1887

Chapter 11 : Human Immunology of Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Human Immunology of Tuberculosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap11-2.gif

Abstract:

Immunity to is an interplay between the innate and adaptive immune response, both cellular and humoral. This interplay is not static but changes over time as we grow, age, and respond to our environment. Animal models enable examination of individual components of the immune response at distinct time points during the course of infection. This has enabled identification and understanding of key immune mechanisms for control. However, rational development of interventions, such as more effective vaccines and other host-directed therapies, has to take into consideration the enormous heterogeneity of the interactions between with human innate and adaptive immune responses, which are profoundly influenced by genetic variation, environment, and comorbidities.

Citation: Scriba T, Coussens A, Fletcher H. 2017. Human Immunology of Tuberculosis, p 213-237. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0016-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Hypothesized stages of response to infection, beginning with elimination mediated by innate immune cells without induction of a long-lasting memory response; further stages of elimination may be mediated via acquired immune mechanisms. If antigen-specific effector memory persists, this can be measured via IFN-γ release assays (IGRA) or tuberculin skin test (TST) and may provide protection from infection for a variable period of time. If the acquired immunity does not eliminate the bacteria, then infection will persist over a range of bacterial states. Increasing bacterial load is hypothesized to correlate with progression to active TB. For all exposed individuals, the risk of developing TB is highest immediately following exposure and changes over time. The longitudinal risk of developing TB, predicted in the exposed individual, is presented (adapted from references and ).

Citation: Scriba T, Coussens A, Fletcher H. 2017. Human Immunology of Tuberculosis, p 213-237. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0016-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The spectrum of pulmonary TB lesions that can be found in the same host and that represent different stages of disease. Primary TB is characterized by the hallmark circular granuloma with caseating necrosis which forms within the center, surrounded by a lymphocytic cuff. Conversely, post-primary TB is typically represented by a diverse range of pathologies. Acute post-primary lesions are composed of paucibacillary lobular pneumonia; these may either resolve (subacute dry), fibrose (chronic fibrosing) or necrose (acute caseating). Caseating granulomas in post-primary TB are distinct from the granulomas of primary TB in that they form around and in response to caseous necrosis of pneumonic lesions (post-primary granuloma) rather than necrosis occurring in the center of preformed lesions as occurs in primary TB. Cavities are formed from the dissolution of these caseating pneumonic lesions. Six stages are represented by a 19th century drawing and a 21st century photomicrograph of sections stained with hematoxylin and eosin or trichrome, imaged at 40 to 400×. (Reproduced from references , and ).

Citation: Scriba T, Coussens A, Fletcher H. 2017. Human Immunology of Tuberculosis, p 213-237. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0016-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Role of antibodies in anti- () infection. Antibodies may directly bind to mycobacteria, triggering complement deposition and lysis of , or complement may mediate opsonophagocytosis of the organism. Alternatively, -bound antibody may enhance macrophage uptake through Fc receptor binding or activate NK cell activity through Fc receptor engagement. It is also possible for immune complexes to form between mycobacterial antigen and antibody. Abbreviations: FcγRIII, Fc gamma receptor III; IgA, immunoglobulin A; IgG, immunoglobulin G; LAM, lipoarabinomannan; MAC, membrane-attack complex. (From reference with permission.)

Citation: Scriba T, Coussens A, Fletcher H. 2017. Human Immunology of Tuberculosis, p 213-237. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0016-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819569.chap11
1. Gagneux S . 2012. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci 367 : 850859.[CrossRef] [PubMed]
2. Dye C,, Scheele S,, Dolin P,, Pathania V,, Raviglione MC . 1999. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282 : 677686.[CrossRef]
3. Wallgren A . 1948. The time-table of tuberculosis. Tubercle 29 : 245251.[CrossRef]
4. Chen S,, Chen J,, Chen L,, Zhang Q,, Luo X,, Zhang W . 2013. Mycobacterium tuberculosis infection is associated with the development of erythema nodosum and nodular vasculitis. PLoS One 8 : e62653.[CrossRef]
5. Mert A,, Kumbasar H,, Ozaras R,, Erten S,, Tasli L,, Tabak F,, Ozturk R . 2007. Erythema nodosum: an evaluation of 100 cases. Clin Exp Rheumatol 25 : 563570.[PubMed]
