1887

Chapter 8 : Spore Peptidoglycan

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Spore Peptidoglycan, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819323/9781555816759_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555819323/9781555816759_Chap08-2.gif

Abstract:

The spore is simply a cell with some extremely novel properties and structural elements. The primary morphological elements shared with vegetative bacterial cells are the spore core (the cytoplasm), the inner spore membrane (the cytoplasmic membrane), and the peptidoglycan (PG) wall ( Fig. 1 ). A spore stripped of coat protein layers outside the PG retains its dormancy and many of its resistance properties ( ). The primary factor contributing to spore dormancy and heat resistance, and a major factor in resistance to chemical and physical damaging agents, is the relative dehydration of the spore core ( ). A predominant factor in maintaining this dehydration, and potentially a factor in attaining it, is the PG wall ( ).

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structural elements of dormant and germinating spores. The dormant spore (left) has a densely staining dehydrated core (Co), surrounded by the inner forespore membrane, the poorly staining cortex PG (Cx), and multiple coat layers (Ct). Within the expanded, rehydrated core of the partially germinated spore (right), the nucleoid material is visible. The cortex and coats have expanded, and the cortex now binds some stain, presumably because of reactive groups generated by cortex degradation. Both spores are photographed at the same magnification. Bar = 0.25 µm.

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Spore PG structure and modification. The spore PG strands are composed of -acetylglucosamine (NAG), muramic-δ-lactam (MδL), and -acetylmuramic acid (NAM). Each NAM residue initially has a pentapeptide side chain composed of -Ala, -Glu, diaminopimelic acid (Dpm), and two -Ala residues. The peptides can be cleaved to tetrapeptides by DacB or DacF, a reaction that regulates the degree of PG cross-linking. Many peptides in the germ cell wall are cleaved to tripeptides by DacA. LytH is an endopeptidase that produces single -Ala side chains. The combined actions of the amidase CwlD and the deacetylase PdaA lead to the production of muramic-δ-lactam. Transpeptidase activities carried by class A and class B PBPs produce peptide cross-links between the glycan strands.

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Expression of spore PG synthesis and modifying enzymes. The PBPs 1, 2c, 4, and DacA are expressed during vegetative growth and some protein persists in the sporangium. PBPs 1, 2c, and 4 may participate in cortex PG polymerization. DacA certainly is involved in shortening spore PG peptide side chains to tripeptides. Following asymmetric septation and initiation of compartmentalized gene expression, σ and σ drive expression of PG-active proteins in the two cells. Upon completion of engulfment and activation of σ, additional genes are expressed, and germ cell wall synthesis dependent on PBPs 2c and 2d commences adjacent to the inner forespore membrane. Mother cell-expressed proteins commence cortex synthesis adjacent to the outer forespore membrane, and a σ-dependent increase in Mur activity provides precursors for continued synthesis. Solid arrows indicate a direct effect on gene expression by the sigma factor. A dashed arrow indicates potential indirect effects on protein abundance or activity. Black lines represent membranes, and gray lines represent PG structures.

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Domain architecture of GSLEs and interacting proteins. The proteins, along with the conserved domains and motifs shown, are drawn to scale. SleB and YpeB have signal sequences (SS) for export across the inner forespore membrane during sporulation. Both SleB and SleC have a PG-binding domain (PG-bind) (pfam01471), presumably to aid in protein localization or substrate affinity. The LysM domains (pfam01476) found in SleL/YaaH also recognize PG and are thought to play a similar role. The N-terminal pre- (N-pre) and pro- (N-pro), and C-terminal pro- (C-pro) sequences that are removed from SleC by Csp proteases during sporulation or germination are shown, as well as the N-terminal prosequence that is cleaved from Csp. YpeB contains three predicted PepSY domains (pfam03413), which play an unknown role; however, these domains have been involved in the inhibition of peptidase activity in PepSY-containing proteases. The C terminus of YwdL/GerQ is highly conserved, and a glutamine-rich (Q-rich) region is found toward the N terminus of the protein. The hydrolase family 2 (Hydrolase fam. 2) (pfam07486), glycosyl hydrolase family 18 (pfam00704), peptidase S8 family (pfam00082), and glycosyl hydrolase family 25 (pfam01183) domains contain the enzyme active sites.

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Localization of GSLEs and interacting proteins in dormant spores. SleB (B) and YpeB (Y) have been alternately demonstrated to be localized to the outer cortex/outer forespore membrane and the inner forespore membrane of dormant spores. The precise location of CwlJ (J) within the spore coat layers is unknown, but YwdL/GerQ (Q) is found within the inner coat. SleL/YaaH (L) has also been shown to be an inner coat protein. SleC (C), Csp proteases (P), and SleM (M) are located outside the cortex, either in the inner spore coat or outer forespore membrane. While these proteins are drawn within a single spore, in actuality, a spore only contains a subset of the proteins shown. B, Y, J, Q, and L are found in and likely a few , while C, P, and M are found only in certain . Colocalization is shown for B-Y, J-Q, and C-P due to the requirement of YpeB and YwdL/GerQ for stable incorporation of SleB and CwlJ, respectively, into the dormant spore, and the processing of pro-SleC to active SleC by Csp proteases. However, it should be noted that there is currently no evidence that B-Y or J-Q directly interact.

