5. Papenfort K,, Vogel J . 2010. Regulatory RNA in bacterial pathogens. Cell Host Microbe 8 : 116127.[PubMed] [CrossRef]
6. Croucher NJ,, Thomson NR . 2010. Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13 : 619624.[PubMed] [CrossRef]
7. van Vliet AH . 2010. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett 302 : 17.[PubMed] [CrossRef]
8. Sorek R,, Cossart P . 2010. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11 : 916.[PubMed] [CrossRef]
9. Sharma CM,, Vogel J . 2014. Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 19C : 97105.[PubMed] [CrossRef]
10. Updegrove TB,, Shabalina SA,, Storz G . 2015. How do base-pairing small RNAs evolve? FEMS Microbiol Rev 39 : 379391.[PubMed] [CrossRef]
11. Vanderpool CK,, Balasubramanian D,, Lloyd CR . 2011. Dual-function RNA regulators in bacteria. Biochimie 93 : 19431949.[PubMed] [CrossRef]
12. Mellin JR,, Cossart P . 2015. Unexpected versatility in bacterial riboswitches. Trends Genet 31 : 150156.[PubMed] [CrossRef]
13. Vogel J,, Luisi BF . 2011. Hfq and its constellation of RNA. Nat Rev Microbiol 9 : 578589.[PubMed] [CrossRef]
14. Chao Y,, Vogel J . 2010. The role of Hfq in bacterial pathogens. Curr Opin Microbiol 13 : 2433.[PubMed] [CrossRef]
15. Papenfort K,, Vogel J . 2009. Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res Microbiol 160 : 278287.[PubMed] [CrossRef]
16. Lalaouna D,, Eyraud A,, Chabelskaya S,, Felden B,, Masse E . 2014. Regulatory RNAs involved in bacterial antibiotic resistance. PLoS Pathog 10 : e1004299. doi:10.1371/journal.ppat.1004299. [PubMed] [CrossRef]
17. Kim T,, Bak G,, Lee J,, Kim KS . 2015. Systematic analysis of the role of bacterial Hfq-interacting sRNAs in the response to antibiotics. J Antimicrob Chemother 70 : 16591668.[PubMed] [CrossRef]
18. Pichon C,, Felden B . 2005. Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci USA 102 : 1424914254.[PubMed] [CrossRef]
19. Padalon-Brauch G,, Hershberg R,, Elgrably-Weiss M,, Baruch K,, Rosenshine I,, Margalit H,, Altuvia S . 2008. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res 36 : 19131927.[PubMed] [CrossRef]
20. Wilms I,, Overloper A,, Nowrousian M,, Sharma CM,, Narberhaus F . 2012. Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens . RNA Biol 9 : 446457.[PubMed] [CrossRef]
21. Pfeiffer V,, Sittka A,, Tomer R,, Tedin K,, Brinkmann V,, Vogel J . 2007. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol 66 : 11741191.[PubMed] [CrossRef]
22. Tree JJ,, Granneman S,, McAteer SP,, Tollervey D,, Gally DL . 2014. Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli . Mol Cell 55 : 199213.[PubMed] [CrossRef]
23. Vogel J . 2009. A rough guide to the non-coding RNA world of Salmonella . Mol Microbiol 71 : 111.[PubMed] [CrossRef]
24. Hebrard M,, Kroger C,, Srikumar S,, Colgan A,, Handler K,, Hinton JC . 2012. sRNAs and the virulence of Salmonella enterica serovar Typhimurium. RNA Biol 9 : 437445.[PubMed] [CrossRef]
25. Mellin JR,, Cossart P . 2012. The non-coding RNA world of the bacterial pathogen Listeria monocytogenes . RNA Biol 9 : 372378.[PubMed] [CrossRef]
26. Izar B,, Mraheil MA,, Hain T . 2011. Identification and role of regulatory non-coding RNAs in Listeria monocytogenes . Int J Mol Sci 12 : 50705079.[PubMed] [CrossRef]
27. Bardill JP,, Hammer BK . 2012. Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae . RNA Biol 9 : 392401.[PubMed] [CrossRef]
28. Nguyen AN,, Jacq A . 2014. Small RNAs in the Vibrionaceae: an ocean still to be explored. Wiley Interdiscip Rev RNA 5 : 381392.[PubMed] [CrossRef]
29. Heroven AK,, Bohme K,, Dersch P . 2012. The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence. RNA Biol 9 : 379391.[PubMed] [CrossRef]