6. Nicol MP,, Kampmann B,, Lawrence P,, Wood K,, Pienaar S,, Pienaar D,, Eley B,, Levin M,, Beatty D,, Anderson ST . 2007. Enhanced anti-mycobacterial immunity in children with erythema nodosum and a positive tuberculin skin test. J Invest Dermatol 127 : 21522157.[CrossRef] [PubMed]
7. Méchaï F,, Soler C,, Aoun O,, Fabre M,, Mérens A,, Imbert P,, Rapp C . 2011. Primary Mycobacterium bovis infection revealed by erythema nodosum. Int J Tuberc Lung Dis 15 : 11311132. [CrossRef]
8. Mahan CS,, Zalwango S,, Thiel BA,, Malone LL,, Chervenak KA,, Baseke J,, Dobbs D,, Stein CM,, Mayanja H,, Joloba M,, Whalen CC,, Boom WH . 2012. Innate and adaptive immune responses during acute M. tuberculosis infection in adult household contacts in Kampala, Uganda. Am J Trop Med Hyg 86 : 690697.[CrossRef]
9. Stein CM,, Zalwango S,, Malone LL,, Won S,, Mayanja-Kizza H,, Mugerwa RD,, Leontiev DV,, Thompson CL,, Cartier KC,, Elston RC,, Iyengar SK,, Boom WH,, Whalen CC,, Mugerwa RD,, Routy JP,, Leontiev DV,, Sekaly RP,, Thompson CL,, Cartier KC,, Elston RC,, Iyengar SK,, Boom WH,, Whalen CC . 2008. Genome scan of M. tuberculosis infection and disease in Ugandans. PLoS One 3 : e4094. [CrossRef]
10. Hawn TR,, Day TA,, Scriba TJ,, Hatherill M,, Hanekom WA,, Evans TG,, Churchyard GJ,, Kublin JG,, Bekker L-G,, Self SG . 2014. Tuberculosis vaccines and prevention of infection. Microbiol Mol Biol Rev 78 : 650671.[CrossRef] [PubMed]
11. Hirsch CS,, Ellner JJ,, Russell DG,, Rich EA . 1994. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol 152 : 743753.[PubMed]
12. Keane J,, Balcewicz-Sablinska MK,, Remold HG,, Chupp GL,, Meek BB,, Fenton MJ,, Kornfeld H . 1997. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 65 : 298304.[PubMed]
13. Engele M,, Stössel E,, Castiglione K,, Schwerdtner N,, Wagner M,, Bölcskei P,, Röllinghoff M,, Stenger S . 2002. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis . J Immunol 168 : 13281337.[CrossRef] [PubMed]
14. Silver RF,, Walrath J,, Lee H,, Jacobson BA,, Horton H,, Bowman MR,, Nocka K,, Sypek JP . 2009. Human alveolar macrophage gene responses to Mycobacterium tuberculosis strains H37Ra and H37Rv. Am J Respir Cell Mol Biol 40 : 491504.[CrossRef]
15. Hirsch CS,, Ellner JJ,, Russell DG,, Rich EA . 1994. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol 152 : 743753.[PubMed]
16. Lala S,, Dheda K,, Chang JS,, Huggett JF,, Kim LU,, Johnson MA,, Rook GA,, Keshav S,, Zumla A . 2007. The pathogen recognition sensor, NOD2, is variably expressed in patients with pulmonary tuberculosis. BMC Infect Dis 7 : 96.[CrossRef]
17. Juárez E,, Carranza C,, Hernández-Sánchez F,, León-Contreras JC,, Hernández-Pando R,, Escobedo D,, Torres M,, Sada E . 2012. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans. Eur J Immunol 42 : 880889.[CrossRef] [PubMed]
18. Rivas-Santiago B,, Hernandez-Pando R,, Carranza C,, Juarez E,, Contreras JL,, Aguilar-Leon D,, Torres M,, Sada E . 2008. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun 76 : 935941.[CrossRef]
19. Tsao TC,, Hong J,, Huang C,, Yang P,, Liao SK,, Chang KS . 1999. Increased TNF-alpha, IL-1 beta and IL-6 levels in the bronchoalveolar lavage fluid with the upregulation of their mRNA in macrophages lavaged from patients with active pulmonary tuberculosis. Tuber Lung Dis 79 : 279285.[CrossRef]
20. Huang KH,, Wang CH,, Lee KY,, Lin SM,, Lin CH,, Kuo HP . 2013. NF-κB repressing factor inhibits chemokine synthesis by peripheral blood mononuclear cells and alveolar macrophages in active pulmonary tuberculosis. PLoS One 8 : e77789.[CrossRef]
21. Gleeson LE,, Sheedy FJ,, Palsson-McDermott EM,, Triglia D,, O’Leary SM,, O’Sullivan MP,, O’Neill LA,, Keane J . 2016. Cutting Edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J Immunol 196 : 24442449.[CrossRef]
22. Barnes PF,, Leedom JM,, Chan LS,, Wong SF,, Shah J,, Vachon LA,, Overturf GD,, Modlin RL . 1988. Predictors of short-term prognosis in patients with pulmonary tuberculosis. J Infect Dis 158 : 366371.[CrossRef] [PubMed]
23. Lowe DM,, Bandara AK,, Packe GE,, Barker RD,, Wilkinson RJ,, Griffiths CJ,, Martineau AR . 2013. Neutrophilia independently predicts death in tuberculosis. Eur Respir J 42 : 17521757.[CrossRef] [PubMed]
24. Berry MP,, Graham CM,, McNab FW,, Xu Z,, Bloch SA,, Oni T,, Wilkinson KA,, Banchereau R,, Skinner J,, Wilkinson RJ,, Quinn C,, Blankenship D,, Dhawan R,, Cush JJ,, Mejias A,, Ramilo O,, Kon OM,, Pascual V,, Banchereau J,, Chaussabel D,, O’Garra A . 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466 : 973977.[CrossRef]
25. Martineau AR,, Newton SM,, Wilkinson KA,, Kampmann B,, Hall BM,, Nawroly N,, Packe GE,, Davidson RN,, Griffiths CJ,, Wilkinson RJ . 2007. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117 : 19881994.[CrossRef] [PubMed]
26. Ramos-Kichik V,, Mondragón-Flores R,, Mondragón-Castelán M,, Gonzalez-Pozos S,, Muñiz-Hernandez S,, Rojas-Espinosa O,, Chacón-Salinas R,, Estrada-Parra S,, Estrada-García I . 2009. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis . Tuberculosis (Edinb) 89 : 2937.[CrossRef]
27. Coussens AK,, Wilkinson RJ,, Nikolayevskyy V,, Elkington PT,, Hanifa Y,, Islam K,, Timms PM,, Bothamley GH,, Claxton AP,, Packe GE,, Darmalingam M,, Davidson RN,, Milburn HJ,, Baker LV,, Barker RD,, Drobniewski FA,, Mein CA,, Bhaw-Rosun L,, Nuamah RA,, Griffiths CJ,, Martineau AR . 2013. Ethnic variation in inflammatory profile in tuberculosis. PLoS Pathog 9 : e1003468.[CrossRef]
