1887

Chapter 54 : Hepatitis C Virus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Hepatitis C Virus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819439/9781555819422.ch54-1.gif /docserver/preview/fulltext/10.1128/9781555819439/9781555819422.ch54-2.gif

Abstract:

Hepatitis C virus (HCV), a member of the genus in the family (1), is a single-stranded RNA virus that infects humans and other higher primates, and has a selective tropism to the liver. Following exposure, HCV is able to evade the host's immune system and establish a chronic, often asymptomatic, infection that may lead to liver failure, hepatocellular carcinoma, and death. Transmitted primarily by exposure to infected blood, but also through sexual and perinatal routes, the virus is estimated to infect 2.8% of the world's population (2). Originally termed non-A, non-B hepatitis, infection with HCV was a frequent cause of transfusion-related hepatitis until discovery of the virus in 1989 (3, 4) and the subsequent development of effective screening methods. Many substantial advances have recently been made in treating HCV infection, and it is now possible to cure over 90% of patients with HCV infection. These advances also provide promising opportunities for future public health efforts to effectively reduce the disease burden of this global infection.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic tree of 129 representative complete coding region sequences demonstrating clustering to 7 genotypes and 67 subtypes. For genotypes 1, 2, 3, 4, and 6, the lowest common branch shared by all subtypes and supported by 100% of bootstrap replicates (n = 1,000) is indicated by ·. (Reprinted from Smith et al. ( ) with permission.)

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Geographic distribution of HCV genotypes. Genotype 1 is the most prevalent and can be seen worldwide. Genotype 3 is more common in South- and South-East Asia, genotype 4 is seen almost exclusively in patients from Central Africa, Egypt and Saudi Arabia, genotype 5 is mostly confined to South Africa, and genotype 6 to South-East Asia.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Electron microscopy of viral particles. (a) Immunogold electron microscopy of a viral particle from patient serum. The sample was incubated with Anti E1 polyclonal antibody and a secondary antibody conjugated to colloidal gold particles. An inner core (arrow) seems to be included within the particle. Reprinted from Kaito et al. ( ) with permission. (b) Negative stain electron microscopy of HCV harvested from Huh-7.5 cells infected with HCV strain JFH-1. Spherical particles of uniform size with inner cores can be seen.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Genome structure of HCV. (a) The positive-sense single-strand RNA genome of HCV has one long open reading frame, containing genes for 3 structural and 7 nonstructural proteins, and flanked by two untranslated regions. (b) Sequence and secondary structure of the 5′ UTR. The AUG start-codon for the open reading frame is highlighted in stem-loop IV. (c) Sequence and secondary structure of the 3′ UTR region. Arrows indicate variable base pairs in the stem of SL1 and the asterisk denotes the variable nucleotide in the loop of SL1. UTR—untranslated region.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Viral replication cycle. Binding of the virus to the cell surface and internalization are followed by release of the viral RNA, harnessing of the cellular ribosomes, and protein translation and processing. The viral proteins, associated with the ER membrane, promote the formation of replication complexes anchored to lipid membranous webs in which the RNA dependent polymerase NS5B creates copies of the viral RNA through a negative strand RNA intermediate. HCV RNA is then packaged into membrane-covered viral particles and exported from the cell, presumably through the exocytosis pathway.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

World distribution of HCV seroprevalence. The highest prevalence is in Egypt. Other countries with high prevalence of infection include Mongolia, Bolivia, and several sub-Saharan nations.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

The evolution of screening methods for donated blood and the corresponding decrease in transfusion-related hepatitis. Data shown for non-A, non-B hepatitis before the availability of anti-HCV testing, and for HCV afterwards. HBsAg—hepatitis B virus surface antigen. Anti-HBc—hepatitis B virus core antibodies. NAT—nucleic acid technology. (Adapted from reference .)