30. Schiano CA,, Lathem WW . 2012. Post-transcriptional regulation of gene expression in Yersinia species. Front Cell Infect Microbiol 2 : 129. [PubMed] [CrossRef]
31. Fechter P,, Caldelari I,, Lioliou E,, Romby P . 2014. Novel aspects of RNA regulation in Staphylococcus aureus . FEBS Lett 588 : 25232529.[PubMed] [CrossRef]
32. Guillet J,, Hallier M,, Felden B . 2013. Emerging functions for the Staphylococcus aureus RNome. PLoS Pathog 9 : e1003767. doi:10.1371/journal.ppat.1003767. [PubMed] [CrossRef]
33. Arnvig K,, Young D . 2012. Non-coding RNA and its potential role in Mycobacterium tuberculosis pathogenesis. RNA Biol 9 : 427436.[PubMed] [CrossRef]
34. Pernitzsch SR,, Sharma CM . 2012. Transcriptome complexity and riboregulation in the human pathogen Helicobacter pylori . Front Cell Infect Microbiol 2 : 14. [PubMed] [CrossRef]
35. Sonnleitner E,, Romeo A,, Blasi U . 2012. Small regulatory RNAs in Pseudomonas aeruginosa . RNA Biol 9 : 364371.[PubMed] [CrossRef]
36. Le Rhun A,, Charpentier E . 2012. Small RNAs in streptococci. RNA Biol 9 : 414426.[PubMed] [CrossRef]
37. Barquist L,, Vogel J . 2015. Accelerating discovery and functional analysis of small RNAs with new technologies. Annu Rev Genet 49 : 367394.[PubMed] [CrossRef]
38. Vogel J,, Sharma CM . 2005. How to find small non-coding RNAs in bacteria. Biol Chem 386 : 12191238.[PubMed] [CrossRef]
39. Sharma CM,, Vogel J . 2009. Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol 12 : 536546.[PubMed] [CrossRef]
40. Altuvia S . 2007. Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 10 : 257261.[PubMed] [CrossRef]
41. Vogel J,, Wagner EG . 2007. Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 10 : 262270.[PubMed] [CrossRef]
42. Backofen R,, Hess WR . 2010. Computational prediction of sRNAs and their targets in bacteria. RNA Biol 7 : 3242.[PubMed] [CrossRef]
43. Brantl S . 2007. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10 : 102109.[PubMed] [CrossRef]
44. Mizuno T,, Chou MY,, Inouye M . 1984. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81 : 19661970.[PubMed] [CrossRef]
45. Novick RP,, Ross HF,, Projan SJ,, Kornblum J,, Kreiswirth B,, Moghazeh S . 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12 : 39673975.[PubMed]
46. Argaman L,, Hershberg R,, Vogel J,, Bejerano G,, Wagner EG,, Margalit H,, Altuvia S . 2001. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli . Curr Biol 11 : 941950.[PubMed] [CrossRef]
47. Rivas E,, Eddy SR . 2000. Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16 : 583605.[PubMed] [CrossRef]
48. Rivas E,, Eddy SR . 2001. Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2 : 8. [PubMed] [CrossRef]
49. Rivas E,, Klein RJ,, Jones TA,, Eddy SR . 2001. Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol 11 : 13691373.[PubMed] [CrossRef]
50. Wassarman KM,, Repoila F,, Rosenow C,, Storz G,, Gottesman S . 2001. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15 : 16371651.[PubMed] [CrossRef]
51. Tjaden B,, Saxena RM,, Stolyar S,, Haynor DR,, Kolker E,, Rosenow C . 2002. Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res 30 : 37323738.[PubMed] [CrossRef]
52. Tjaden B,, Haynor DR,, Stolyar S,, Rosenow C,, Kolker E . 2002. Identifying operons and untranslated regions of transcripts using Escherichia coli RNA expression analysis. Bioinformatics 18(Suppl 1): S337344.[PubMed] [CrossRef]
53. Toledo-Arana A,, Dussurget O,, Nikitas G,, Sesto N,, Guet-Revillet H,, Balestrino D,, Loh E,, Gripenland J,, Tiensuu T,, Vaitkevicius K,, Barthelemy M,, Vergassola M,, Nahori MA,, Soubigou G,, Regnault B,, Coppee JY,, Lecuit M,, Johansson J,, Cossart P . 2009. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459 : 950956.[PubMed] [CrossRef]