28. Krupa A,, Fol M,, Dziadek BR,, Kepka E,, Wojciechowska D,, Brzostek A,, Torzewska A,, Dziadek J,, Baughman RP,, Griffith D,, Kurdowska AK . 2015. Binding of CXCL8/IL-8 to Mycobacterium tuberculosis modulates the innate immune response. Mediators Inflamm 2015 : 124762.[CrossRef]
29. Park H,, Li Z,, Yang XO,, Chang SH,, Nurieva R,, Wang YH,, Wang Y,, Hood L,, Zhu Z,, Tian Q,, Dong C . 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6 : 11331141.[CrossRef]
30. Pai M,, Denkinger CM,, Kik SV,, Rangaka MX,, Zwerling A,, Oxlade O,, Metcalfe JZ,, Cattamanchi A,, Dowdy DW,, Dheda K,, Banaei N . 2014. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev 27 : 320.[CrossRef]
31. Hunter RL . 2016. Tuberculosis as a three-act play: a new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis (Edinb) 97 : 817.[CrossRef] [PubMed]
32. Hunter RL . 2011. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 91 : 497509.[CrossRef] [PubMed]
33. Dorhoi A,, Kaufmann SH . 2014. Perspectives on host adaptation in response to Mycobacterium tuberculosis: modulation of inflammation. Semin Immunol 26 : 533542.[CrossRef] [PubMed]
34. Chan J,, Mehta S,, Bharrhan S,, Chen Y,, Achkar JM,, Casadevall A,, Flynn J . 2014. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Semin Immunol 26 : 588600.[CrossRef] [PubMed]
35. Achkar JM,, Chan J,, Casadevall A . 2015. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev 264 : 167181.[CrossRef]
36. du Plessis WJ,, Walzl G,, Loxton AG . 2016. B cells as multi-functional players during Mycobacterium tuberculosis infection and disease. Tuberculosis (Edinb) 97 : 118125. https://www.ncbi.nlm.nih.gov/pubmed/26611659 [PubMed]
37. Rao M,, Valentini D,, Poiret T,, Dodoo E,, Parida S,, Zumla A,, Brighenti S,, Maeurer M . 2015. B in TB: B cells as mediators of clinically relevant immune responses in tuberculosis. Clin Infect Dis 61(Suppl 3): S225S234.[CrossRef] [PubMed]
38. Sebina I,, Biraro IA,, Dockrell HM,, Elliott AM,, Cose S . 2014. Circulating B-lymphocytes as potential biomarkers of tuberculosis infection activity. PLoS One 9 : e106796. [CrossRef] [PubMed] [CrossRef]
39. Hoff ST,, Salman AM,, Ruhwald M,, Ravn P,, Brock I,, Elsheikh N,, Andersen P,, Agger EM . 2015. Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells. Tuberculosis (Edinb) 95 : 4047.[CrossRef]
40. Zhu Q,, Zhang M,, Shi M,, Liu Y,, Zhao Q,, Wang W,, Zhang G,, Yang L,, Zhi J,, Zhang L,, Hu G,, Chen P,, Yang Y,, Dai W,, Liu T,, He Y,, Feng G,, Zhao G . 2016. Human B cells have an active phagocytic capability and undergo immune activation upon phagocytosis of Mycobacterium tuberculosis . Immunobiology 221 : 558567.[CrossRef]
41. Covert BA,, Spencer JS,, Orme IM,, Belisle JT . 2001. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis . Proteomics 1 : 574586.[CrossRef]
42. Boesen H,, Jensen BN,, Wilcke T,, Andersen P . 1995. Human T-cell responses to secreted antigen fractions of Mycobacterium tuberculosis . Infect Immun 63 : 14911497.[PubMed]
43. Wilkinson KA,, Wilkinson RJ,, Pathan A,, Ewer K,, Prakash M,, Klenerman P,, Maskell N,, Davies R,, Pasvol G,, Lalvani A . 2005. Ex vivo characterization of early secretory antigenic target 6-specific T cells at sites of active disease in pleural tuberculosis. Clin Infect Dis 40 : 184187.[CrossRef] [PubMed]
44. Lalvani A,, Nagvenkar P,, Udwadia Z,, Pathan AA,, Wilkinson KA,, Shastri JS,, Ewer K,, Hill AV,, Mehta A,, Rodrigues C . 2001. Enumeration of T cells specific for RD1-encoded antigens suggests a high prevalence of latent Mycobacterium tuberculosis infection in healthy urban Indians. J Infect Dis 183 : 469477.[CrossRef]
45. Pathan AA,, Wilkinson KA,, Klenerman P,, McShane H,, Davidson RN,, Pasvol G,, Hill AV,, Lalvani A . 2001. Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J Immunol 167 : 52175225.[CrossRef]
46. McShane H,, Pathan AA,, Sander CR,, Keating SM,, Gilbert SC,, Huygen K,, Fletcher HA,, Hill AV . 2004. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 10 : 12401244.[CrossRef]
47. Abel B,, Tameris M,, Mansoor N,, Gelderbloem S,, Hughes J,, Abrahams D,, Makhethe L,, Erasmus M,, de Kock M,, van der Merwe L,, Hawkridge A,, Veldsman A,, Hatherill M,, Schirru G,, Pau MG,, Hendriks J,, Weverling GJ,, Goudsmit J,, Sizemore D,, McClain JB,, Goetz M,, Gearhart J,, Mahomed H,, Hussey GD,, Sadoff JC,, Hanekom WA . 2010. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am J Respir Crit Care Med 181 : 14071417.[CrossRef] [PubMed]
48. Lindestam Arlehamn CS,, Gerasimova A,, Mele F,, Henderson R,, Swann J,, Greenbaum JA,, Kim Y,, Sidney J,, James EA,, Taplitz R,, McKinney DM,, Kwok WW,, Grey H,, Sallusto F,, Peters B,, Sette A . 2013. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 9 : e1003130.[CrossRef]
49. Carpenter C,, Sidney J,, Kolla R,, Nayak K,, Tomiyama H,, Tomiyama C,, Padilla OA,, Rozot V,, Ahamed SF,, Ponte C,, Rolla V,, Antas PR,, Chandele A,, Kenneth J,, Laxmi S,, Makgotlho E,, Vanini V,, Ippolito G,, Kazanova AS,, Panteleev AV,, Hanekom W,, Mayanja-Kizza H,, Lewinsohn D,, Saito M,, McElrath MJ,, Boom WH,, Goletti D,, Gilman R,, Lyadova IV,, Scriba TJ,, Kallas EG,, Murali-Krishna K,, Sette A,, Lindestam Arlehamn CS . 2015. A side-by-side comparison of T cell reactivity to fifty-nine Mycobacterium tuberculosis antigens in diverse populations from five continents. Tuberculosis (Edinb) 95 : 713721.[CrossRef]