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Histopathologic findings in chronic hepatitis C. (a) Moderate inflammatory activity. The portal area is expanded by an inflammatory infiltrate and a lymphoid follicle (arrow). The infiltrate disrupts the limiting plate between portal area and hepatic parenchyma (“interface hepatitis”, arrowheads). Foci of lobular inflammation can also be seen (white arrowhead) as well as an acidophil body (white arrow). H&E stain, 400× magnification. (b) HCV-associated steatosis. The inflammatory infiltrate (arrow) is accompanied by fat droplets in hepatocytes (arrowheads). H&E stain, 200× magnification. Images provided by David Kleiner, MD PhD, National Cancer Institute, Bethesda, MD.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

The immune response to HCV infection. Hepatitis C infection induces innate and adaptive immune responses. Induction of HCV-specific cytotoxic T-cells by antigen presenting cells is crucial in viral clearance and prevention of chronic infection, through both cytopathic and noncytopathic mechanisms. Antibodies against HCV, secreted by B-cells, appear late and do not seem to have an important role in viral control. Activation of nonspecific inflammatory cells causes liver injury. Chronic stimulation of lymphoid cells can induce autoimmunity and lymphoproliferative disorders including cryoglobulinemia and lymphoma.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

The clinical course and natural history of HCV infection. (a) Acute, spontaneously resolving hepatitis C. The liver enzyme elevation, symptoms, and appearance of antibodies usually lag behind viremia. Seropositivity persists for years after recovery but may decline after decades. (b) Acute infection progressing to chronic hepatitis C. Viral levels and enzyme elevations are relatively stable in the chronic phase. Accumulation of fibrosis occurs gradually, over many years. The gray dashed line represents the upper limit of the norm for ALT. HCVAb—anti-HCV antibodies. ALT—alanine aminotransferase.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

The evolution of treatment regimens for chronic hepatitis C and the corresponding rates of sustained virological response. IFN—interferon alfa. PIFN—pegylated interferon alfa. R—ribavirin. DAA—direct-acting antiviral therapy.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

Currently FDA approved direct-acting antiviral therapy for hepatitis C includes NS3-4A protease inhibitors, nucleotide analogue, and non-nucleoside inhibitors of the HCV RNA-dependent RNA polymerase (RdRp) and inhibitors of the non-structural 5A (NS5A) protein.

Citation: Koh C, Li Q, Liang J. 2017. Hepatitis C Virus, p 1313-1345. In Richman D, Whitley R, Hayden F (ed), Clinical Virology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819439.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819439.ch54
1. ICTVdB Management (2006). 00.026.0.03.001. Hepatitis C virus. In: ICTVdB—The Universal Virus Database, version 4. Büchen-Osmond C. (Ed), Columbia University, New York,
2. Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST. 2013. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology 57:13331342.[PubMed]
3. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359362.[PubMed]
4. Kuo G, Choo Q, Alter H, Gitnick G, Redeker A, Purcell R, Miyamura T, Dienstag J, Alter M, Stevens C , et al. 1989. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244:362364. [PubMed]
5. Cha T, Beall E, Irvine B, Kolberg J, Chien D, Urdea MS. 1992. At least five related but distinct hepatitis C viral genotypes exist. 89:71447148.
6. Pawlotsky JM. 2003. Hepatitis C virus genetic variability: pathogenic and clinical implications. Clin Liver Dis 7:4566.[PubMed]
7. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, Perelson AS. 1998. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282:103107.[PubMed]
8. Martell M, Esteban JI, Quer J, Genescà J, Weiner A, Esteban R, Guardia J, Gómez J. 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol 66:32253229.[PubMed]