54. Vogel J,, Bartels V,, Tang TH,, Churakov G,, Slagter-Jager JG,, Huttenhofer A,, Wagner EG . 2003. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res 31 : 64356443.[PubMed] [CrossRef]
55. Sonnleitner E,, Sorger-Domenigg T,, Madej MJ,, Findeiss S,, Hackermuller J,, Huttenhofer A,, Stadler PF,, Blasi U,, Moll I . 2008. Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools. Microbiology 154 : 31753187.[PubMed] [CrossRef]
56. Zhang A,, Wassarman KM,, Rosenow C,, Tjaden BC,, Storz G,, Gottesman S . 2003. Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50 : 11111124.[PubMed] [CrossRef]
57. Christiansen JK,, Nielsen JS,, Ebersbach T,, Valentin-Hansen P,, Sogaard-Andersen L,, Kallipolitis BH . 2006. Identification of small Hfq-binding RNAs in Listeria monocytogenes . RNA 12 : 13831396.[PubMed] [CrossRef]
58. Barquist L,, Boinett CJ,, Cain AK . 2013. Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol 10 : 11611169.[PubMed] [CrossRef]
59. Ingolia NT . 2014. Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15 : 205213.[PubMed] [CrossRef]
60. Konig J,, Zarnack K,, Luscombe NM,, Ule J . 2012. Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13 : 7783.[PubMed] [CrossRef]
61. Liu JM,, Livny J,, Lawrence MS,, Kimball MD,, Waldor MK,, Camilli A . 2009. Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37 : e46. [PubMed] [CrossRef]
62. Mraheil MA,, Billion A,, Mohamed W,, Mukherjee K,, Kuenne C,, Pischimarov J,, Krawitz C,, Retey J,, Hartsch T,, Chakraborty T,, Hain T . 2011. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res 39 : 42354248.[PubMed] [CrossRef]
63. Yoder-Himes DR,, Chain PS,, Zhu Y,, Wurtzel O,, Rubin EM,, Tiedje JM,, Sorek R . 2009. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci USA 106 : 39763981.[PubMed] [CrossRef]
64. Sharma CM,, Hoffmann S,, Darfeuille F,, Reignier J,, Findeiss S,, Sittka A,, Chabas S,, Reiche K,, Hackermuller J,, Reinhardt R,, Stadler PF,, Vogel J . 2010. The primary transcriptome of the major human pathogen Helicobacter pylori . Nature 464 : 250255.[PubMed] [CrossRef]
65. Kroger C,, Dillon SC,, Cameron AD,, Papenfort K,, Sivasankaran SK,, Hokamp K,, Chao Y,, Sittka A,, Hebrard M,, Handler K,, Colgan A,, Leekitcharoenphon P,, Langridge GC,, Lohan AJ,, Loftus B,, Lucchini S,, Ussery DW,, Dorman CJ,, Thomson NR,, Vogel J,, Hinton JC . 2012. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci USA 109 : E1277E1286.[PubMed] [CrossRef]
66. Kroger C,, Colgan A,, Srikumar S,, Handler K,, Sivasankaran SK,, Hammarlof DL,, Canals R,, Grissom JE,, Conway T,, Hokamp K,, Hinton JC . 2013. An Infection-relevant transcriptomic compendium for Salmonella enterica serovar Typhimurium. Cell Host Microbe 14 : 683695.[PubMed] [CrossRef]
67. Perkins TT,, Kingsley RA,, Fookes MC,, Gardner PP,, James KD,, Yu L,, Assefa SA,, He M,, Croucher NJ,, Pickard DJ,, Maskell DJ,, Parkhill J,, Choudhary J,, Thomson NR,, Dougan G . 2009. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi . PLoS Genet 5 : e1000569. doi:10.1371/journal.pgen.1000569. [PubMed] [CrossRef]
68. Dugar G,, Herbig A,, Forstner KU,, Heidrich N,, Reinhardt R,, Nieselt K,, Sharma CM . 2013. High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet 9 : e1003495. doi:10.1371/journal.pgen.1003495. [CrossRef]
69. Porcelli I,, Reuter M,, Pearson BM,, Wilhelm T,, van Vliet AH . 2013. Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria . BMC Genomics 14 : 616. [PubMed] [CrossRef]
70. Taveirne ME,, Theriot CM,, Livny J,, DiRita VJ . 2013. The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq. PLoS One 8 : e73586. doi:10.1371/journal.pone.0073586. [PubMed] [CrossRef]
