1887

Chapter 2 : Cytokines and Chemokines in Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cytokines and Chemokines in Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap02-2.gif

Abstract:

Cytokines are soluble, small proteins that are produced by cells and act in a largely paracrine manner to influence the activity of other cells. Currently, the term “cytokine” describes proteins such as the tumor necrosis factor family, the interleukins, and the chemokines. Virtually every nucleated cell can produce and respond to cytokines, placing these molecules at the center of most of the body’s homeostatic mechanisms ( ). Much of our knowledge of the function of cytokines has been derived from studies wherein homeostasis has been disrupted by infection and the absence of specific cytokines results in a failure to control the disease process. In this context, infection with has proven to be very informative and has highlighted the role of cytokines in controlling infection without promoting uncontrolled and damaging inflammatory responses ( ). Herein, we focus on the key cytokine and chemokines that have been studied in the context of human TB using experimental medicine as well as infection of various animal models, including non-human primates (NHPs), mice, and rabbits. Perhaps the most important message of this review is that in a complex disease such as TB the role of any one cytokine cannot be designated either “good” or “bad” but rather that cytokines can elicit both protective and pathologic consequences depending on context.

Citation: Domingo-Gonzalez R, Prince O, Cooper A, Khader S. 2017. Cytokines and Chemokines in Infection, p 33-72. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0018-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The role of chemokines and cytokines in the innate response to infection. Upon early infection of the lower airways, encounters alveolar macrophages and lung epithelial cells. Alveolar macrophages are a major source of proinflammatory cytokines (TNFα), although stromal cells can produce cytokines and chemokines that will also modulate immune responses. During early infection, dendritic cell trafficking from the lungs to the lymph node via CCR7 results in primed naive T cells and initiation of adaptive immune responses. Replicating bacteria generate a fulminant reaction that results in the mobilization and recruitment of both neutrophils and monocytes from the bone marrow via the induction of proinflammatory cytokines and chemokines. Regulation of cellular recruitment occurs via coordinated cytokine and chemokine induction. While initial recruitment of monocytes requires type I IFN, overexpression of this cytokine results in high levels of CCR2-expressing monocytes with limited ability to control bacterial growth. Type II IFN (IFNγ) regulates the recruitment of neutrophils, which is promoted by IL-17. CXCL5 and CXCR2 mediate the recruitment of damaging neutrophils. Mtb, .

Citation: Domingo-Gonzalez R, Prince O, Cooper A, Khader S. 2017. Cytokines and Chemokines in Infection, p 33-72. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0018-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The role of chemokines and cytokines in the adaptive response to infection. Following infection of the lung, migratory cells take the bacteria to the draining lymph node likely using both cytokine (IL-12p40) and chemokine (CCR2, CCR7) pathways. Antigen is then transferred to antigen-presenting cells that stimulate naïve T cells via MHC class I and class II. Antigen-presenting cells make cytokines and chemokines to potentiate T-cell proliferation and polarization. Activated T cells migrate from the draining lymph node through the vasculature to the inflamed site. Some T cells remain in the vasculature (CX3CR3) while others migrate into the parenchyma (CXCR3CCR6). Expression of CXCR5 on antigen-specific T cells allows them to respond to IL-23- and IL-17-dependent CXCL13 and locate effectively within the granuloma, where they activate -infected macrophages. T cells express a variety of cytokines in the lung including IFNγ, TNFα, IL-17, and IL-10 that have both protective and negative effects depending upon the context.