9. Simmonds P, Bukh J, Combet C, Deléage G, Enomoto N, Feinstone S, Halfon P, Inchauspé G, Kuiken C, Maertens G, Mizokami M, Murphy DG, Okamoto H, Pawlotsky JM, Penin F, Sablon E, Shin-I T, Stuyver LJ, Thiel HJ, Viazov S, Weiner AJ, Widell A. 2005. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42:962973.[PubMed]
10. Smith DB, Bukh J, Kuiken C, Muerhoff AS, Rice CM, Stapleton JT, Simmonds P. 2014. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology 59:318327.[PubMed]
11. Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, Barnes E. 2015. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 61:7787.[PubMed]
12. Goossens N, Negro F. 2014. Is genotype 3 of the hepatitis C virus the new villain? Hepatology 59:24032412.[PubMed]
13. Scheel TK, Simmonds P, Kapoor A. 2015. Surveying the global virome: identification and characterization of HCV-related animal hepaciviruses. Antiviral Res 115:8393.[PubMed]
14. Kapoor A, Kumar A, Simmonds P, Bhuva N, Singh Chauhan L, Lee B, Sall AA, Jin Z, Morse SS, Shaz B, Burbelo PD, Lipkin WI. 2015. Virome analysis of transfusion recipients reveals a novel human virus that shares genomic features with hepaciviruses and pegiviruses. MBio 6:6 e01767-15.[PubMed]
15. Gault E, Soussan P, Morice Y, Sanders L, Berrada A, Rogers B, Dený P. 2003. Evaluation of a new serotyping assay for detection of anti-hepatitis C virus type-specific antibodies in serum samples. J Clin Microbiol 41:20842087.[PubMed]
16. Feinstone SM, Mihalik KB, Kamimura T, Alter HJ, London WT, Purcell RH. 1983. Inactivation of hepatitis B virus and non-A, non-B hepatitis by chloroform. Infect Immun 41:816821.[PubMed]
17. Kaito M, Watanabe S, Tsukiyama-Kohara K, Yamaguchi K, Kobayashi Y, Konishi M, Yokoi M, Ishida S, Suzuki S, Kohara M. 1994. Hepatitis C virus particle detected by immunoelectron microscopic study. J Gen Virol 75:17551760.[PubMed]
18. André P, Perlemuter G, Budkowska A, Bréchot C, Lotteau V. 2005. Hepatitis C virus particles and lipoprotein metabolism. Semin Liver Dis 25:93104.[PubMed]
19. Yu X, Qiao M, Atanasov I, Hu Z, Kato T, Liang TJ, Zhou ZH. 2007. Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles. Virology 367:126134.[PubMed]
20. Catanese MT, Uryu K, Kopp M, Edwards TJ, Andrus L, Rice WJ, Silvestry M, Kuhn RJ, Rice CM. 2013. Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci USA 110:95059510.[PubMed]
21. Charrel RN, de Chesse R, Decaudin A, De Micco P, de Lamballerie X. 2001. Evaluation of disinfectant efficacy against hepatitis C virus using a RT-PCR-based method. J Hosp Infect 49:129134.[PubMed]
22. Agolini G, Russo A, Clementi M. 1999. Effect of phenolic and chlorine disinfectants on hepatitis C virus binding and infectivity. Am J Infect Control 27:236239.[PubMed]
23. Cardoso MS, Koerner K, Hinz W, Lenz C, Schwandt A, Kubanek B. 1999. Hepatitis C virus stability: the issue! Vox Sang 76:124127.[PubMed]
24. Chanzy B, Duc-Bin DL, Rousset B, Morand P, Morel-Baccard C, Marchetti B, Fauconnier J, Mallaret MR, Calop J, Zarski JP, Seigneurin JM. 1999. Effectiveness of a manual disinfection procedure in eliminating hepatitis C virus from experimentally contaminated endoscopes. Gastrointest Endosc 50:147151.[PubMed]
25. Sattar SA, Tetro J, Springthorpe VS, Giulivi A. 2001. Preventing the spread of hepatitis B and C viruses: where are germicides relevant? Am J Infect Control 29:187197.[PubMed]
26. Fraser CS, Doudna JA. 2007. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 5:29388. [PubMed]
27. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. 2005. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:15771581.[PubMed]
28. Friebe P, Bartenschlager R. 2002. Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76:53265338.[PubMed]
29. Yi M, Lemon SM. 2003. 3′ nontranslated RNA signals required for replication of hepatitis C virus RNA. J Virol 77:35573568.[PubMed]
30. McLauchlan J. 2000. Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7:214.[PubMed]
31. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K. 1998. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4:10651067[PubMed]
32. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K. 2007. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:10891097.[PubMed]
33. Masaki T, Suzuki R, Murakami K, Aizaki H, Ishii K, Murayama A, Date T, Matsuura Y, Miyamura T, Wakita T, Suzuki T. 2008. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 82:79647976.[PubMed]