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

GSLE cleavage of cortex PG. A single strand of cortex PG is shown at the top, and the cleavage sites for the GSLE enzyme classes are indicated by arrows. A peptide cross-link to another strand is shown, but the second glycan strand is omitted. The proposed -acetylmuramoyl--alanine amidase (A) activity of SleC can break peptide cross-links by cleaving a peptide from NAM. The cleavage sites and representative products (bottom) of -acetylglucosaminidase (G, SleL), -acetylmuramidase (M, SleM), and lytic transglycosylase (LT, SleB and SleC) are indicated.

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819323.chap8
1. Driks A . 2002. Maximum shields: the assembly and function of the bacterial spore coat. Trends Microbiol 10 : 251 254.[PubMed] [CrossRef]
2. Koshikawa T,, Beaman TC,, Pankratz HS,, Nakashio S,, Corner TR,, Gerhardt P . 1984. Resistance, germination, and permeability correlates of Bacillus megaterium spores successively divested of integument layers. J Bacteriol 159 : 624 632.[PubMed]
3. Beaman TC,, Gerhardt P . 1986. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl Environ Microbiol 52 : 1242 1246.[PubMed]
4. Nakashio S,, Gerhardt P . 1985. Protoplast dehydration correlated with heat resistance of bacterial spores. J Bacteriol 162 : 571 578.[PubMed]
5. Popham DL,, Illades-Aguiar B,, Setlow P . 1995. The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J Bacteriol 177 : 4721 4729.[PubMed]
6. Setlow P . 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101 : 514 525.[PubMed] [CrossRef]
7. Setlow P . 2014. Spore resistance properties. Microbiol Spectrum 2( 4) : TBS-0003-2012. doi:10.1128/microbiolspec.TBS-0003-2012. [CrossRef]
8. Popham DL,, Helin J,, Costello CE,, Setlow P . 1996. Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc Natl Acad Sci USA 93 : 15405 15410.[PubMed] [CrossRef]
9. Setlow B,, Melly E,, Setlow P . 2001. Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination. J Bacteriol 183 : 4894 4899.[PubMed] [CrossRef]
10. Moir A . 2006. How do spores germinate? J Appl Microbiol 101 : 526 530.[PubMed] [CrossRef]
11. Paredes-Sabja D,, Setlow P,, Sarker MR . 2011. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol 19 : 85 94.[PubMed] [CrossRef]
12. Popham DL,, Heffron JD,, Lambert EA, . 2012. Degradation of spore peptidoglycan during germination, p 121 142. In Abel-Santos E (ed), Bacterial Spores: Current Research and Applications. Caister Academic Press, Norwich, UK.
13. van Heijenoort J . 2001. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11 : 25R 36R.[PubMed] [CrossRef]
14. Vollmer W . 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 32 : 287 306.[PubMed] [CrossRef]
15. Atrih A,, Zöllner P,, Allmaier G,, Williamson MP,, Foster SJ . 1998. Peptidoglycan structural dynamics during germination of Bacillus subtilis 168 endospores. J Bacteriol 180 : 4603 4612.[PubMed]
16. Meador-Parton J,, Popham DL . 2000. Structural analysis of Bacillus subtilis spore peptidoglycan during sporulation. J Bacteriol 182 : 4491 4499.[PubMed] [CrossRef]
17. Atrih A,, Zöllner P,, Allmaier G,, Foster SJ . 1996. Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J Bacteriol 178 : 6173 6183.[PubMed]
18. Atrih A,, Bacher G,, Körner R,, Allmaier G,, Foster SJ . 1999. Structural analysis of Bacillus megaterium KM spore peptidoglycan and its dynamics during germination. Microbiology 145 : 1033 1041.[PubMed] [CrossRef]
19. Atrih A,, Foster SJ . 2001. Analysis of the role of bacterial endospore cortex structure in resistance properties and demonstration of its conservation amongst species. J Appl Microbiol 91 : 364 372.[PubMed] [CrossRef]
20. Dowd MM,, Orsburn B,, Popham DL . 2008. Cortex peptidoglycan lytic activity in germinating Bacillus anthracis spores. J Bacteriol 190 : 4541 4548.[PubMed] [CrossRef]
21. Orsburn B,, Melville SB,, Popham DL . 2008. Factors contributing to heat resistance of Clostridium perfringens endospores. Appl Environ Microbiol 74 : 3328 3335.[PubMed] [CrossRef]