50. Lindestam Arlehamn CS,, Paul S,, Mele F,, Huang C,, Greenbaum JA,, Vita R,, Sidney J,, Peters B,, Sallusto F,, Sette A . 2015. Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T-cell epitopes. Proc Natl Acad Sci USA 112 : E147E155.[CrossRef]
51. Day CL,, Abrahams DA,, Lerumo L,, Janse van Rensburg E,, Stone L,, O’rie T,, Pienaar B,, de Kock M,, Kaplan G,, Mahomed H,, Dheda K,, Hanekom WA . 2011. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol 187 : 22222232.[CrossRef] [PubMed] [CrossRef]
52. Rozot V,, Vigano S,, Mazza-Stalder J,, Idrizi E,, Day CL,, Perreau M,, Lazor-Blanchet C,, Petruccioli E,, Hanekom W,, Goletti D,, Bart PA,, Nicod L,, Pantaleo G,, Harari A . 2013. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 43 : 15681577.[CrossRef] [PubMed]
53. Rozot V,, Patrizia A,, Vigano S,, Mazza-Stalder J,, Idrizi E,, Day CL,, Perreau M,, Lazor-Blanchet C,, Ohmiti K,, Goletti D,, Bart P-A,, Hanekom W,, Scriba TJ,, Nicod L,, Pantaleo G,, Harari A . 2015. Combined use of Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses is a powerful diagnostic tool of active tuberculosis. Clin Infect Dis 60 : 432437.[CrossRef]
54. Seder RA,, Darrah PA,, Roederer M . 2008. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8 : 247258.[CrossRef] [PubMed]
55. Harari A,, Rozot V,, Bellutti Enders F,, Perreau M,, Stalder JM,, Nicod LP,, Cavassini M,, Calandra T,, Blanchet CL,, Jaton K,, Faouzi M,, Day CL,, Hanekom WA,, Bart PA,, Pantaleo G . 2011. Dominant TNF-α+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med 17 : 372376.[CrossRef] [PubMed]
56. Riou C,, Gray CM,, Lugongolo M,, Gwala T,, Kiravu A,, Deniso P,, Stewart-Isherwood L,, Omar SV,, Grobusch MP,, Coetzee G,, Conradie F,, Ismail N,, Kaplan G,, Fallows D . 2014. A subset of circulating blood mycobacteria-specific CD4 T cells can predict the time to Mycobacterium tuberculosis sputum culture conversion. PLoS One 9 : e102178. [CrossRef]
57. Sutherland JS,, Adetifa IM,, Hill PC,, Adegbola RA,, Ota MO . 2009. Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur J Immunol 39 : 723729.[CrossRef]
58. Caccamo N,, Guggino G,, Joosten SA,, Gelsomino G,, Di Carlo P,, Titone L,, Galati D,, Bocchino M,, Matarese A,, Salerno A,, Sanduzzi A,, Franken WPJ,, Ottenhoff THM,, Dieli F . 2010. Multifunctional CD4(+) T cells correlate with active Mycobacterium tuberculosis infection. Eur J Immunol 40 : 22112220.[CrossRef]
59. Mueller H,, Detjen AK,, Schuck SD,, Gutschmidt A,, Wahn U,, Magdorf K,, Kaufmann SH,, Jacobsen M . 2008. Mycobacterium tuberculosis-specific CD4+, IFNgamma+, and TNFalpha+ multifunctional memory T cells coexpress GM-CSF. Cytokine 43 : 143148.[CrossRef] [PubMed]
60. Kagina BM,, Abel B,, Bowmaker M,, Scriba TJ,, Gelderbloem S,, Smit E,, Erasmus M,, Nene N,, Walzl G,, Black G,, Hussey GD,, Hesseling AC,, Hanekom WA . 2009. Delaying BCG vaccination from birth to 10 weeks of age may result in an enhanced memory CD4 T cell response. Vaccine 27 : 54885495.[CrossRef]
61. Kagina BM,, Abel B,, Scriba TJ,, Hughes EJ,, Keyser A,, Soares A,, Gamieldien H,, Sidibana M,, Hatherill M,, Gelderbloem S,, Mahomed H,, Hawkridge A,, Hussey G,, Kaplan G,, Hanekom WA . 2010. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis, following BCG vaccination of newborns. Am J Respir Crit Care Med 182 : 10731079.[CrossRef]
62. Fletcher HA,, Snowden MA,, Landry B,, Rida W,, Satti I,, Harris SA,, Matsumiya M,, Tanner R,, O’Shea MK,, Dheenadhayalan V,, Bogardus L,, Stockdale L,, Marsay L,, Chomka A,, Harrington-Kandt R,, Manjaly-Thomas Z-R,, Naranbhai V,, Stylianou E,, Darboe F,, Penn-Nicholson A,, Nemes E,, Hatheril M,, Hussey G,, Mahomed H,, Tameris M,, McClain JB,, Evans TG,, Hanekom WA,, Scriba TJ,, McShane H . 2016. T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat Commun 7 : 11290.[CrossRef]
63. Adekambi T,, Ibegbu CC,, Cagle S,, Kalokhe AS,, Wang YF,, Hu Y,, Day CL,, Ray SM,, Rengarajan J . 2015. Biomarkers on patient T cells diagnose active tuberculosis and monitor treatment response. J Clin Invest 125 : 18271838.[CrossRef]
64. Esmail H,, Barry CE III,, Young DB,, Wilkinson RJ . 2014. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci 369 : 20130437.[CrossRef] [PubMed]
65. Perley CC,, Frahm M,, Click EM,, Dobos KM,, Ferrari G,, Stout JE,, Frothingham R . 2014. The human antibody response to the surface of Mycobacterium tuberculosis . PLoS One 9 : e98938.[CrossRef] [PubMed]
66. Yu X,, Prados-Rosales R,, Jenny-Avital ER,, Sosa K,, Casadevall A,, Achkar JM . 2012. Comparative evaluation of profiles of antibodies to mycobacterial capsular polysaccharides in tuberculosis patients and controls stratified by HIV status. Clin Vaccine Immunol 19 : 198208.[CrossRef]
67. Siev M,, Wilson D,, Kainth S,, Kasprowicz VO,, Feintuch CM,, Jenny-Avital ER,, Achkar JM . 2014. Antibodies against mycobacterial proteins as biomarkers for HIV-associated smear-negative tuberculosis. Clin Vaccine Immunol 21 : 791798.[CrossRef]