Citation: Domingo-Gonzalez R, Prince O, Cooper A, Khader S. 2017. Cytokines and Chemokines in Infection, p 33-72. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0018-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819569.chap2
1. Dinarello CA . 2007. Historical insights into cytokines. Eur J Immunol 37(Suppl 1): S34S45. [CrossRef] [PubMed] [CrossRef]
2. Cooper AM . 2009. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27 : 393422. [CrossRef] [PubMed] [CrossRef]
3. Flynn JL,, Chan J . 2003. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol 15 : 450455. [CrossRef] [PubMed] [CrossRef]
4. Flynn JL,, Chan J . 2001. Immunology of tuberculosis. Annu Rev Immunol 19 : 93129. [CrossRef] [CrossRef]
5. Brites D,, Gagneux S . 2015. Co-evolution of Mycobacterium tuberculosis and Homo sapiens . Immunol Rev 264 : 624. [CrossRef] [PubMed] [CrossRef]
6. Comas I,, Coscolla M,, Luo T,, Borrell S,, Holt KE,, Kato-Maeda M,, Parkhill J,, Malla B,, Berg S,, Thwaites G,, Yeboah-Manu D,, Bothamley G,, Mei J,, Wei L,, Bentley S,, Harris SR,, Niemann S,, Diel R,, Aseffa A,, Gao Q,, Young D,, Gagneux S . 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45 : 11761182. [CrossRef] [CrossRef]
7. Orme IM,, Robinson RT,, Cooper AM . 2015. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16 : 5763. [CrossRef] [PubMed] [CrossRef]
8. Dye C,, Glaziou P,, Floyd K,, Raviglione M . 2013. Prospects for tuberculosis elimination. Annu Rev Public Health 34 : 271286. [CrossRef] [PubMed] [CrossRef]
9. Robinson RT,, Orme IM,, Cooper AM . 2015. The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunol Rev 264 : 4659. [CrossRef] [PubMed] [CrossRef]
10. Wajant H,, Pfizenmaier K,, Scheurich P . 2003. Tumor necrosis factor signaling. Cell Death Differ 10 : 4565. [CrossRef] [PubMed] [CrossRef]
11. Black RA,, Rauch CT,, Kozlosky CJ,, Peschon JJ,, Slack JL,, Wolfson MF,, Castner BJ,, Stocking KL,, Reddy P,, Srinivasan S,, Nelson N,, Boiani N,, Schooley KA,, Gerhart M,, Davis R,, Fitzner JN,, Johnson RS,, Paxton RJ,, March CJ,, Cerretti DP . 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385 : 729733. [CrossRef] [CrossRef]
12. Bazan JF . 1993. Emerging families of cytokines and receptors. Curr Biol 3 : 603606. [CrossRef] [CrossRef]
13. Devin A,, Lin Y,, Yamaoka S,, Li Z,, Karin M,, Liu Zg . 2001. The alpha and beta subunits of IkappaB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF. Mol Cell Biol 21 : 39863994. [CrossRef] [PubMed] [CrossRef]
14. Hsu H,, Huang J,, Shu HB,, Baichwal V,, Goeddel DV . 1996. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4 : 387396. [CrossRef] [PubMed] [CrossRef]
15. Hsu H,, Xiong J,, Goeddel DV . 1995. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81 : 495504. [CrossRef] [PubMed] [CrossRef]
16. Jiang Y,, Woronicz JD,, Liu W,, Goeddel DV . 1999. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283 : 543546. [CrossRef] [PubMed] [CrossRef]
17. Naismith JH,, Sprang SR . 1998. Modularity in the TNF-receptor family. Trends Biochem Sci 23 : 7479. [CrossRef] [CrossRef]
18. Banner DW,, D’Arcy A,, Janes W,, Gentz R,, Schoenfeld HJ,, Broger C,, Loetscher H,, Lesslauer W . 1993. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73 : 431445. [CrossRef] [CrossRef]
19. Chan FK,, Chun HJ,, Zheng L,, Siegel RM,, Bui KL,, Lenardo MJ . 2000. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288 : 23512354. [CrossRef]
20. Faustman DL,, Davis M . 2013. TNF Receptor 2 and Disease: Autoimmunity and Regenerative Medicine. Front Immunol 4 : 478 [CrossRef] [PubMed] [CrossRef]
21. Carswell EA,, Old LJ,, Kassel RL,, Green S,, Fiore N,, Williamson B . 1975. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72 : 36663670. [PubMed] [CrossRef]
22. Keane J,, Balcewicz-Sablinska MK,, Remold HG,, Chupp GL,, Meek BB,, Fenton MJ,, Kornfeld H . 1997. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 65 : 298304.[PubMed]