71. Butcher J,, Stintzi A . 2013. The transcriptional landscape of Campylobacter jejuni under iron replete and iron limited growth conditions. PLoS One 8 : e79475. doi:10.1371/journal.pone.0079475. [PubMed] [CrossRef]
72. Remmele CW,, Xian Y,, Albrecht M,, Faulstich M,, Fraunholz M,, Heinrichs E,, Dittrich MT,, Muller T,, Reinhardt R,, Rudel T . 2014. Transcriptional landscape and essential genes of Neisseria gonorrhoeae . Nucleic Acids Res 42 : 1057910595.[PubMed] [CrossRef]
73. Papenfort K,, Forstner KU,, Cong JP,, Sharma CM,, Bassler BL . 2015. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc Natl Acad Sci USA 112 : E766E775.[PubMed] [CrossRef]
74. Mandlik A,, Livny J,, Robins WP,, Ritchie JM,, Mekalanos JJ,, Waldor MK . 2011. RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10 : 165174.[PubMed] [CrossRef]
75. Albrecht M,, Sharma CM,, Reinhardt R,, Vogel J,, Rudel T . 2010. Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res 38 : 868877.[PubMed] [CrossRef]
76. Albrecht M,, Sharma CM,, Dittrich MT,, Muller T,, Reinhardt R,, Vogel J,, Rudel T . 2011. The transcriptional landscape of Chlamydia pneumoniae . Genome Biol 12 : R98. [PubMed] [CrossRef]
77. Wurtzel O,, Sesto N,, Mellin JR,, Karunker I,, Edelheit S,, Becavin C,, Archambaud C,, Cossart P,, Sorek R . 2012. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol 8 : 583. [PubMed] [CrossRef]
78. Oliver HF,, Orsi RH,, Ponnala L,, Keich U,, Wang W,, Sun Q,, Cartinhour SW,, Filiatrault MJ,, Wiedmann M,, Boor KJ . 2009. Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics 10 : 641. [PubMed] [CrossRef]
79. Wurtzel O,, Yoder-Himes DR,, Han K,, Dandekar AA,, Edelheit S,, Greenberg EP,, Sorek R,, Lory S . 2012. The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog 8 : e1002945. doi:10.1371/journal.ppat.1002945. [PubMed] [CrossRef]
80. Cortes T,, Schubert OT,, Rose G,, Arnvig KB,, Comas I,, Aebersold R,, Young DB . 2013. Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis . Cell Rep 5 : 11211131.[PubMed] [CrossRef]
81. Mann B,, van Opijnen T,, Wang J,, Obert C,, Wang YD,, Carter R,, McGoldrick DJ,, Ridout G,, Camilli A,, Tuomanen EI,, Rosch JW . 2012. Control of virulence by small RNAs in Streptococcus pneumoniae . PLoS Pathog 8 : e1002788. doi:10.1371/journal.ppat.1002788. [PubMed] [CrossRef]
82. Bohn C,, Rigoulay C,, Chabelskaya S,, Sharma CM,, Marchais A,, Skorski P,, Borezee-Durant E,, Barbet R,, Jacquet E,, Jacq A,, Gautheret D,, Felden B,, Vogel J,, Bouloc P . 2010. Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res 38 : 66206636.[PubMed] [CrossRef]
83. Beaume M,, Hernandez D,, Farinelli L,, Deluen C,, Linder P,, Gaspin C,, Romby P,, Schrenzel J,, Francois P . 2010. Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PloS One 5 : e10725. doi:10.1371/journal.pone.0010725. [CrossRef]
84. Sahr T,, Rusniok C,, Dervins-Ravault D,, Sismeiro O,, Coppee JY,, Buchrieser C . 2012. Deep sequencing defines the transcriptional map of L. pneumophila and identifies growth phase-dependent regulated ncRNAs implicated in virulence. RNA Biol 9 : 503519.[PubMed] [CrossRef]
85. Georg J,, Hess WR . 2011. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 75 : 286300.[PubMed] [CrossRef]
86. Thomason MK,, Storz G . 2010. Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44 : 167188.[PubMed] [CrossRef]
87. Lasa I,, Toledo-Arana A,, Dobin A,, Villanueva M,, de los Mozos IR,, Vergara-Irigaray M,, Segura V,, Fagegaltier D,, Penades JR,, Valle J,, Solano C,, Gingeras TR . 2011. Genome-wide antisense transcription drives mRNA processing in bacteria. Proc Natl Acad Sci USA 108 : 2017220177.[PubMed] [CrossRef]
88. Chao Y,, Papenfort K,, Reinhardt R,, Sharma CM,, Vogel J . 2012. An atlas of Hfq-bound transcripts reveals 3′UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 31 : 40054019.[PubMed] [CrossRef]