22. Tipper DJ,, Gauthier JJ, . 1972. Structure of the bacterial endospore, p 3 12. In Halvorson HO,, Hanson R,, Campbell LL (ed), Spores V. American Society for Microbiology, Washington, DC.
23. Warth AD,, Strominger JL . 1969. Structure of the peptidoglycan of bacterial spores: occurrence of the lactam of muramic acid. Proc Natl Acad Sci USA 64 : 528 535.[PubMed] [CrossRef]
24. Tipper DJ,, Linnett PE . 1976. Distribution of peptidoglycan synthetase activities between sporangia and forespores in sporulating cells of Bacillus sphaericus . J Bacteriol 126 : 213 221.[PubMed]
25. Warth AD,, Strominger JL . 1972. Structure of the peptidoglycan from spores of Bacillus subtilis . Biochemistry 11 : 1389 1396.[PubMed] [CrossRef]
26. Fittipaldi N,, Sekizaki T,, Takamatsu D,, de la Cruz Domínguez-Punaro M,, Harel J,, Bui NK,, Vollmer W,, Gottschalk M . 2008. Significant contribution of the pgdA gene to the virulence of Streptococcus suis . Mol Microbiol 70 : 1120 1135.[PubMed] [CrossRef]
27. Psylinakis E,, Boneca IG,, Mavromatis K,, Deli A,, Hayhurst E,, Foster SJ,, Vårum KM,, Bouriotis V . 2005. Peptidoglycan N-acetylglucosamine deacetylases from Bacillus cereus, highly conserved proteins in Bacillus anthracis . J Biol Chem 280 : 30856 30863.[PubMed] [CrossRef]
28. Atrih A,, Bacher G,, Allmaier G,, Williamson MP,, Foster SJ . 1999. Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol 181 : 3956 3966.[PubMed]
29. Warth AD,, Strominger JL . 1971. Structure of the peptidoglycan from vegetative cell walls of Bacillus subtilis . Biochemistry 10 : 4349 4358.[PubMed] [CrossRef]
30. Popham DL,, Gilmore ME,, Setlow P . 1999. Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. J Bacteriol 181 : 126 132.[PubMed]
31. Imae Y,, Strominger JL . 1976. Relationship between cortex content and properties of Bacillus sphaericus spores. J Bacteriol 126 : 907 913.[PubMed]
32. Beaman TC,, Greenamyre JT,, Corner TR,, Pankratz HS,, Gerhardt P . 1982. Bacterial spore heat resistance correlated with water content, wet density, and protoplast/sporoplast volume ratio. J Bacteriol 150 : 870 877.[PubMed]
33. Horsburgh GJ,, Atrih A,, Foster SJ . 2003. Characterization of LytH, a differentiation-associated peptidoglycan hydrolase of Bacillus subtilis involved in endospore cortex maturation. J Bacteriol 185 : 3813 3820.[PubMed] [CrossRef]
34. Popham DL,, Helin J,, Costello CE,, Setlow P . 1996. Analysis of the peptidoglycan structure of Bacillus subtilis endospores. J Bacteriol 178 : 6451 6458.[PubMed]
35. Popham DL,, Meador-Parton J,, Costello CE,, Setlow P . 1999. Spore peptidoglycan structure in a cwlD dacB double mutant of Bacillus subtilis . J Bacteriol 181 : 6205 6209.[PubMed]
36. Ou L-T,, Marquis RE . 1970. Electromechanical interactions in cell walls of gram-positive cocci. J Bacteriol 101 : 92 101.[PubMed]
37. Lewis JC,, Snell NS,, Burr HK . 1960. Water permeability of bacterial spores and the concept of a contractile cortex. Science 132 : 544 545.[PubMed] [CrossRef]
38. Warth AD, . 1985. Mechanisms of heat resistance, p 209 225. In Dring GJ,, Ellar DJ,, Gould GW (ed), Fundamental and Applied Aspects of Bacterial Spores. Academic Press, Inc, London, UK.
39. Westphal AJ,, Price PB,, Leighton TJ,, Wheeler KE . 2003. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc Natl Acad Sci USA 100 : 3461 3466.[PubMed] [CrossRef]
40. Zhang P,, Thomas S,, Li YQ,, Setlow P . 2012. Effects of cortex peptidoglycan structure and cortex hydrolysis on the kinetics of Ca(2+)-dipicolinic acid release during Bacillus subtilis spore germination. J Bacteriol 194 : 646 652.[PubMed] [CrossRef]
41. Sekiguchi J,, Akeo K,, Yamamoto H,, Khasanov FK,, Alonso JC,, Kuroda A . 1995. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis . J Bacteriol 177 : 5582 5589.[PubMed]
42. Wickus GG,, Warth AD,, Strominger JL . 1972. Appearance of muramic lactam during cortex synthesis in sporulating cultures of Bacillus cereus and Bacillus megaterium . J Bacteriol 111 : 625 627.[PubMed]