23. Keane J,, Remold HG,, Kornfeld H . 2000. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 164 : 20162020. [CrossRef] [CrossRef]
24. Balcewicz-Sablinska MK,, Keane J,, Kornfeld H,, Remold HG . 1998. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol 161 : 26362641.[PubMed]
25. Serbina NV,, Flynn JL . 1999. Early emergence of CD8(+) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect Immun 67 : 39803988.[PubMed]
26. Flynn JL,, Goldstein MM,, Chan J,, Triebold KJ,, Pfeffer K,, Lowenstein CJ,, Schreiber R,, Mak TW,, Bloom BR . 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2 : 561572. [CrossRef] [CrossRef]
27. Algood HM,, Lin PL,, Flynn JL . 2005. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis 41(Suppl 3): S189S193. [CrossRef] [PubMed] [CrossRef]
28. Roach DR,, Bean AG,, Demangel C,, France MP,, Briscoe H,, Britton WJ . 2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 168 : 46204627. [CrossRef] [CrossRef]
29. Bean AG,, Roach DR,, Briscoe H,, France MP,, Korner H,, Sedgwick JD,, Britton WJ . 1999. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 162 : 35043511.[PubMed]
30. Lin PL,, Plessner HL,, Voitenok NN,, Flynn JL . 2007. Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc 12 : 2225. [CrossRef] [PubMed] [CrossRef]
31. Kindler V,, Sappino AP,, Grau GE,, Piguet PF,, Vassalli P . 1989. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56 : 731740. [CrossRef] [PubMed] [CrossRef]
32. Farber JM . 1997. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 61 : 246257.[PubMed]
33. Cole KE,, Strick CA,, Paradis TJ,, Ogborne KT,, Loetscher M,, Gladue RP,, Lin W,, Boyd JG,, Moser B,, Wood DE,, Sahagan BG,, Neote K . 1998. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187 : 20092021. [CrossRef] [CrossRef]
34. Griffith JW,, Sokol CL,, Luster AD . 2014. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32 : 659702. [CrossRef] [PubMed] [CrossRef]
35. Saunders BM,, Britton WJ . 2007. Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol 85 : 103111. [CrossRef] [PubMed] [CrossRef]
36. Lynch K,, Farrell M . 2010. Cerebral tuberculoma in a patient receiving anti-TNF alpha (adalimumab) treatment. Clin Rheumatol 29 : 12011204. [CrossRef] [PubMed] [CrossRef]
37. Seong SS,, Choi CB,, Woo JH,, Bae KW,, Joung CL,, Uhm WS,, Kim TH,, Jun JB,, Yoo DH,, Lee JT,, Bae SC . 2007. Incidence of tuberculosis in Korean patients with rheumatoid arthritis (RA): effects of RA itself and of tumor necrosis factor blockers. J Rheumatol 34 : 706711.[PubMed]
38. Be NA,, Kim KS,, Bishai WR,, Jain SK . 2009. Pathogenesis of central nervous system tuberculosis. Curr Mol Med 9 : 9499. [CrossRef] [PubMed] [CrossRef]
39. Leonard JM,, Des Prez RM . 1990. Tuberculous meningitis. Infect Dis Clin North Am 4 : 769787.[PubMed]
40. Tsenova L,, Bergtold A,, Freedman VH,, Young RA,, Kaplan G . 1999. Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc Natl Acad Sci USA 96 : 56575662. [CrossRef] [PubMed] [CrossRef]
41. Francisco NM,, Hsu NJ,, Keeton R,, Randall P,, Sebesho B,, Allie N,, Govender D,, Quesniaux V,, Ryffel B,, Kellaway L,, Jacobs M . 2015. TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis. J Neuroinflammation 12 : 125. [CrossRef]
42. Mohan VP,, Scanga CA,, Yu K,, Scott HM,, Tanaka KE,, Tsang E,, Tsai MM,, Flynn JL,, Chan J . 2001. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun 69 : 18471855. [CrossRef] [CrossRef]
43. Feldmann M . 2002. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2 : 364371. [CrossRef] [PubMed] [CrossRef]
44. Peyrin-Biroulet L . 2010. Anti-TNF therapy in inflammatory bowel diseases: a huge review. Minerva Gastroenterol Dietol 56 : 233243.[PubMed]