68. Baumann R,, Kaempfer S,, Chegou NN,, Oehlmann W,, Spallek R,, Loxton AG,, van Helden PD,, Black GF,, Singh M,, Walzl G . 2015. A subgroup of latently Mycobacterium tuberculosis infected individuals is characterized by consistently elevated IgA responses to several mycobacterial antigens. Mediators Inflamm 2015 : 364758.[CrossRef]
69. Hoff ST,, Abebe M,, Ravn P,, Range N,, Malenganisho W,, Rodriques DS,, Kallas EG,, Søborg C,, Mark Doherty T,, Andersen P,, Weldingh K . 2007. Evaluation of Mycobacterium tuberculosis-specific antibody responses in populations with different levels of exposure from Tanzania, Ethiopia, Brazil, and Denmark. Clin Infect Dis 45 : 575582.[CrossRef] [PubMed]
70. Chen J,, Wang S,, Zhang Y,, Su X,, Wu J,, Shao L,, Wang F,, Zhang S,, Weng X,, Wang H,, Zhang W . 2010. Rv1985c, a promising novel antigen for diagnosis of tuberculosis infection from BCG-vaccinated controls. BMC Infect Dis 10 : 273.[CrossRef]
71. Hur YG,, Kim A,, Kang YA,, Kim AS,, Kim DY,, Kim Y,, Kim Y,, Lee H,, Cho SN . 2015. Evaluation of antigen-specific immunoglobulin g responses in pulmonary tuberculosis patients and contacts. J Clin Microbiol 53 : 904909.[CrossRef]
72. Niki M,, Suzukawa M,, Akashi S,, Nagai H,, Ohta K,, Inoue M,, Niki M,, Kaneko Y,, Morimoto K,, Kurashima A,, Kitada S,, Matsumoto S,, Suzuki K,, Hoshino Y . 2015. Evaluation of humoral immunity to Mycobacterium tuberculosis-specific antigens for correlation with clinical status and effective vaccine development. J Immunol Res 2015 : 527395.[CrossRef]
73. Bothamley GH,, Beck JS,, Potts RC,, Grange JM,, Kardjito T,, Ivanyi J . 1992. Specificity of antibodies and tuberculin response after occupational exposure to tuberculosis. J Infect Dis 166 : 182186.[CrossRef] [PubMed]
74. Sousa AO,, Salem JI,, Lee FK,, Verçosa MC,, Cruaud P,, Bloom BR,, Lagrange PH,, David HL . 1997. An epidemic of tuberculosis with a high rate of tuberculin anergy among a population previously unexposed to tuberculosis, the Yanomami Indians of the Brazilian Amazon. Proc Natl Acad Sci USA 94 : 1322713232.[CrossRef]
75. Das S,, Cheng SH,, Lowrie DB,, Walker KB,, Mitchison DA,, Vallishayee RS,, Narayanan PR . 1992. The pattern of mycobacterial antigen recognition in sera from Mantoux-negative individuals is essentially unaffected by bacille Calmette-Guérin (BCG) vaccination in either south India or London. Clin Exp Immunol 89 : 402406.[CrossRef]
76. Pilkington C,, Costello AM,, Rook GA,, Stanford JL . 1993. Development of IgG responses to mycobacterial antigens. Arch Dis Child 69 : 644649.[CrossRef] [PubMed]
77. Stainsby KJ,, Lowes JR,, Allan RN,, Ibbotson JP . 1993. Antibodies to Mycobacterium paratuberculosis and nine species of environmental mycobacteria in Crohn’s disease and control subjects. Gut 34 : 371374.[CrossRef]
78. Lagercrantz R,, Enell H . 1953. Tuberculin-sensitivity and antibodies (agglutinins) after BCG-vaccination. Acta Paediatr 42 : 316322.[CrossRef] [PubMed]
79. Turneer M,, Van Vooren JP,, Nyabenda J,, Legros F,, Lecomte A,, Thiriaux J,, Serruys E,, Yernault JC . 1988. The humoral immune response after BCG vaccination in humans: consequences for the serodiagnosis of tuberculosis. Eur Respir J 1 : 589593.[PubMed]
80. Beyazova U,, Rota S,, Cevheroğlu C,, Karsligil T . 1995. Humoral immune response in infants after BCG vaccination. Tuber Lung Dis 76 : 248253.[CrossRef] [PubMed]
81. Hoft DF,, Kemp EB,, Marinaro M,, Cruz O,, Kiyono H,, McGhee JR,, Belisle JT,, Milligan TW,, Miller JP,, Belshe RB . 1999. A double-blind, placebo-controlled study of Mycobacterium-specific human immune responses induced by intradermal bacille Calmette-Guérin vaccination. J Lab Clin Med 134 : 244252.[CrossRef]
82. de Vallière S,, Abate G,, Blazevic A,, Heuertz RM,, Hoft DF . 2005. Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun 73 : 67116720.[CrossRef] [PubMed]
83. Kumar SK,, Singh P,, Sinha S . 2015. Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosis in human macrophages by augmenting phagosome maturation. Open Biol 5 : 150171.[CrossRef]
84. Grode L,, Seiler P,, Baumann S,, Hess J,, Brinkmann V,, Nasser Eddine A,, Mann P,, Goosmann C,, Bandermann S,, Smith D,, Bancroft GJ,, Reyrat J-M,, van Soolingen D,, Raupach B,, Kaufmann SHE . 2005. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin. J Clin Invest 115 : 24722479.[CrossRef]
85. Spertini F,, Audran R,, Chakour R,, Karoui O,, Steiner-Monard V,, Thierry A-C,, Mayor CE,, Rettby N,, Jaton K,, Vallotton L,, Lazor-Blanchet C,, Doce J,, Puentes E,, Marinova D,, Aguilo N,, Martin C . 2015. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med 3 : 953962.[CrossRef]
86. Knudsen NP,, Olsen A,, Buonsanti C,, Follmann F,, Zhang Y,, Coler RN,, Fox CB,, Meinke A,, D’Oro U,, Casini D,, Bonci A,, Billeskov R,, De Gregorio E,, Rappuoli R,, Harandi AM,, Andersen P,, Agger EM . 2016. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci Rep 6 : 19570.[CrossRef]
87. Ferebee SH . 1970. Controlled chemoprophylaxis trials in tuberculosis. A general review. Bibl Tuberc 26 : 28106.[PubMed]
88. Wiker HG,, Mustafa T,, Bjune GA,, Harboe M . 2010. Evidence for waning of latency in a cohort study of tuberculosis. BMC Infect Dis 10 : 37.[CrossRef] [PubMed]