89. Miyakoshi M,, Chao Y,, Vogel J . 2015. Regulatory small RNAs from the 3′ regions of bacterial mRNAs. Curr Opin Microbiol 24 : 132139.[PubMed] [CrossRef]
90. Sittka A,, Lucchini S,, Papenfort K,, Sharma CM,, Rolle K,, Binnewies TT,, Hinton JC,, Vogel J . 2008. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4 : e1000163. doi:10.1371/journal.pgen.1000163. [PubMed] [CrossRef]
91. Lioliou E,, Sharma CM,, Caldelari I,, Helfer AC,, Fechter P,, Vandenesch F,, Vogel J,, Romby P . 2012. Global regulatory functions of the Staphylococcus aureus endoribonuclease III in gene expression. PLoS Genet 8 : e1002782. doi:10.1371/journal.pgen.1002782. [PubMed] [CrossRef]
92. Creecy JP,, Conway T . 2015. Quantitative bacterial transcriptomics with RNA-seq. Curr Opin Microbiol 23C : 133140.[PubMed] [CrossRef]
93. Clarke JE,, Kime L,, Romero AD,, McDowall KJ . 2014. Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli . Nucleic Acids Res 42 : 1173311751.[PubMed] [CrossRef]
94. van Opijnen T,, Camilli A . 2013. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11 : 435442.[PubMed] [CrossRef]
95. Barquist L,, Langridge GC,, Turner DJ,, Phan MD,, Turner AK,, Bateman A,, Parkhill J,, Wain J,, Gardner PP . 2013. A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res 41 : 45494564.[PubMed] [CrossRef]
96. van Opijnen T,, Camilli A . 2010. Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. Curr Protoc Microbiol Chapter 1 : Unit1E 3. [PubMed] [CrossRef]
97. Zhang YJ,, Ioerger TR,, Huttenhower C,, Long JE,, Sassetti CM,, Sacchettini JC,, Rubin EJ . 2012. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis . PLoS Pathog 8 : e1002946. doi:10.1371/journal.ppat.1002946. [PubMed] [CrossRef]
98. Khatiwara A,, Jiang T,, Sung SS,, Dawoud T,, Kim JN,, Bhattacharya D,, Kim HB,, Ricke SC,, Kwon YM . 2012. Genome scanning for conditionally essential genes in Salmonella enterica serotype Typhimurium. Appl Environ Microbiol 78 : 30983107.[PubMed] [CrossRef]
99. Langridge GC,, Phan MD,, Turner DJ,, Perkins TT,, Parts L,, Haase J,, Charles I,, Maskell DJ,, Peters SE,, Dougan G,, Wain J,, Parkhill J,, Turner AK . 2009. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19 : 23082316.[PubMed] [CrossRef]
100. Eckert SE,, Dziva F,, Chaudhuri RR,, Langridge GC,, Turner DJ,, Pickard DJ,, Maskell DJ,, Thomson NR,, Stevens MP . 2011. Retrospective application of transposon-directed insertion site sequencing to a library of signature-tagged mini-Tn5Km2 mutants of Escherichia coli O157:H7 screened in cattle. J Bacteriol 193 : 17711776.[PubMed] [CrossRef]
101. Gao B,, Lara-Tejero M,, Lefebre M,, Goodman AL,, Galan JE . 2014. Novel components of the flagellar system in epsilonproteobacteria. MBio 5 : e01349-14. doi:10.1128/mBio.01349-14. [PubMed] [CrossRef]
102. Gawronski JD,, Wong SM,, Giannoukos G,, Ward DV,, Akerley BJ . 2009. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci USA 106 : 1642216427.[PubMed] [CrossRef]
103. Waters LS,, Storz G . 2009. Regulatory RNAs in bacteria. Cell 136 : 615628.[PubMed] [CrossRef]
104. Brantl S,, Jahn N . 2015. sRNAs in bacterial type I and type III toxin-antitoxin systems. FEMS Microbiol Rev 39 : 413427.[PubMed] [CrossRef]
105. Jahn N,, Brantl S . 2013. One antitoxin—two functions: SR4 controls toxin mRNA decay and translation. Nucleic Acids Res 41 : 98709880.[PubMed] [CrossRef]
106. Fozo EM,, Makarova KS,, Shabalina SA,, Yutin N,, Koonin EV,, Storz G . 2010. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 38 : 37433759.[PubMed] [CrossRef]