34. Branch AD, Stump DD, Gutierrez JA, Eng F, Walewski JL. 2005. The hepatitis C virus alternate reading frame (ARF) and its family of novel products: the alternate reading frame protein/F-protein, the double-frameshift protein, and others. Semin Liver Dis 25:105117.[PubMed]
35. Voisset C, Dubuisson J. 2004. Functional hepatitis C virus envelope glycoproteins. Biol Cell 96:413420.[PubMed]
36. Albecka A, Montserret R, Krey T, Tarr AW, Diesis E, Ball JK, Descamps V, Duverlie G, Rey F, Penin F, Dubuisson J. 2011. Identification of new functional regions in hepatitis C virus envelope glycoprotein E2. J Virol 85:17771792.[PubMed]
37. McCaffrey K, Gouklani H, Boo I, Poumbourios P, Drummer HE. 2011. The variable regions of hepatitis C virus glycoprotein E2 have an essential structural role in glycoprotein assembly and virion infectivity. J Gen Virol 92:112121.[PubMed]
38. Pérez-Berná AJ, Pabst G, Laggner P, Villalaín J. 2009. Biophysical characterization of the fusogenic region of HCV envelope glycoprotein E1. Biochim Biophys Acta 1788:21832193.[PubMed]
39. Griffin S, Clarke D, McCormick C, Rowlands D, Harris M. 2005. Signal peptide cleavage and internal targeting signals direct the hepatitis C virus p7 protein to distinct intracellular membranes. J Virol 79:1552515536.[PubMed]
40. Jones CT, Murray CL, Eastman DK, Tassello J, Rice CM. 2007. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 81:83748383.[PubMed]
41. Boson B, Granio O, Bartenschlager R, Cosset FL. 2011. A concerted action of hepatitis C virus p7 and nonstructural protein 2 regulates core localization at the endoplasmic reticulum and virus assembly. PLoS Pathog 7:e1002144.[PubMed]
42. Vieyres G, Brohm C, Friesland M, Gentzsch J, Wölk B, Roingeard P, Steinmann E, Pietschmann T. 2013. Subcellular localization and function of an epitope-tagged p7 viroporin in hepatitis C virus-producing cells. J Virol 87:16641678.[PubMed]
43. Madan V, Bartenschlager R. 2015. Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses 7:44614481[PubMed]
44. Schregel V, Jacobi S, Penin F, Tautz N. 2009. Hepatitis C virus NS2 is a protease stimulated by cofactor domains in NS3. Proc Natl Acad Sci USA 106:53425347.[PubMed]
45. Jirasko V, Montserret R, Lee JY, Gouttenoire J, Moradpour D, Penin F, Bartenschlager R. 2010. Structural and functional studies of nonstructural protein 2 of the hepatitis C virus reveal its key role as organizer of virion assembly. PLoS Pathog 6:e1001233.[PubMed]
46. Stapleford KA, Lindenbach BD. 2011. Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. J Virol 85:17061717.[PubMed]
47. Bartenschlager R. 1999. The NS3/4A proteinase of the hepatitis C virus: unravelling structure and function of an unusual enzyme and a prime target for antiviral therapy. J Viral Hepat 6:165181.[PubMed]
48. Dumont S, Cheng W, Serebrov V, Beran RK, Tinoco I Jr, Pyle AM, Bustamante C. 2006. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439:105108.[PubMed]
49. Brass V, Berke JM, Montserret R, Blum HE, Penin F, Moradpour D. 2008. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex. Proc Natl Acad Sci USA 105:1454514550.[PubMed]
50. Lindenbach BD, Prágai BM, Montserret R, Beran RK, Pyle AM, Penin F, Rice CM. 2007. The C terminus of hepatitis C virus NS4A encodes an electrostatic switch that regulates NS5A hyperphosphorylation and viral replication. J Virol 81:89058918.[PubMed]
51. Phan T, Kohlway A, Dimberu P, Pyle AM, Lindenbach BD. 2011. The acidic domain of hepatitis C virus NS4A contributes to RNA replication and virus particle assembly. J Virol 85:11931204.[PubMed]
52. Murray CL, Jones CT, Rice CM. 2008. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6:699708. [PubMed]
53. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:11671172.[PubMed]
54. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M Jr, Lemon SM. 2005. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci USA 102:29922997.[PubMed]
55. Einav S, Gerber D, Bryson PD, Sklan EH, Elazar M, Maerkl SJ, Glenn JS, Quake SR. 2008. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat Biotechnol 26:10191027.[PubMed]
56. Blight KJ. 2007. Allelic variation in the hepatitis C virus NS4B protein dramatically influences RNA replication. J Virol 81:57245736.[PubMed]