89. Opie EL,, Aronson JD . 1927. Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. Arch Pathol Lab Med 4 : 1.
90. Keane J,, Gershon S,, Wise RP,, Mirabile-Levens E,, Kasznica J,, Schwieterman WD,, Siegel JN,, Braun MM . 2001. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345 : 10981104. [CrossRef]
91. Singh JA,, Wells GA,, Christensen R,, Tanjong Ghogomu E,, Maxwell L,, Macdonald JK,, Filippini G,, Skoetz N,, Francis D,, Lopes LC,, Guyatt GH,, Schmitt J,, La Mantia L,, Weberschock T,, Roos JF,, Siebert H,, Hershan S,, Lunn MP,, Tugwell P,, Buchbinder R . 2011. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev (2): CD008794. [PubMed]
92. Ernst JD . 2012. The immunological life cycle of tuberculosis. Nat Rev Immunol 12 : 581591.[CrossRef] [PubMed]
93. Corbett EL,, Watt CJ,, Walker N,, Maher D,, Williams BG,, Raviglione MC,, Dye C . 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163 : 10091021.[CrossRef] [PubMed]
94. Cegielski JP,, McMurray DN . 2004. The relationship between malnutrition and tuberculosis: evidence from studies in humans and experimental animals. Int J Tuberc Lung Dis 8 : 286298.[PubMed]
95. Nnoaham KE,, Clarke A . 2008. Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int J Epidemiol 37 : 113119.[CrossRef] [PubMed]
96. Oeltmann JE,, Kammerer JS,, Pevzner ES,, Moonan PK . 2009. Tuberculosis and substance abuse in the United States, 1997–2006. Arch Intern Med 169 : 189197.[CrossRef] [PubMed]
97. Ferrara G,, Murray M,, Winthrop K,, Centis R,, Sotgiu G,, Migliori GB,, Maeurer M,, Zumla A . 2012. Risk factors associated with pulmonary tuberculosis: smoking, diabetes and anti-TNFα drugs. Curr Opin Pulm Med 18 : 233240. [CrossRef]
98. Haug CJ,, Aukrust P,, Haug E,, Mørkrid L,, Müller F,, Frøland SS . 1998. Severe deficiency of 1,25-dihydroxyvitamin D3 in human immunodeficiency virus infection: association with immunological hyperactivity and only minor changes in calcium homeostasis. J Clin Endocrinol Metab 83 : 38323838.[CrossRef]
99. Martineau AR,, Wilkinson KA,, Newton SM,, Floto RA,, Norman AW,, Skolimowska K,, Davidson RN,, Sørensen OE,, Kampmann B,, Griffiths CJ,, Wilkinson RJ . 2007. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol 178 : 71907198.[CrossRef] [PubMed] [CrossRef]
100. Kalsdorf B,, Scriba TJ,, Wood K,, Day CL,, Dheda K,, Dawson R,, Hanekom WA,, Lange C,, Wilkinson RJ . 2009. HIV-1 infection impairs the bronchoalveolar T-cell response to mycobacteria. Am J Respir Crit Care Med 180 : 12621270.[CrossRef] [PubMed]
101. Campbell GR,, Spector SA . 2011. Hormonally active vitamin D3 (1alpha,25-dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. J Biol Chem 286 : 1889018902.[CrossRef]
102. Martineau AR,, Nhamoyebonde S,, Oni T,, Rangaka MX,, Marais S,, Bangani N,, Tsekela R,, Bashe L,, de Azevedo V,, Caldwell J,, Venton TR,, Timms PM,, Wilkinson KA,, Wilkinson RJ . 2011. Reciprocal seasonal variation in vitamin D status and tuberculosis notifications in Cape Town, South Africa. Proc Natl Acad Sci USA 108 : 1901319017. [CrossRef] [PubMed]
103. Chaisson RE,, Martinson NA . 2008. Tuberculosis in Africa—combating an HIV-driven crisis. N Engl J Med 358 : 10891092. [CrossRef] [PubMed]
104. Coleman CM,, Wu L . 2009. HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6 : 51.[CrossRef]
105. Tsang J,, Chain BM,, Miller RF,, Webb BL,, Barclay W,, Towers GJ,, Katz DR,, Noursadeghi M . 2009. HIV-1 infection of macrophages is dependent on evasion of innate immune cellular activation. AIDS 23 : 22552263.[CrossRef]
106. Diedrich CR,, Flynn JL . 2011. HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect Immun 79 : 14071417.[CrossRef]
107. Sonnenberg P,, Glynn JR,, Fielding K,, Murray J,, Godfrey-Faussett P,, Shearer S . 2005. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191 : 150158.[CrossRef]
108. Ranjbar S,, Boshoff HI,, Mulder A,, Siddiqi N,, Rubin EJ,, Goldfeld AE . 2009. HIV-1 replication is differentially regulated by distinct clinical strains of Mycobacterium tuberculosis . PLoS One 4 : e6116.[CrossRef]
109. Pathak S,, Wentzel-Larsen T,, Asjö B . 2010. Effects of in vitro HIV-1 infection on mycobacterial growth in peripheral blood monocyte-derived macrophages. Infect Immun 78 : 40224032.[CrossRef]
110. Ranjbar S,, Jasenosky LD,, Chow N,, Goldfeld AE . 2012. Regulation of Mycobacterium tuberculosis-dependent HIV-1 transcription reveals a new role for NFAT5 in the toll-like receptor pathway. PLoS Pathog 8 : e1002620.[CrossRef]
111. Toossi Z,, Wu M,, Hirsch CS,, Mayanja-Kizza H,, Baseke J,, Aung H,, Canaday DH,, Fujinaga K . 2012. Activation of P-TEFb at sites of dual HIV/TB infection, and inhibition of MTB-induced HIV transcriptional activation by the inhibitor of CDK9, indirubin-3′-monoxime. AIDS Res Hum Retroviruses 28 : 182187.[CrossRef]