43. Chastanet A,, Losick R . 2007. Engulfment during sporulation in Bacillus subtilis is governed by a multi-protein complex containing tandemly acting autolysins. Mol Microbiol 64 : 139 152.[PubMed] [CrossRef]
44. Gutierrez J,, Smith R,, Pogliano K . 2010. SpoIID-mediated peptidoglycan degradation is required throughout engulfment during Bacillus subtilis sporulation. J Bacteriol 192 : 3174 3186.[PubMed] [CrossRef]
45. Morlot C,, Uehara T,, Marquis KA,, Bernhardt TG,, Rudner DZ . 2010. A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis . Genes Dev 24 : 411 422.[PubMed] [CrossRef]
46. Meyer P,, Gutierrez J,, Pogliano K,, Dworkin J . 2010. Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis . Mol Microbiol 76 : 956 970.[PubMed] [CrossRef]
47. Tocheva EI,, López-Garrido J,, Hughes HV,, Fredlund J,, Kuru E,, Vannieuwenhze MS,, Brun YV,, Pogliano K,, Jensen GJ . 2013. Peptidoglycan transformations during Bacillus subtilis sporulation. Mol Microbiol 88 : 673 686.[PubMed] [CrossRef]
48. Dworkin J . 2014. Protein targeting during Bacillus subtilis sporulation. Microbiol Spectrum 2( 1) : TBS-0006-2013. doi:10.1128/microbiolspec.TBS-0006-2013. [PubMed]
49. Pedersen LB,, Ragkousi K,, Cammett TJ,, Melly E,, Sekowska A,, Schopick E,, Murray T,, Setlow P . 2000. Characterization of ywhE, which encodes a putative high-molecular-weight class A penicillin-binding protein in Bacillus subtilis . Gene 246 : 187 196.[CrossRef]
50. Popham DL,, Setlow P . 1993. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpF gene, which codes for a putative class A high-molecular-weight penicillin-binding protein. J Bacteriol 175 : 4870 4876.[PubMed]
51. Vasudevan P,, Weaver A,, Reichert ED,, Linnstaedt SD,, Popham DL . 2007. Spore cortex formation in Bacillus subtilis is regulated by accumulation of peptidoglycan precursors under the control of sigma K. Mol Microbiol 65 : 1582 1594.[PubMed] [CrossRef]
52. Buchanan CE,, Sowell MO . 1983. Stability and synthesis of the penicillin-binding proteins during sporulation. J Bacteriol 156 : 545 551.[PubMed]
53. McPherson DC,, Driks A,, Popham DL . 2001. Two class A high-molecular-weight penicillin-binding proteins of Bacillus subtilis play redundant roles in sporulation. J Bacteriol 183 : 6046 6053.[PubMed] [CrossRef]
54. Popham DL,, Setlow P . 1994. Cloning, nucleotide sequence, mutagenesis, and mapping of the Bacillus subtilis pbpD gene, which codes for penicillin-binding protein 4. J Bacteriol 176 : 7197 7205.[PubMed]
55. Popham DL,, Setlow P . 1995. Cloning, nucleotide sequence, and mutagenesis of the Bacillus subtilis ponA operon, which codes for penicillin-binding protein (PBP) 1 and a PBP-related factor. J Bacteriol 177 : 326 335.[PubMed]
56. Sowell MO,, Buchanan CE . 1983. Changes in penicillin-binding proteins during sporulation of Bacillus subtilis . J Bacteriol 153 : 1331 1337.[PubMed]
57. McPherson DC,, Popham DL . 2003. Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis . J Bacteriol 185 : 1423 1431.[CrossRef]
58. Daniel RA,, Drake S,, Buchanan CE,, Scholle R,, Errington J . 1994. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J Mol Biol 235 : 209 220.[PubMed] [CrossRef]
59. Fay A,, Meyer P,, Dworkin J . 2010. Interactions between late-acting proteins required for peptidoglycan synthesis during sporulation. J Mol Biol 399 : 547 561.[PubMed] [CrossRef]
60. Bukowska-Faniband E,, Hederstedt L . 2013. Cortex synthesis during Bacillus subtilis sporulation depends on the transpeptidase activity of SpoVD. FEMS Microbiol Lett 346 : 65 72.[PubMed] [CrossRef]
61. Ikeda M,, Sato T,, Wachi M,, Jung HK,, Ishino F,, Kobayashi Y,, Matsuhashi M . 1989. Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J Bacteriol 171 : 6375 6378.[PubMed]
62. Joris B,, Dive G,, Henriques A,, Piggot PJ,, Ghuysen JM . 1990. The life-cycle proteins RodA of Escherichia coli and SpoVE of Bacillus subtilis have very similar primary structures. Mol Microbiol 4 : 513 517.[PubMed] [CrossRef]