107. Koyanagi S,, Levesque CM . 2013. Characterization of a Streptococcus mutans intergenic region containing a small toxic peptide and its cis-encoded antisense small RNA antitoxin. PloS One 8 : e54291. doi:10.1371/journal.pone.0054291. [PubMed] [CrossRef]
108. Guo Y,, Quiroga C,, Chen Q,, McAnulty MJ,, Benedik MJ,, Wood TK,, Wang X . 2014. RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli . Nucleic Acids Res 42 : 64486462.[PubMed] [CrossRef]
109. Wagner EG,, Unoson C . 2012. The toxin-antitoxin system tisB-istR1: expression, regulation, and biological role in persister phenotypes. RNA Biol 9 : 15131519.[PubMed] [CrossRef]
110. Darfeuille F,, Unoson C,, Vogel J,, Wagner EG . 2007. An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell 26 : 381392.[PubMed] [CrossRef]
111. Santiviago CA,, Reynolds MM,, Porwollik S,, Choi SH,, Long F,, Andrews-Polymenis HL,, McClelland M . 2009. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 5 : e1000477. doi:10.1371/journal.ppat.1000477. [PubMed] [CrossRef]
112. Alix E,, Blanc-Potard AB . 2007. MgtC: a key player in intramacrophage survival. Trends Microbiol 15 : 252256.[PubMed] [CrossRef]
113. Lee EJ,, Pontes MH,, Groisman EA . 2013. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium’s own F1Fo ATP synthase. Cell 154 : 146156.[PubMed] [CrossRef]
114. Lee EJ,, Groisman EA . 2010. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol 76 : 10201033.[PubMed] [CrossRef]
115. Gonzalo-Asensio J,, Ortega AD,, Rico-Perez G,, Pucciarelli MG,, Garcia-Del Portillo F . 2013. A novel antisense RNA from the Salmonella virulence plasmid pSLT expressed by non-growing bacteria inside eukaryotic cells. PloS One 8 : e77939. doi:10.1371/journal.pone.0077939. [PubMed] [CrossRef]
116. Wen Y,, Feng J,, Sachs G . 2013. Helicobacter pylori 5′ureB-sRNA, a cis-encoded antisense small RNA, negatively regulates ureAB expression by transcription termination. J Bacteriol 195 : 444452.[PubMed] [CrossRef]
117. Wen Y,, Feng J,, Scott DR,, Marcus EA,, Sachs G . 2011. A cis-encoded antisense small RNA regulated by the HP0165-HP0166 two-component system controls expression of ureB in Helicobacter pylori . J Bacteriol 193 : 4051.[PubMed] [CrossRef]
118. Cahoon LA,, Seifert HS . 2009. An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae . Science 325 : 764767.[PubMed] [CrossRef]
119. Cahoon LA,, Seifert HS . 2013. Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae . PLoS Pathog 9 : e1003074. doi:10.1371/journal.ppat.1003074. [PubMed] [CrossRef]
120. Tan FY,, Wormann ME,, Loh E,, Tang CM,, Exley RM . 2015. Characterization of a novel antisense RNA in the major pilin locus of Neisseria meningitidis influencing antigenic variation. J Bacteriol 197 : 17571768.[PubMed] [CrossRef]
121. Wade JT,, Grainger DC . 2014. Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat Rev Microbiol 12 : 647653.[PubMed] [CrossRef]
122. Dequivre M,, Diel B,, Villard C,, Sismeiro O,, Durot M,, Coppee JY,, Nesme X,, Vial L,, Hommais F . 2015. Small RNA deep-sequencing analyses reveal a new regulator of virulence in Agrobacterium fabrum C58. Mol Plant Microbe Interact 28 : 580589.[PubMed] [CrossRef]
123. Sesto N,, Wurtzel O,, Archambaud C,, Sorek R,, Cossart P . 2013. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol 11 : 7582.[PubMed] [CrossRef]
124. Beisel CL,, Storz G . 2010. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 34 : 866882.[PubMed] [CrossRef]
125. Guillier M,, Gottesman S,, Storz G . 2006. Modulating the outer membrane with small RNAs. Genes Dev 20 : 23382348.[PubMed] [CrossRef]
126. Vogel J,, Papenfort K . 2006. Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 9 : 605611.[PubMed] [CrossRef]
127. Salvail H,, Masse E . 2012. Regulating iron storage and metabolism with RNA: an overview of posttranscriptional controls of intracellular iron homeostasis. Wiley Interdiscip Rev RNA 3 : 2636.[PubMed] [CrossRef]