112. Hoshino Y,, Nakata K,, Hoshino S,, Honda Y,, Tse DB,, Shioda T,, Rom WN,, Weiden M . 2002. Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines. J Exp Med 195 : 495505.[CrossRef]
113. Toossi Z,, Mayanja-Kizza H,, Baseke J,, Peters P,, Wu M,, Abraha A,, Aung H,, Okwera A,, Hirsch C,, Arts E . 2005. Inhibition of human immunodeficiency virus-1 (HIV-1) by beta-chemokine analogues in mononuclear cells from HIV-1-infected patients with active tuberculosis. Clin Exp Immunol 142 : 327332.[CrossRef] [CrossRef]
114. Maddocks S,, Scandurra GM,, Nourse C,, Bye C,, Williams RB,, Slobedman B,, Cunningham AL,, Britton WJ . 2009. Gene expression in HIV-1/Mycobacterium tuberculosis co-infected macrophages is dominated by M. tuberculosis . Tuberculosis (Edinb) 89 : 285293.[CrossRef]
115. Lagrange PH,, Thangaraj SK,, Dayal R,, Deshpande A,, Ganguly NK,, Girardi E,, Joshi B,, Katoch K,, Katoch VM,, Kumar M,, Lakshmi V,, Leportier M,, Longuet C,, Malladi SV,, Mukerjee D,, Nair D,, Raja A,, Raman B,, Rodrigues C,, Sharma P,, Singh A,, Singh S,, Sodha A,, Kabeer BS,, Vernet G,, Goletti D . 2014. A toolbox for tuberculosis (TB) diagnosis: an Indian multi-centric study (2006-2008); evaluation of serological assays based on PGL-Tb1 and ESAT-6/CFP10 antigens for TB diagnosis. PLoS One 9 : e96367.[CrossRef]
116. Ashenafi S,, Aderaye G,, Zewdie M,, Raqib R,, Bekele A,, Magalhaes I,, Lema B,, Habtamu M,, Rekha RS,, Aseffa G,, Maeurer M,, Aseffa A,, Svensson M,, Andersson J,, Brighenti S . 2013. BCG-specific IgG-secreting peripheral plasmablasts as a potential biomarker of active tuberculosis in HIV negative and HIV positive patients. Thorax 68 : 269276. [CrossRef] [PubMed]
117. du Bruyn E,, Wilkinson RJ . 2016. The immune interaction between HIV-1 infection and Mycobacterium tuberculosis . Microbiol Spectrum 4(5): TBTB2-0012-2016. [PubMed]
118. Dooley KE,, Chaisson RE . 2009. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis 9 : 737746.[CrossRef] [PubMed]
119. Stevenson CR,, Forouhi NG,, Roglic G,, Williams BG,, Lauer JA,, Dye C,, Unwin N . 2007. Diabetes and tuberculosis: the impact of the diabetes epidemic on tuberculosis incidence. BMC Public Health 7 : 234.[CrossRef] [PubMed]
120. Restrepo BI . 2007. Convergence of the tuberculosis and diabetes epidemics: renewal of old acquaintances. Clin Infect Dis 45 : 436438. [CrossRef] [PubMed]
121. Jeon CY,, Murray MB . 2008. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med 5 : e152.[CrossRef] [PubMed]
122. Baker MA,, Harries AD,, Jeon CY,, Hart JE,, Kapur A,, Lönnroth K,, Ottmani SE,, Goonesekera SD,, Murray MB . 2011. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med 9 : 81.[CrossRef] [PubMed]
123. Wang JY,, Lee MC,, Shu CC,, Lee CH,, Lee LN,, Chao KM,, Chang FY . 2015. Optimal duration of anti-TB treatment in patients with diabetes: nine or six months? Chest 147 : 520528.[CrossRef] [PubMed] [CrossRef]
124. Gil-Santana L,, Almeida-Junior JL,, Oliveira CA,, Hickson LS,, Daltro C,, Castro S,, Kornfeld H,, Netto EM,, Andrade BB . 2016. Diabetes is associated with worse clinical presentation in tuberculosis patients from Brazil: a retrospective cohort study. PLoS One 11 : e0146876.[CrossRef]
125. Restrepo BI,, Fisher-Hoch SP,, Crespo JG,, Whitney E,, Perez A,, Smith B,, McCormick JB , Nuevo Santander Tuberculosis Trackers . 2007. Type 2 diabetes and tuberculosis in a dynamic bi-national border population. Epidemiol Infect 135 : 483491.[CrossRef]
126. Corbett EL,, Watt CJ,, Walker N,, Maher D,, Williams BG,, Raviglione MC,, Dye C . 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163 : 10091021.[CrossRef] [PubMed]
127. Restrepo BI,, Schlesinger LS . 2013. Host-pathogen interactions in tuberculosis patients with type 2 diabetes mellitus. Tuberculosis (Edinb) 93(Suppl): S10S14.[CrossRef]
128. Shoelson SE,, Lee J,, Goldfine AB . 2006. Inflammation and insulin resistance. J Clin Invest 116 : 17931801.[CrossRef] [PubMed]
129. Restrepo BI,, Fisher-Hoch SP,, Pino PA,, Salinas A,, Rahbar MH,, Mora F,, Cortes-Penfield N,, McCormick JB . 2008. Tuberculosis in poorly controlled type 2 diabetes: altered cytokine expression in peripheral white blood cells. Clin Infect Dis 47 : 634641.[CrossRef]
130. Jagannathan-Bogdan M,, McDonnell ME,, Shin H,, Rehman Q,, Hasturk H,, Apovian CM,, Nikolajczyk BS . 2011. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol 186 : 11621172.[CrossRef]
131. Kumar NP,, Sridhar R,, Banurekha VV,, Jawahar MS,, Fay MP,, Nutman TB,, Babu S . 2013. Type 2 diabetes mellitus coincident with pulmonary tuberculosis is associated with heightened systemic type 1, type 17, and other proinflammatory cytokines. Ann Am Thorac Soc 10 : 441449.[CrossRef]
132. Jawad F,, Shera AS,, Memon R,, Ansari G . 1995. Glucose intolerance in pulmonary tuberculosis. J Pak Med Assoc 45 : 237238.