63. Popham DL,, Stragier P . 1991. Cloning, characterization, and expression of the spoVB gene of Bacillus subtilis . J Bacteriol 173 : 7942 7949.[PubMed]
64. Vasudevan P,, McElligott J,, Attkisson C,, Betteken M,, Popham DL . 2009. Homologues of the Bacillus subtilis SpoVB protein are involved in cell wall metabolism. J Bacteriol 191 : 6012 6019.[PubMed] [CrossRef]
65. Blumberg PM,, Strominger JL . 1972. Five penicillin-binding components occur in Bacillus subtilis membranes. J Biol Chem 247 : 8107 8113.[PubMed]
66. Todd JA,, Bone EJ,, Piggot PJ,, Ellar DJ . 1983. Differential expression of penicillin-binding protein structural genes during Bacillus subtilis sporulation. FEMS Microbiol Lett 18 : 197 202.[CrossRef]
67. Simpson EB,, Hancock TW,, Buchanan CE . 1994. Transcriptional control of dacB, which encodes a major sporulation-specific penicillin-binding protein. J Bacteriol 176 : 7767 7769.[PubMed]
68. Wu J-J,, Schuch R,, Piggot PJ . 1992. Characterization of a Bacillus subtilis sporulation operon that includes genes for an RNA polymerase sigma factor and for a putative DD-carboxypeptidase. J Bacteriol 174 : 4885 4892.[PubMed]
69. Fukushima T,, Yamamoto H,, Atrih A,, Foster SJ,, Sekiguchi J . 2002. A polysaccharide deacetylase gene ( pdaA) is required for germination and for production of muramic delta-lactam residues in the spore cortex of Bacillus subtilis . J Bacteriol 184 : 6007 6015.[PubMed] [CrossRef]
70. Gilmore ME,, Bandyopadhyay D,, Dean AM,, Linnstaedt SD,, Popham DL . 2004. Production of muramic delta-lactam in Bacillus subtilis spore peptidoglycan. J Bacteriol 186 : 80 89.[PubMed] [CrossRef]
71. Galperin MY . 2013. Genome diversity of spore-forming firmicutes. Microbiol Spectrum 1( 2) : TBS-0015-2012. doi:10.1128/microbiolspectrum.TBS-0015-2012. [PubMed] [CrossRef]
72. van Heijenoort J . 2007. Lipid intermediates in the biosynthesis of bacterial peptidoglycan. Microbiol Mol Biol Rev 71 : 620 635.[PubMed] [CrossRef]
73. Koch AL . 1983. The surface stress theory of microbial morphogenesis. Adv Microb Physiol 24 : 301 366.[PubMed] [CrossRef]
74. Makino S,, Moriyama R . 2002. Hydrolysis of cortex peptidoglycan during bacterial spore germination. Med Sci Monit 8 : RA119 RA127.[PubMed]
75. Chirakkal H,, O’Rourke M,, Atrih A,, Foster SJ,, Moir A . 2002. Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148 : 2383 2392.[PubMed] [CrossRef]
76. Chen Y,, Fukuoka S,, Makino S . 2000. A novel spore peptidoglycan hydrolase of Bacillus cereus: biochemical characterization and nucleotide sequence of the corresponding gene, sleL . J Bacteriol 182 : 1499 1506.[PubMed] [CrossRef]
77. Setlow B,, Peng L,, Loshon CA,, Li Y-Q,, Christie G,, Setlow P . 2009. Characterization of the germination of Bacillus megaterium spores lacking enzymes that degrade the spore cortex. J Appl Microbiol 107 : 318 328.[PubMed] [CrossRef]
78. Heffron JD,, Orsburn B,, Popham DL . 2009. Roles of germination-specific lytic enzymes CwlJ and SleB in Bacillus anthracis . J Bacteriol 191 : 2237 2247.[PubMed] [CrossRef]
79. Giebel JD,, Carr KA,, Anderson EC,, Hanna PC . 2009. The germination-specific lytic enzymes SleB, CwlJ1, and CwlJ2 each contribute to Bacillus anthracis spore germination and virulence. J Bacteriol 191 : 5569 5576.[PubMed] [CrossRef]
80. Heffron JD,, Lambert EA,, Sherry N,, Popham DL . 2010. Contributions of four cortex lytic enzymes to germination of Bacillus anthracis spores. J Bacteriol 192 : 763 770.[PubMed] [CrossRef]
81. Paidhungat M,, Ragkousi K,, Setlow P . 2001. Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca( 2+)-dipicolinate. J Bacteriol 183 : 4886 4893.[PubMed] [CrossRef]
82. Ishikawa S,, Yamane K,, Sekiguchi J . 1998. Regulation and characterization of a newly deduced cell wall hydrolase gene ( cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 180 : 1375 1380.[PubMed]