57. Jones DM, Patel AH, Targett-Adams P, McLauchlan J. 2009. The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. J Virol 83:21632177.[PubMed]
58. Huang Y, Staschke K, De Francesco R, Tan SL. 2007. Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology 364:19.[PubMed]
59. Lindenbach BD, Rice CM. 2013. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol 11:688700.[PubMed]
60. Quintavalle M, Sambucini S, Summa V, Orsatti L, Talamo F, De Francesco R, Neddermann P. 2007. Hepatitis C virus NS5A is a direct substrate of casein kinase I-alpha, a cellular kinase identified by inhibitor affinity chromatography using specific NS5A hyperphosphorylation inhibitors. J Biol Chem 282:55365544.[PubMed]
61. Tellinghuisen TL, Foss KL, Treadaway J. 2008. Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog 4:e1000032.[PubMed]
62. Hofmann WP, Zeuzem S, Sarrazin C. 2005. Hepatitis C virus-related resistance mechanisms to interferon alpha-based antiviral therapy. J Clin Virol 32:8691.[PubMed]
63. de Chassey B, Navratil V, Tafforeau L, Hiet MS, Aublin-Gex A, Agaugué S, Meiffren G, Pradezynski F, Faria BF, Chantier T, Le Breton M, Pellet J, Davoust N, Mangeot PE, Chaboud A, Penin F, Jacob Y, Vidalain PO, Vidal M, André P, Rabourdin-Combe C, Lotteau V. 2008. Hepatitis C virus infection protein network. Mol Syst Biol 4:230.[PubMed]
64. Appel N, Schaller T, Penin F, Bartenschlager R. 2006. From structure to function: new insights into hepatitis C virus RNA replication. J Biol Chem 281:98339836.[PubMed]
65. Li Q, Zhang YY, Chiu S, Hu Z, Lan KH, Cha H, Sodroski C, Zhang F, Hsu CS, Thomas E, Liang TJ. 2014. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle. PLoS Pathog 10:e1004163.[PubMed]
66. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S. 1998. Binding of hepatitis C virus to CD81. Science 282:938941.[PubMed]
67. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wölk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM. 2007. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801805. [PubMed]
68. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM. 2009. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882886.[PubMed]
69. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, Davis C, Mee CJ, Turek M, Gorke S, Royer C, Fischer B, Zahid MN, Lavillette D, Fresquet J, Cosset FL, Rothenberg SM, Pietschmann T, Patel AH, Pessaux P, Doffoël M, Raffelsberger W, Poch O, McKeating JA, Brino L, Baumert TF. 2011. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17:589595.[PubMed]
70. Sainz B Jr, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S, Marsh KA, Yu X, Chayama K, Alrefai WA, Uprichard SL. 2012. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18:281285.[PubMed]
71. Bartosch B, Dubuisson J, Cosset FL. 2003. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med 197:633642.[PubMed]
72. Krey T, Meola A, Keck ZY, Damier-Piolle L, Foung SK, Rey FA. 2013. Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape. PLoS Pathog 9:e1003364.[PubMed]
73. Giang E, Dorner M, Prentoe JC, Dreux M, Evans MJ, Bukh J, Rice CM, Ploss A, Burton DR, Law M. 2012. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc Natl Acad Sci USA 109:62056210.[PubMed]
74. Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A. 2002. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21:50175025.[PubMed]
75. Barth H, Schafer C, Adah MI, Zhang F, Linhardt RJ, Toyoda H, Kinoshita-Toyoda A, Toida T, Van Kuppevelt TH, Depla E, Von Weizsacker F, Blum HE, Baumert TF. 2003. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278:4100341012.[PubMed]
76. Cormier EG, Durso RJ, Tsamis F, Boussemart L, Manix C, Olson WC, Gardner JP, Dragic T. 2004. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc Natl Acad Sci USA 101:1406714072.[PubMed]
77. Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX. 1999. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci USA 96:1276612771.[PubMed]
78. Douam F, Dao Thi VL, Maurin G, Fresquet J, Mompelat D, Zeisel MB, Baumert TF, Cosset FL, Lavillette D. 2014. Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology 59:776788.[PubMed]