133. Tabarsi P,, Baghaei P,, Marjani M,, Vollmer WM,, Masjedi M-R,, Harries AD . 2014. Changes in glycosylated haemoglobin and treatment outcomes in patients with tuberculosis in Iran: a cohort study. J Diabetes Metab Disord 13 : 123.[CrossRef]
134. Wilkinson RJ,, Llewelyn M,, Toossi Z,, Patel P,, Pasvol G,, Lalvani A,, Wright D,, Latif M,, Davidson RN . 2000. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet 355 : 618621.[CrossRef]
135. Talat N,, Perry S,, Parsonnet J,, Dawood G,, Hussain R . 2010. Vitamin D deficiency and tuberculosis progression. Emerg Infect Dis 16 : 853855.[CrossRef]
136. Martineau AR,, Leandro AC,, Anderson ST,, Newton SM,, Wilkinson KA,, Nicol MP,, Pienaar SM,, Skolimowska KH,, Rocha MA,, Rolla VC,, Levin M,, Davidson RN,, Bremner SA,, Griffiths CJ,, Eley BS,, Bonecini-Almeida MG,, Wilkinson RJ . 2010. Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. Eur Respir J 35 : 11061112.[CrossRef]
137. Coussens AK . 2011. Immunomodulatory actions of vitamin D metabolites and their potential relevance to human lung disease. Curr Rep Med Rev 7 : 444453.[CrossRef]
138. Gombart AF,, Borregaard N,, Koeffler HP . 2005. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19 : 10671077.[CrossRef]
139. Sly LM,, Lopez M,, Nauseef WM,, Reiner NE . 2001. 1alpha,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J Biol Chem 276 : 3548235493.[CrossRef] [PubMed]
140. Rockett KA,, Brookes R,, Udalova I,, Vidal V,, Hill AV,, Kwiatkowski D . 1998. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun 66 : 53145321.[PubMed]
141. Fratti RA,, Backer JM,, Gruenberg J,, Corvera S,, Deretic V . 2001. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154 : 631644.[CrossRef]
142. Wang TT,, Tavera-Mendoza LE,, Laperriere D,, Libby E,, MacLeod NB,, Nagai Y,, Bourdeau V,, Konstorum A,, Lallemant B,, Zhang R,, Mader S,, White JH . 2005. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol 19 : 26852695.[CrossRef]
143. Liu PT,, Stenger S,, Tang DH,, Modlin RL . 2007. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179 : 20602063.[CrossRef]
144. Coussens A,, Timms PM,, Boucher BJ,, Venton TR,, Ashcroft AT,, Skolimowska KH,, Newton SM,, Wilkinson KA,, Davidson RN,, Griffiths CJ,, Wilkinson RJ,, Martineau AR . 2009. 1alpha,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology 127 : 539548.[CrossRef]
145. Elkington P,, Shiomi T,, Breen R,, Nuttall RK,, Ugarte-Gil CA,, Walker NF,, Saraiva L,, Pedersen B,, Mauri F,, Lipman M,, Edwards DR,, Robertson BD,, D’Armiento J,, Friedland JS . 2011. MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J Clin Invest 121 : 18271833.[CrossRef]
146. Boonstra A,, Barrat FJ,, Crain C,, Heath VL,, Savelkoul HF,, O’Garra A . 2001. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 167 : 49744980.[CrossRef]
147. Xystrakis E,, Kusumakar S,, Boswell S,, Peek E,, Urry Z,, Richards DF,, Adikibi T,, Pridgeon C,, Dallman M,, Loke TK,, Robinson DS,, Barrat FJ,, O’Garra A,, Lavender P,, Lee TH,, Corrigan C,, Hawrylowicz CM . 2006. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J Clin Invest 116 : 146155.[CrossRef]
148. Coussens AK,, Wilkinson RJ,, Hanifa Y,, Nikolayevskyy V,, Elkington PT,, Islam K,, Timms PM,, Venton TR,, Bothamley GH,, Packe GE,, Darmalingam M,, Davidson RN,, Milburn HJ,, Baker LV,, Barker RD,, Mein CA,, Bhaw-Rosun L,, Nuamah R,, Young DB,, Drobniewski FA,, Griffiths CJ,, Martineau AR . 2012. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci USA 109 : 1544915454. [CrossRef]
149. Coussens AK,, Martineau AR,, Wilkinson RJ . 2014. Anti-inflammatory and antimicrobial actions of vitamin D in combating TB/HIV. Scientifica (Cairo) 2014 : 903680.[CrossRef]
150. Fabri M,, Stenger S,, Shin DM,, Yuk JM,, Liu PT,, Realegeno S,, Lee HM,, Krutzik SR,, Schenk M,, Sieling PA,, Teles R,, Montoya D,, Iyer SS,, Bruns H,, Lewinsohn DM,, Hollis BW,, Hewison M,, Adams JS,, Steinmeyer A,, Zügel U,, Cheng G,, Jo EK,, Bloom BR,, Modlin RL . 2011. Vitamin D is required for IFN-gamma-mediated antimicrobial activit