83. Boland FM,, Atrih A,, Chirakkal H,, Foster SJ,, Moir A . 2000. Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology 146 : 57 64.[PubMed] [CrossRef]
84. Moriyama R,, Fukuoka H,, Miyata S,, Kudoh S,, Hattori A,, Kozuka S,, Yasuda Y,, Tochikubo K,, Makino S . 1999. Expression of a germination-specific amidase, SleB, of bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores. J Bacteriol 181 : 2373 2378.[PubMed]
85. Bagyan I,, Noback M,, Bron S,, Paidhungat M,, Setlow P . 1998. Characterization of yhcN, a new forespore-specific gene of Bacillus subtilis . Gene 212 : 179 188.[CrossRef]
86. Kuwana R,, Kasahara Y,, Fujibayashi M,, Takamatsu H,, Ogasawara N,, Watabe K . 2002. Proteomics characterization of novel spore proteins of Bacillus subtilis . Microbiology 148 : 3971 3982.[PubMed] [CrossRef]
87. Moriyama R,, Hattori A,, Miyata S,, Kudoh S,, Makino S . 1996. A gene ( sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to L-alanine-mediated germination. J Bacteriol 178 : 6059 6063.[PubMed]
88. Moriyama R,, Kudoh S,, Miyata S,, Nonobe S,, Hattori A,, Makino S . 1996. A germination-specific spore cortex-lytic enzyme from Bacillus cereus spores: cloning and sequencing of the gene and molecular characterization of the enzyme. J Bacteriol 178 : 5330 5332.[PubMed]
89. Hu K,, Yang H,, Liu G,, Tan H . 2007. Cloning and identification of a gene encoding spore cortex-lytic enzyme in Bacillus thuringiensis . Curr Microbiol 54 : 292 295.[PubMed] [CrossRef]
90. Heffron JD,, Sherry N,, Popham DL . 2011. In vitro studies of peptidoglycan binding and hydrolysis by the Bacillus anthracis germination-specific lytic enzyme SleB. J Bacteriol 193 : 125 131.[PubMed] [CrossRef]
91. Tjalsma H,, Bolhuis A,, Jongbloed JDH,, Bron S,, van Dijl JM . 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64 : 515 547.[PubMed] [CrossRef]
92. Atrih A,, Foster SJ . 2001. In vivo roles of the germination-specific lytic enzymes of Bacillus subtilis 168. Microbiology 147 : 2925 2932.[PubMed] [CrossRef]
93. Masayama A,, Fukuoka H,, Kato S,, Yoshimura T,, Moriyama M,, Moriyama R . 2006. Subcellular localization of a germiantion-specific cortex-lytic enzyme, SleB, of bacilli during sporulation. Genes Genet Syst 81 : 163 169.[PubMed] [CrossRef]
94. Li Y,, Butzin XY,, Davis A,, Setlow B,, Korza G,, Üstok FI,, Christie G,, Setlow P,, Hao B . 2013. Activity and regulation of various forms of CwlJ, SleB, and YpeB proteins in degrading cortex peptidoglycan of spores of Bacillus species in vitro and during spore germination. J Bacteriol 195 : 2530 2540.[PubMed] [CrossRef]
95. Christie G,, Üstok FI,, Lu Q,, Packman LC,, Lowe CR . 2010. Mutational analysis of Bacillus megaterium QM B1551 cortex-lytic enzymes. J Bacteriol 192 : 5378 5389.[PubMed] [CrossRef]
96. Bernhards CB,, Popham DL . 2014. Role of YpeB in cortex hydrolysis during germination of Bacillus anthracis spores. J Bacteriol 196 : 3399 3409.[PubMed] [CrossRef]
97. Yeats C,, Rawlings ND,, Bateman A . 2004. The PepSY domain: a regulator of peptidase activity in the microbial environment? Trends Biochem Sci 29 : 169 172.[PubMed] [CrossRef]
98. Makino S,, Ito N,, Inoue T,, Miyata S,, Moriyama R . 1994. A spore-lytic enzyme released from Bacillus cereus spores during germination. Microbiology 140 : 1403 1410.[PubMed] [CrossRef]
99. Bernhards CB,, Chen Y,, Toutkoushian H,, Popham DL . 2015. HtrC is involved in proteolysis of YpeB during germination of Bacillus anthracis and Bacillus subtilis spores. J Bacteriol 197 : 326 336.[PubMed] [CrossRef]
100. Ragkousi K,, Eichenberger P,, van Ooij C,, Setlow P . 2003. Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. J Bacteriol 185 : 2315 2329.[PubMed] [CrossRef]
101. Barlass PJ,, Houston CW,, Clements MO,, Moir A . 2002. Germination of Bacillus cereus spores in response to L-alanine and to inosine: the roles of gerL and gerQ operons. Microbiology 148 : 2089 2095.[PubMed] [CrossRef]
102. Bagyan I,, Setlow P . 2002. Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis . J Bacteriol 184 : 1219 1224.[PubMed] [CrossRef]