79. Harris HJ, Davis C, Mullins JG, Hu K, Goodall M, Farquhar MJ, Mee CJ, McCaffrey K, Young S, Drummer H, Balfe P, McKeating JA. 2010. Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem 285:2109221102.[PubMed]
80. Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K, Jones CT, Schoggins JW, Catanese MT, Burton DR, Law M, Rice CM, Ploss A. 2011. A genetically humanized mouse model for hepatitis C virus infection. Nature 474:208211.[PubMed]
81. Dorner M, Horwitz JA, Donovan BM, Labitt RN, Budell WC, Friling T, Vogt A, Catanese MT, Satoh T, Kawai T, Akira S, Law M, Rice CM, Ploss A. 2013. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501:237241.[PubMed]
82. Martin DN, Uprichard SL. 2013. Identification of transferrin receptor 1 as a hepatitis C virus entry factor. Proc Natl Acad Sci USA 110:1077710782.[PubMed]
83. Scheel TK, Rice CM. 2013. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 19:837849.[PubMed]
84. Wu JZ. 2001. Internally located signal peptides direct hepatitis C virus polyprotein processing in the ER membrane. IUBMB Life 51:1923.[PubMed]
85. Welbourn S, Pause A. 2007. The hepatitis C virus NS2/3 protease. Curr Issues Mol Biol 9:6369.[PubMed]
86. Gosert R, Egger D, Lohmann V, Bartenschlager R, Blum HE, Bienz K, Moradpour D. 2003. Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J Virol 77:54875492.[PubMed]
87. Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, Lemon SM. 2012. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci USA 109:941946.[PubMed]
88. Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM. 2013. Competing and noncompeting activities of miR-122 and the 5′ exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci USA 110:18811886.[PubMed]
89. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Ørum H. 2010. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198201.[PubMed]
90. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. 2013. Treatment of HCV infection by targeting microRNA. N Engl J Med 368:16851694.[PubMed]
91. Li Q, Brass AL, Ng A, Hu Z, Xavier RJ, Liang TJ, Elledge SJ. 2009. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci USA 106:1641016415.[PubMed]
92. Tai AW, Benita Y, Peng LF, Kim SS, Sakamoto N, Xavier RJ, Chung RT. 2009. A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 5:298307.[PubMed]
93. Germain MA, Chatel-Chaix L, Gagné B, Bonneil É, Thibault P, Pradezynski F, de Chassey B, Meyniel-Schicklin L, Lotteau V, Baril M, Lamarre D. 2014. Elucidating novel hepatitis C virus-host interactions using combined mass spectrometry and functional genomics approaches. Mol Cell Proteomics 13:184203.[PubMed]
94. Paeshuyse J, Kaul A, De Clercq E, Rosenwirth B, Dumont JM, Scalfaro P, Bartenschlager R, Neyts J. 2006. The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro. Hepatology 43:761770.[PubMed]
95. Hopkins S, Scorneaux B, Huang Z, Murray MG, Wring S, Smitley C, Harris R, Erdmann F, Fischer G, Ribeill Y. 2010. SCY-635, a novel nonimmunosuppressive analog of cyclosporine that exhibits potent inhibition of hepatitis C virus RNA replication in vitro. Antimicrob Agents Chemother 54:660672.[PubMed]
96. Schaefer EA, Chung RT. 2013. HCV and host lipids: an intimate connection. Semin Liver Dis 33:358368.[PubMed]
97. Paul D, Madan V, Bartenschlager R. 2014. Hepatitis C virus RNA replication and assembly: living on the fat of the land. Cell Host Microbe 16:569579.[PubMed]
98. Bartenschlager R, Penin F, Lohmann V, André P. 2011. Assembly of infectious hepatitis C virus particles. Trends Microbiol 19:95103.[PubMed]
99. Benga WJ, Krieger SE, Dimitrova M, Zeisel MB, Parnot M, Lupberger J, Hildt E, Luo G, McLauchlan J, Baumert TF, Schuster C. 2010. Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology 51:4353.[PubMed]
100. Cun W, Jiang J, Luo G. 2010. The C-terminal alpha-helix domain of apolipoprotein E is required for interaction with nonstructural protein 5A and assembly of hepatitis C virus. J Virol 84:1153211541.[PubMed]
101. Huang H, Chen Y, Ye J. 2007. Inhibition of hepatitis C virus replication by peroxidation of arachidonate and restoration by vitamin E. Proc Natl Acad Sci USA 104:1866618670.[PubMed]
102. Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, Rosenberg AR, Farese RV Jr, Ott M. 2010. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 16:12951298.[PubMed]