45. Shaikha SA,, Mansour K,, Riad H . 2012. Reactivation of tuberculosis in three cases of psoriasis after initiation of anti-TNF therapy. Case Rep Dermatol 4 : 4146. [CrossRef] [PubMed] [CrossRef]
46. Keane J,, Gershon S,, Wise RP,, Mirabile-Levens E,, Kasznica J,, Schwieterman WD,, Siegel JN,, Braun MM . 2001. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345 : 10981104. [CrossRef] [CrossRef]
47. Keane J . 2005. TNF-blocking agents and tuberculosis: new drugs illuminate an old topic. Rheumatology (Oxford) 44 : 714720. [PubMed] [CrossRef]
48. Raval A,, Akhavan-Toyserkani G,, Brinker A,, Avigan M . 2007. Brief communication: characteristics of spontaneous cases of tuberculosis associated with infliximab. Ann Intern Med 147 : 699702 [CrossRef] [CrossRef]
49. Gómez-Reino JJ,, Carmona L,, Valverde VR,, Mola EM,, Montero MD , BIOBADASER Group . 2003. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum 48 : 21222127. [CrossRef] [CrossRef]
50. Dixon WG,, Watson K,, Lunt M,, Hyrich KL,, Silman AJ,, Symmons DP , British Society for Rheumatology Biologics Register . 2006. Rates of serious infection, including site-specific and bacterial intracellular infection, in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum 54 : 23682376. [CrossRef]
51. Askling J,, Fored CM,, Brandt L,, Baecklund E,, Bertilsson L,, Cöster L,, Geborek P,, Jacobsson LT,, Lindblad S,, Lysholm J,, Rantapää-Dahlqvist S,, Saxne T,, Romanus V,, Klareskog L,, Feltelius N . 2005. Risk and case characteristics of tuberculosis in rheumatoid arthritis associated with tumor necrosis factor antagonists in Sweden. Arthritis Rheum 52 : 19861992. [CrossRef]
52. Tubach F,, Salmon D,, Ravaud P,, Allanore Y,, Goupille P,, Bréban M,, Pallot-Prades B,, Pouplin S,, Sacchi A,, Chichemanian RM,, Bretagne S,, Emilie D,, Lemann M,, Lortholary O,, Mariette X ; Research Axed on Tolerance of Biotherapies Group . 2009. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective French Research Axed on Tolerance of Biotherapies registry. Arthritis Rheum 60 : 18841894. (Erratum 60:2540.)[CrossRef]
53. Fallahi-Sichani M,, Flynn JL,, Linderman JJ,, Kirschner DE . 2012. Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability. J Immunol 188 : 31693178. [CrossRef] [PubMed] [CrossRef]
54. Bruns H,, Meinken C,, Schauenberg P,, Härter G,, Kern P,, Modlin RL,, Antoni C,, Stenger S . 2009. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest 119 : 11671177. [CrossRef] [CrossRef]
55. Lin PL,, Myers A,, Smith LK,, Bigbee C,, Bigbee M,, Fuhrman C,, Grieser H,, Chiosea I,, Voitenek NN,, Capuano SV,, Klein E,, Flynn JL . 2010. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62 : 340350.[PubMed]
56. Clay H,, Volkman HE,, Ramakrishnan L . 2008. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29 : 283294. [CrossRef] [CrossRef]
57. Harari A,, Rozot V,, Bellutti Enders F,, Perreau M,, Stalder JM,, Nicod LP,, Cavassini M,, Calandra T,, Blanchet CL,, Jaton K,, Faouzi M,, Day CL,, Hanekom WA,, Bart PA,, Pantaleo G . 2011. Dominant TNF-α+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med 17 : 372376. [CrossRef] [CrossRef]
58. Schroder K,, Hertzog PJ,, Ravasi T,, Hume DA . 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75 : 163189. [CrossRef] [PubMed] [CrossRef]
59. Greenlund AC,, Farrar MA,, Viviano BL,, Schreiber RD . 1994. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J 13 : 15911600.[PubMed]
60. Kovarik P,, Stoiber D,, Novy M,, Decker T . 1998. Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation. EMBO J 17 : 36603668. [CrossRef] [PubMed] [CrossRef]
61. Frucht DM,, Fukao T,, Bogdan C,, Schindler H,, O’Shea JJ,, Koyasu S . 2001. IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol 22 : 556560. [CrossRef] [CrossRef]
62. Reed JM,, Branigan PJ,, Bamezai A . 2008. Interferon gamma enhances clonal expansion and survival of CD4+ T cells. J Interferon Cytokine Res 28 : 611622. [CrossRef] [PubMed] [CrossRef]