103. McKenney PT,, Eichenberger P . 2012. Dynamics of spore coat morphogenesis in Bacillus subtilis . Mol Microbiol 83 : 245 260.[PubMed] [CrossRef]
104. Driks A . 1999. Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63 : 1 20.[PubMed]
105. Imamura D,, Kuwana R,, Takamatsu H,, Watabe K . 2010. Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J Bacteriol 192 : 518 524.[PubMed] [CrossRef]
106. Terry C,, Shepherd A,, Radford DS,, Moir A,, Bullough PA . 2011. YwdL in Bacillus cereus: its role in germination and exosporium structure. PLoS One 6 : e23801. doi:10.1371/journal.pone.0023801. [CrossRef]
107. Liu H,, Bergman NH,, Thomason B,, Shallom S,, Hazen A,, Crossno J,, Rasko DA,, Ravel J,, Read TD,, Peterson SN,, Yates J III,, Hanna PC . 2004. Formation and composition of the Bacillus anthracis endospore. J Bacteriol 186 : 164 178.[PubMed] [CrossRef]
108. Ragkousi K,, Setlow P . 2004. Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J Bacteriol 186 : 5567 5575.[PubMed] [CrossRef]
109. Monroe A,, Setlow P . 2006. Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J Bacteriol 188 : 7609 7616.[PubMed] [CrossRef]
110. Blackburn NT,, Clarke AJ . 2001. Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol 52 : 78 84.[PubMed] [CrossRef]
111. Scheurwater E,, Reid CW,, Clarke AJ . 2008. Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 40 : 586 591.[PubMed] [CrossRef]
112. Kodama T,, Takamatsu H,, Asai K,, Kobayashi K,, Ogasawara N,, Watabe K . 1999. The Bacillus subtilis yaaH gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. J Bacteriol 181 : 4584 4591.[PubMed]
113. Lambert EA,, Popham DL . 2008. The Bacillus anthracis SleL (YaaH) protein is an N-acetylglucosaminidase involved in spore cortex depolymerization. J Bacteriol 190 : 7601 7607.[PubMed] [CrossRef]
114. McKenney PT,, Driks A,, Eskandarian HA,, Grabowski P,, Guberman J,, Wang KH,, Gitai Z,, Eichenberger P . 2010. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr Biol 20 : 934 938.[PubMed] [CrossRef]
115. Buist G,, Steen A,, Kok J,, Kuipers OP . 2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68 : 838 847.[PubMed] [CrossRef]
116. Ustok FI,, Packman LC,, Lowe CR,, Christie G . 2014. Spore germination mediated by Bacillus megaterium QM B1551 SleL and YpeB. J Bacteriol 196 : 1045 1054.[PubMed] [CrossRef]
117. Papanikolau Y,, Prag G,, Tavlas G,, Vorgias CE,, Oppenheim AB,, Petratos K . 2001. High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry 40 : 11338 11343.[PubMed] [CrossRef]
118. Lambert EA,, Sherry N,, Popham DL . 2012. In vitro and in vivo analyses of the Bacillus anthracis spore cortex lytic protein SleL. Microbiology 158 : 1359 1368.[PubMed] [CrossRef]
119. Burns DA,, Heap JT,, Minton NP . 2010. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J Bacteriol 192 : 657 664.[PubMed] [CrossRef]
120. Paredes-Sabja D,, Setlow P,, Sarker MR . 2009. SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens . J Bacteriol 191 : 2711 2720.[PubMed] [CrossRef]
121. Kumazawa T,, Masayama A,, Fukuoka S,, Makino S,, Yoshimura T,, Moriyama R . 2007. Mode of action of a germination-specific cortex-lytic enzyme, SleC, of Clostridium perfringens S40. Biosci Biotechnol Biochem 71 : 884 892.[PubMed] [CrossRef]
122. Miyata S,, Moriyama R,, Sugimoto K,, Makino S . 1995. Purification and partial characterization of a spore cortex-lytic enzyme of Clostridium perfringens S40 spores. Biosci Biotechnol Biochem 59 : 514 515.[PubMed] [CrossRef]
123. Chen Y,, Miyata S,, Makino S,, Moriyama R . 1997. Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene. J Bacteriol 179 : 3181 3187.[PubMed]
124. Masayama A,, Hamasaki K,, Urakami K,, Shimamoto S,, Kato S,, Makino S,, Yoshimura T,, Moriyama M,, Moriyama R . 2006. Expression of germination-related enzymes, CspA, CspB, CspC, SleC, and SleM, of Clostridium perfringens S40 in the mother cell compartment of sporulating cells. Genes Genet Syst 81 : 227 234.[PubMed] [CrossRef]