103. Li Q, Pène V, Krishnamurthy S, Cha H, Liang TJ. 2013. Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly. Nat Med 19:722729.[PubMed]
104. Gastaminza P, Kapadia SB, Chisari FV. 2006. Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J Virol 80:1107411081.[PubMed]
105. Coller KE, Heaton NS, Berger KL, Cooper JD, Saunders JL, Randall G. 2012. Molecular determinants and dynamics of hepatitis C virus secretion. PLoS Pathog 8:e1002466.[PubMed]
106. Barth H, Liang TJ, Baumert TF. 2006. Hepatitis C virus entry: molecular biology and clinical implications. Hepatology 44:527535.[PubMed]
107. Lohmann V, Körner F, Koch J, Herian U, Theilmann L, Bartenschlager R. 1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110113.[PubMed]
108. Pietschmann T, Bartenschlager R. 2003. Tissue culture and animal models for hepatitis C virus. Clin Liver Dis 7:2343.[PubMed]
109. Hsu M, Zhang J, Flint M, Logvinoff C, Cheng-Mayer C, Rice CM, McKeating JA. 2003. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci USA 100:72717276.[PubMed]
110. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Habermann A, Kräusslich HG, Mizokami M, Bartenschlager R, Liang TJ. 2005. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791796.[PubMed]
111. Lindenbach BD, Evans MJ, Syder AJ, Wölk B, Tellinghuisen TL, Liu CC, Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM. 2005. Complete replication of hepatitis C virus in cell culture. Science 309:623626.[PubMed]
112. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR, Wieland SF, Uprichard SL, Wakita T, Chisari FV. 2005. Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 102:92949299.[PubMed]
113. Yi M, Villanueva RA, Thomas DL, Wakita T, Lemon SM. 2006. Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc Natl Acad Sci USA 103:23102315.[PubMed]
114. Heller T, Saito S, Auerbach J, Williams T, Moreen TR, Jazwinski A, Cruz B, Jeurkar N, Sapp R, Luo G, Liang TJ. 2005. An in vitro model of hepatitis C virion production. Proc Natl Acad Sci USA 102:25792583.[PubMed]
115. Kato T, Matsumura T, Heller T, Saito S, Sapp RK, Murthy K, Wakita T, Liang TJ. 2007. Production of infectious hepatitis C virus of various genotypes in cell cultures. J Virol 81:44054411. [PubMed]
116. Lázaro CA, Chang M, Tang W, Campbell J, Sullivan DG, Gretch DR, Corey L, Coombs RW, Fausto N. 2007. Hepatitis C virus replication in transfected and serum-infected cultured human fetal hepatocytes. Am J Pathol 170:478489.[PubMed]
117. Saeed M, Andreo U, Chung HY, Espiritu C, Branch AD, Silva JM, Rice CM. 2015. SEC14L2 enables pan-genotype HCV replication in cell culture. Nature 524:471475.[PubMed]
118. Catanese MT, Dorner M. 2015. Advances in experimental systems to study hepatitis C virus in vitro and in vivo. Virology 479–480:221233.[PubMed]
119. Lohmann V, Bartenschlager R. 2014. On the history of hepatitis C virus cell culture systems. J Med Chem 57:16271642.[PubMed]
120. Steinmann E, Pietschmann T. 2013. Cell culture systems for hepatitis C virus. Curr Top Microbiol Immunol 369:1748.[PubMed]
121. Narbus CM, Israelow B, Sourisseau M, Michta ML, Hopcraft SE, Zeiner GM, Evans MJ. 2011. HepG2 cells expressing microRNA miR-122 support the entire hepatitis C virus life cycle. J Virol 85:1208712092.[PubMed]
122. Carpentier A, Tesfaye A, Chu V, Nimgaonkar I, Zhang F, Lee SB, Thorgeirsson SS, Feinstone SM, Liang TJ. 2014. Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. J Clin Invest 124:49534964.[PubMed]
123. Schwartz RE, Trehan K, Andrus L, Sheahan TP, Ploss A, Duncan SA, Rice CM, Bhatia SN. 2012. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA 109:25442548.[PubMed]
124. Wu X, Robotham JM, Lee E, Dalton S, Kneteman NM, Gilbert DM, Tang H. 2012. Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog 8:e1002617.[PubMed]
125. Makuwa M, Souquière S, Telfer P, Leroy E, Bourry O, Rouquet P, Clifford S, Wickings EJ, Roques P, Simon F. 2003. Occurrence of hepatitis viruses in wild-born non-human primates: a 3 year (1998–2001) epidemiological survey in Gabon. J Med Primatol 32:307314.[PubMed]
126. Lanford RE, Bigger C, Bassett S, Klimpel G. 2001. The chimpanzee model of hepatitis C virus infections. ILAR J 42:117126.[PubMed]