63. Munder M,, Mallo M,, Eichmann K,, Modolell M . 1998. Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187 : 21032108. [CrossRef] [CrossRef]
64. Otani T,, Nakamura S,, Toki M,, Motoda R,, Kurimoto M,, Orita K . 1999. Identification of IFN-gamma-producing cells in IL-12/IL-18-treated mice. Cell Immunol 198 : 111119. [CrossRef] [PubMed] [CrossRef]
65. Zhang SY,, Boisson-Dupuis S,, Chapgier A,, Yang K,, Bustamante J,, Puel A,, Picard C,, Abel L,, Jouanguy E,, Casanova JL . 2008. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunol Rev 226 : 2940. [CrossRef]
66. Filipe-Santos O,, Bustamante J,, Chapgier A,, Vogt G,, de Beaucoudrey L,, Feinberg J,, Jouanguy E,, Boisson-Dupuis S,, Fieschi C,, Picard C,, Casanova JL . 2006. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 18 : 347361. [CrossRef] [CrossRef]
67. Sologuren I,, Boisson-Dupuis S,, Pestano J,, Vincent QB,, Fernández-Pérez L,, Chapgier A,, Cárdenes M,, Feinberg J,, García-Laorden MI,, Picard C,, Santiago E,, Kong X,, Jannière L,, Colino E,, Herrera-Ramos E,, Francés A,, Navarrete C,, Blanche S,, Faria E,, Remiszewski P,, Cordeiro A,, Freeman A,, Holland S,, Abarca K,, Valerón-Lemaur M,, Gonçalo-Marques J,, Silveira L,, García-Castellano JM,, Caminero J,, Pérez-Arellano JL,, Bustamante J,, Abel L,, Casanova J-L,, Rodríguez-Gallego C . 2011. Partial recessive IFN-γR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet 20 : 15091523. [CrossRef] [CrossRef]
68. Vogt G,, Chapgier A,, Yang K,, Chuzhanova N,, Feinberg J,, Fieschi C,, Boisson-Dupuis S,, Alcais A,, Filipe-Santos O,, Bustamante J,, de Beaucoudrey L,, Al-Mohsen I,, Al-Hajjar S,, Al-Ghonaium A,, Adimi P,, Mirsaeidi M,, Khalilzadeh S,, Rosenzweig S,, de la Calle Martin O,, Bauer TR,, Puck JM,, Ochs HD,, Furthner D,, Engelhorn C,, Belohradsky B,, Mansouri D,, Holland SM,, Schreiber RD,, Abel L,, Cooper DN,, Soudais C,, Casanova JL . 2005. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nat Genet 37 : 692700. [CrossRef] [CrossRef]
69. Dorman SE,, Holland SM . 1998. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 101 : 23642369. [CrossRef] [CrossRef]
70. Cooper AM,, Dalton DK,, Stewart TA,, Griffin JP,, Russell DG,, Orme IM . 1993. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178 : 22432247. [PubMed] [CrossRef]
71. Flynn JL,, Chan J,, Triebold KJ,, Dalton DK,, Stewart TA,, Bloom BR . 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178 : 22492254. [CrossRef] [PubMed] [CrossRef]
72. Dalton DK,, Pitts-Meek S,, Keshav S,, Figari IS,, Bradley A,, Stewart TA . 1993. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259 : 17391742. [PubMed] [CrossRef]
73. Russell DG . 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2 : 569586. [CrossRef] [PubMed] [CrossRef]
74. Mogues T,, Goodrich ME,, Ryan L,, LaCourse R,, North RJ . 2001. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 193 : 271280. [CrossRef] [CrossRef]
75. Green AM,, Difazio R,, Flynn JL . 2013. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol 190 : 270277. [CrossRef] [CrossRef]
76. Gallegos AM,, van Heijst JW,, Samstein M,, Su X,, Pamer EG,, Glickman MS . 2011. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog 7 : e1002052. [CrossRef]
77. Caruso AM,, Serbina N,, Klein E,, Triebold K,, Bloom BR,, Flynn JL . 1999. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol 162 : 54075416.[PubMed]
78. Saunders BM,, Frank AA,, Orme IM,, Cooper AM . 2002. CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol 216 : 6572. [CrossRef] [PubMed] [CrossRef]
79. Serbina NV,, Lazarevic V,, Flynn JL . 2001. CD4(+) T cells are required for the development of cytotoxic CD8(+) T cells during Mycobacterium tuberculosis infection. J Immunol 167 : 69917000. [CrossRef] [PubMed] [CrossRef]