125. Miyata S,, Moriyama R,, Miyahara N,, Makino S . 1995. A gene ( sleC) encoding a spore-cortex-lytic enzyme from Clostridium perfringens S40 spores; cloning, sequence analysis and molecular characterization. Microbiology 141 : 2643 2650.[PubMed] [CrossRef]
126. Urakami K,, Miyata S,, Moriyama R,, Sugimoto K,, Makino S . 1999. Germination-specific cortex-lytic enzymes from Clostridium perfringens S40 spores: time of synthesis, precursor structure and regulation of enzymatic activity. FEMS Microbiol Lett 173 : 467 473.[PubMed] [CrossRef]
127. Okamura S,, Urakami K,, Kimata M,, Aoshima T,, Shimamoto S,, Moriyama R,, Makino S . 2000. The N-terminal prepeptide is required for the production of spore cortex-lytic enzyme from its inactive precursor during germination of Clostridium perfringens S40 spores. Mol Microbiol 37 : 821 827.[PubMed] [CrossRef]
128. Gutelius D,, Hokeness K,, Logan SM,, Reid CW . 2014. Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination. Microbiology 160 : 209 216.[PubMed] [CrossRef]
129. Shimamoto S,, Moriyama R,, Sugimoto K,, Miyata S,, Makino S . 2001. Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity. J Bacteriol 183 : 3742 3751.[PubMed] [CrossRef]
130. Myers GSA,, Rasko DA,, Cheung JK,, Ravel J,, Seshadri R,, DeBoy RT,, Ren Q,, Varga J,, Awad MM,, Brinkac LM,, Daugherty SC,, Haft DH,, Dodson RJ,, Madupu R,, Nelson WC,, Rosovitz MJ,, Sullivan SA,, Khouri H,, Dimitrov GI,, Watkins KL,, Mulligan S,, Benton J,, Radune D,, Fisher DJ,, Atkins HS,, Hiscox T,, Jost BH,, Billington SJ,, Songer JG,, McClane BA,, Titball RW,, Rood JI,, Melville SB,, Paulsen IT . 2006. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens . Genome Res 16 : 1031 1040.[PubMed] [CrossRef]
131. Paredes-Sabja D,, Setlow P,, Sarker MR . 2009. The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates. Microbiology 155 : 3464 3472.[PubMed] [CrossRef]
132. Adams CM,, Eckenroth BE,, Putnam EE,, Doublié S,, Shen A . 2013. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 9 : e1003165. [PubMed] [CrossRef]
133. Miyata S,, Kozuka S,, Yasuda Y,, Chen Y,, Moriyama R,, Tochikubo K,, Makino S . 1997. Localization of germination-specific spore-lytic enzymes in Clostridium perfringens S40 spores detected by immunoelectron microscopy. FEMS Microbiol Lett 152 : 243 247.[PubMed] [CrossRef]
134. Setlow P . 2003. Spore germination. Curr Opin Microbiol 6 : 550 556.[PubMed] [CrossRef]
135. Cowan AE,, Olivastro EM,, Koppel DE,, Loshon CA,, Setlow B,, Setlow P . 2004. Lipids in the inner membrane of dormant spores of Bacillus species are largely immobile. Proc Natl Acad Sci USA 101 : 7733 7738.[PubMed] [CrossRef]
136. Altschul SF,, Gish W,, Miller W,, Myers EW,, Lipman DJ . 1990. Basic local alignment search tool. J Mol Biol 215 : 403 410.[PubMed] [CrossRef]
137. Schmidt TR,, Scott EJ II,, Dyer DW . 2011. Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics 12 : 430. [PubMed] [CrossRef]
138. Stackebrandt E,, Rainey FA, . 1997. Phylogenetic relationships, p 3 20. In Rood JI,, McClane BA,, Songer JG,, Titball RW (ed), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, San Diego, CA. [CrossRef]

Tables

Generic image for table
Table 1

Identities of orthologous genes potentially involved in synthesis of spore PG in species spanning the family

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012
Generic image for table
Table 2

Identities of orthologous genes potentially involved in degradation of spore PG in a range of species spanning the family

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012
Generic image for table
Table 3

Identities of orthologous genes potentially involved in degradation of spore PG in a range of species spanning the family

Citation: Popham D, Bernhards C. 2016. Spore Peptidoglycan, p 157-177. In Driks A, Eichenberger P (ed), The Bacterial Spore: from Molecules to Systems. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBS-0005-2012

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error