128. Papenfort K,, Vogel J . 2014. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 4 : 91. [PubMed] [CrossRef]
129. Sharma CM,, Papenfort K,, Pernitzsch SR,, Mollenkopf HJ,, Hinton JC,, Vogel J . 2011. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol Microbiol 81 : 11441165.[PubMed] [CrossRef]
130. Papenfort K,, Bouvier M,, Mika F,, Sharma CM,, Vogel J . Evidence for an autonomous 5′ target recognition domain in an Hfq-associated small RNA. Proc Natl Acad Sci USA 107 : 2043520440.[PubMed] [CrossRef]
131. Guillier M,, Gottesman S . 2008. The 5′ end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res 36 : 67816794.[PubMed] [CrossRef]
132. Papenfort K,, Podkaminski D,, Hinton JC,, Vogel J . 2012. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. Proc Natl Acad Sci USA 109 : E757E764.[PubMed] [CrossRef]
133. Sievers S,, Sternkopf Lillebaek EM,, Jacobsen K,, Lund A,, Mollerup MS,, Nielsen PK,, Kallipolitis BH . 2014. A multicopy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB. Nucleic Acids Res 42 : 93839398.[PubMed] [CrossRef]
134. Geissmann T,, Chevalier C,, Cros MJ,, Boisset S,, Fechter P,, Noirot C,, Schrenzel J,, Francois P,, Vandenesch F,, Gaspin C,, Romby P . 2009. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 37 : 72397257.[PubMed] [CrossRef]
135. Eyraud A,, Tattevin P,, Chabelskaya S,, Felden B . 2014. A small RNA controls a protein regulator involved in antibiotic resistance in Staphylococcus aureus . Nucleic Acids Res 42 : 48924905.[PubMed] [CrossRef]
136. Papenfort K,, Pfeiffer V,, Lucchini S,, Sonawane A,, Hinton JC,, Vogel J . 2008. Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol Microbiol 68 : 890906.[PubMed] [CrossRef]
137. Pernitzsch SR,, Tirier SM,, Beier D,, Sharma CM . 2014. A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori . Proc Natl Acad Sci USA 111 : E501E510.[PubMed] [CrossRef]
138. Schmidtke C,, Abendroth U,, Brock J,, Serrania J,, Becker A,, Bonas U . 2013. Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas . PLoS Pathog 9 : e1003626. doi:10.1371/journal.ppat.1003626. [PubMed] [CrossRef]
139. Papenfort K,, Vanderpool CK . 2015. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 39 : 362378.[PubMed] [CrossRef]
140. Sharma CM,, Darfeuille F,, Plantinga TH,, Vogel J . 2007. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 21 : 28042817.[PubMed] [CrossRef]
141. Pfeiffer V,, Papenfort K,, Lucchini S,, Hinton JC,, Vogel J . 2009. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16 : 840846.[PubMed] [CrossRef]
142. Deana A,, Belasco JG . 2005. Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Dev 19 : 25262533.[PubMed] [CrossRef]
143. Bandyra KJ,, Said N,, Pfeiffer V,, Gorna MW,, Vogel J,, Luisi BF . 2012. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell 47 : 943953.[PubMed] [CrossRef]
144. Morita T,, Maki K,, Aiba H . 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19 : 21762186.[PubMed] [CrossRef]
145. Feng L,, Rutherford ST,, Papenfort K,, Bagert JD,, van Kessel JC,, Tirrell DA,, Wingreen NS,, Bassler BL . 2015. A qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160 : 228240.[PubMed] [CrossRef]
146. Masse E,, Escorcia FE,, Gottesman S . 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli . Genes Dev 17 : 23742383.[PubMed] [CrossRef]
147. Adler B,, Sasakawa C,, Tobe T,, Makino S,, Komatsu K,, Yoshikawa M . 1989. A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri . Mol Microbiol 3 : 627635.[PubMed] [CrossRef]
148. Murphy ER,, Payne SM . 2007. RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence. Infect Immun 75 : 34703477.[PubMed] [CrossRef]