80. Sakai S,, Kauffman KD,, Schenkel JM,, McBerry CC,, Mayer-Barber KD,, Masopust D,, Barber DL . 2014. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol 192 : 29652969. [CrossRef]
81. Moguche AO,, Shafiani S,, Clemons C,, Larson RP,, Dinh C,, Higdon LE,, Cambier CJ,, Sissons JR,, Gallegos AM,, Fink PJ,, Urdahl KB . 2015. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med 212 : 715728. [CrossRef] [CrossRef]
82. Torrado E,, Fountain JJ,, Liao M,, Tighe M,, Reiley WW,, Lai RP,, Meintjes G,, Pearl JE,, Chen X,, Zak DE,, Thompson EG,, Aderem A,, Ghilardi N,, Solache A,, McKinstry KK,, Strutt TM,, Wilkinson RJ,, Swain SL,, Cooper AM . 2015. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection.J Exp Med 212 : 14491463. [CrossRef] [CrossRef]
83. Keller C,, Hoffmann R,, Lang R,, Brandau S,, Hermann C,, Ehlers S . 2006. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 74 : 42954309. [CrossRef] [CrossRef]
84. Eruslanov EB,, Lyadova IV,, Kondratieva TK,, Majorov KB,, Scheglov IV,, Orlova MO,, Apt AS . 2005. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun 73 : 17441753. [CrossRef] [CrossRef]
85. Majorov KB,, Eruslanov EB,, Rubakova EI,, Kondratieva TK,, Apt AS . 2005. Analysis of cellular phenotypes that mediate genetic resistance to tuberculosis using a radiation bone marrow chimera approach. Infect Immun 73 : 61746178. [CrossRef] [CrossRef]
86. Mitsos LM,, Cardon LR,, Fortin A,, Ryan L,, LaCourse R,, North RJ,, Gros P . 2000. Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 1 : 467477. [CrossRef] [PubMed] [CrossRef]
87. Nandi B,, Behar SM . 2011. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med 208 : 22512262. [CrossRef] [PubMed] [CrossRef]
88. Desvignes L,, Ernst JD . 2009. Interferon-γ-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis . Immunity 31 : 974985. [CrossRef] [CrossRef]
89. Stefan DC,, Dippenaar A,, Detjen AK,, Schaaf HS,, Marais BJ,, Kriel B,, Loebenberg L,, Walzl G,, Hesseling AC . 2010. Interferon-gamma release assays for the detection of Mycobacterium tuberculosis infection in children with cancer. Int J Tuberc Lung Dis 14 : 689694.[PubMed]
90. Abu-Taleb AM,, El-Sokkary RH,, El Tarhouny SA . 2011. Interferon-gamma release assay for detection of latent tuberculosis infection in casual and close contacts of tuberculosis cases. East Mediterr Health J 17 : 749753.[PubMed]
91. Ferrara G,, Losi M,, D’Amico R,, Cagarelli R,, Pezzi AM,, Meacci M,, Meccugni B,, Marchetti Dori I,, Rumpianesi F,, Roversi P,, Casali L,, Fabbri LM,, Richeldi L . 2009. Interferon-gamma-release assays detect recent tuberculosis re-infection in elderly contacts. Int J Immunopathol Pharmacol 22 : 669677.[PubMed]
92. Diel R,, Loddenkemper R,, Niemann S,, Meywald-Walter K,, Nienhaus A . 2011. Negative and positive predictive value of a whole-blood interferon-γ release assay for developing active tuberculosis: an update. Am J Respir Crit Care Med 183 : 8895. [CrossRef] [CrossRef]
93. Isaacs A,, Lindenmann J . 1957. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147 : 258267. [CrossRef] [CrossRef]
94. McNab F,, Mayer-Barber K,, Sher A,, Wack A,, O’Garra A . 2015. Type I interferons in infectious disease. Nat Rev Immunol 15 : 87103. [CrossRef] [PubMed] [CrossRef]
95. Honda K,, Takaoka A,, Taniguchi T . 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25 : 349360 [CrossRef] [CrossRef]
96. Cooper AM,, Pearl JE,, Brooks JV,, Ehlers S,, Orme IM . 2000. Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect Immun 68 : 68796882. [CrossRef] [CrossRef]
97. Manca C,, Tsenova L,, Bergtold A,, Freeman S,, Tovey M,, Musser JM,, Barry CE III,, Freedman VH,, Kaplan G . 2001. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc Natl Acad Sci USA 98 : 57525757. [CrossRef] [CrossRef]
98. Ordway D,, Henao-Tamayo M,, Harton M,, Palanisamy G,, Troudt J,, Shanley C,, Basaraba RJ,, Orme IM . 2007. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol 179 : 522531. [CrossRef] [CrossRef]