149. Khandige S,, Kronborg T,, Uhlin BE,, Moller-Jensen J . 2015. sRNA-mediated regulation of P-fimbriae phase variation in uropathogenic Escherichia coli . PLoS Pathog 11 : e1005109. doi:10.1371/journal.ppat.1005109. [PubMed] [CrossRef]
150. Grieshaber NA,, Grieshaber SS,, Fischer ER,, Hackstadt T . 2006. A small RNA inhibits translation of the histone-like protein Hc1 in Chlamydia trachomatis . Mol Microbiol 59 : 541550.[PubMed] [CrossRef]
151. Tattersall J,, Rao GV,, Runac J,, Hackstadt T,, Grieshaber SS,, Grieshaber NA . 2012. Translation inhibition of the developmental cycle protein HctA by the small RNA IhtA is conserved across Chlamydia . PLoS One 7 : e47439. doi:10.1371/journal.pone.0047439. [PubMed] [CrossRef]
152. Caswell CC,, Gaines JM,, Ciborowski P,, Smith D,, Borchers CH,, Roux CM,, Sayood K,, Dunman PM,, Roop Ii RM . 2012. Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol Microbiol 85 : 345360.[PubMed] [CrossRef]
153. Wilms I,, Voss B,, Hess WR,, Leichert L,, Narberhaus F . 2011. Small RNA-medaited control of Agrobacterium tumefaciens GABA binding protein. Mol Microbiol 80 : 492506.[PubMed] [CrossRef]
154. Ortega AD,, Quereda JJ,, Pucciarelli MG,, Garcia-del Portillo F . 2014. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells. Front Cell Infect Microbiol 4 : 162. [PubMed] [CrossRef]
155. Gong H,, Vu GP,, Bai Y,, Chan E,, Wu R,, Yang E,, Liu F,, Lu S . 2011. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog 7 : e1002120. doi:10.1371/journal.ppat.1002120. [PubMed] [CrossRef]
156. Altuvia S,, Zhang A,, Argaman L,, Tiwari A,, Storz G . 1998. The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J 17 : 60696075.[PubMed] [CrossRef]
157. Altuvia S,, Weinstein-Fischer D,, Zhang A,, Postow L,, Storz G . 1997. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90 : 4353.[PubMed] [CrossRef]
158. Zhang A,, Altuvia S,, Tiwari A,, Argaman L,, Hengge-Aronis R,, Storz G . 1998. The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 17 : 60616068.[PubMed] [CrossRef]
159. Solans L,, Gonzalo-Asensio J,, Sala C,, Benjak A,, Uplekar S,, Rougemont J,, Guilhot C,, Malaga W,, Martin C,, Cole ST . 2014. The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis . PLoS Pathog 10 : e1004183. doi:10.1371/journal.ppat.1004183. [PubMed] [CrossRef]
160. Fröhlich KS,, Papenfort K,, Berger AA,, Vogel J . 2012. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. Nucleic Acids Res 40 : 36233640.[PubMed] [CrossRef]
161. Morfeldt E,, Taylor D,, Vongabain A,, Arvidson S . 1995. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14 : 45694577.[PubMed]
162. Hubner A,, Yang X,, Nolen DM,, Popova TG,, Cabello FC,, Norgard MV . 2001. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci USA 98 : 1272412729.[PubMed] [CrossRef]
163. Lybecker MC,, Samuels DS . 2007. Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi . Mol Microbiol 64 : 10751089.[PubMed] [CrossRef]
164. Quereda JJ,, Ortega AD,, Pucciarelli MG,, Garcia-Del Portillo F . 2014. The Listeria small RNA Rli27 regulates a cell wall protein inside eukaryotic cells by targeting a long 5′-UTR variant. PLoS Genet 10 : e1004765. doi:10.1371/journal.pgen.1004765. [PubMed] [CrossRef]
165. Papenfort K,, Sun Y,, Miyakoshi M,, Vanderpool CK,, Vogel J . 2013. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153 : 426437.[PubMed] [CrossRef]
166. Frohlich KS,, Papenfort K,, Fekete A,, Vogel J . 2013. A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J 32 : 29632979.[PubMed] [CrossRef]
167. Opdyke JA,, Kang JG,, Storz G . 2004. GadY, a small-RNA regulator of acid response genes in Escherichia coli . J Bacteriol 186 : 66986705.[PubMed] [CrossRef]