99. McNab FW,, Ewbank J,, Howes A,, Moreira-Teixeira L,, Martirosyan A,, Ghilardi N,, Saraiva M,, O’Garra A . 2014. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol 193 : 36003612. [CrossRef] [CrossRef]
100. Berry MP,, Graham CM,, McNab FW,, Xu Z,, Bloch SA,, Oni T,, Wilkinson KA,, Banchereau R,, Skinner J,, Wilkinson RJ,, Quinn C,, Blankenship D,, Dhawan R,, Cush JJ,, Mejias A,, Ramilo O,, Kon OM,, Pascual V,, Banchereau J,, Chaussabel D,, O’Garra A . 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466 : 973977. [CrossRef] [CrossRef]
101. Antonelli LR,, Gigliotti Rothfuchs A,, Gonçalves R,, Roffê E,, Cheever AW,, Bafica A,, Salazar AM,, Feng CG,, Sher A . 2010. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120 : 16741682. [CrossRef] [CrossRef]
102. Desvignes L,, Wolf AJ,, Ernst JD . 2012. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis . J Immunol 188 : 62056215. [CrossRef] [PubMed] [CrossRef]
103. Van Snick J . 1990. Interleukin-6: an overview. Annu Rev Immunol 8 : 253278. [CrossRef] [PubMed] [CrossRef]
104. Shalaby MR,, Waage A,, Espevik T . 1989. Cytokine regulation of interleukin 6 production by human endothelial cells. Cell Immunol 121 : 372382. [CrossRef] [PubMed] [CrossRef]
105. Sanceau J,, Beranger F,, Gaudelet C,, Wietzerbin J . 1989. IFN-gamma is an essential cosignal for triggering IFN-beta 2/BSF-2/IL-6 gene expression in human monocytic cell lines. Ann N Y Acad Sci 557 : 130143, discussion 141–143. [PubMed] [CrossRef]
106. Heinrich PC,, Behrmann I,, Haan S,, Hermanns HM,, Müller-Newen G,, Schaper F . 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374 : 120. [CrossRef] [PubMed] [CrossRef]
107. Heinrich PC,, Behrmann I,, Müller-Newen G,, Schaper F,, Graeve L . 1998. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334 : 297314. [CrossRef] [PubMed] [CrossRef]
108. Ladel CH,, Blum C,, Dreher A,, Reifenberg K,, Kopf M,, Kaufmann SH . 1997. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect Immun 65 : 48434849.[PubMed]
109. Appelberg R,, Castro AG,, Pedrosa J,, Minóprio P . 1994. Role of interleukin-6 in the induction of protective T cells during mycobacterial infections in mice. Immunology 82 : 361364.[PubMed]
110. Saunders BM,, Frank AA,, Orme IM,, Cooper AM . 2000. Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun 68 : 33223326. [CrossRef] [CrossRef]
111. Leal IS,, Smedegârd B,, Andersen P,, Appelberg R . 1999. Interleukin-6 and interleukin-12 participate in induction of a type 1 protective T-cell response during vaccination with a tuberculosis subunit vaccine. Infect Immun 67 : 57475754.[PubMed]
112. Atreya R,, Neurath MF . 2005. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol 28 : 187196. [CrossRef] [PubMed] [CrossRef]
113. Sodenkamp J,, Waetzig GH,, Scheller J,, Seegert D,, Grötzinger J,, Rose-John S,, Ehlers S,, Hölscher C . 2012. Therapeutic targeting of interleukin-6 trans-signaling does not affect the outcome of experimental tuberculosis. Immunobiology 217 : 9961004. [CrossRef] [PubMed] [CrossRef]
114. Nolan A,, Condos R,, Huie ML,, Dawson R,, Dheda K,, Bateman E,, Rom WN,, Weiden MD . 2013. Elevated IP-10 and IL-6 from bronchoalveolar lavage cells are biomarkers of non-cavitary tuberculosis. Int J Tuberc Lung Dis 17 : 922927. [CrossRef] [PubMed] [CrossRef]
115. el-Ahmady O,, Mansour M,, Zoeir H,, Mansour O . 1997. Elevated concentrations of interleukins and leukotriene in response to Mycobacterium tuberculosis infection. Ann Clin Biochem 34 : 160164. [CrossRef] [CrossRef]
116. Dinarello CA . 1991. Interleukin-1 and interleukin-1 antagonism. Blood 77 : 16271652.[PubMed]
117. Menkin V . 1943. The effect of the leukocytosis-promoting factor on the growth of cells in the bone marrow. Am J Pathol 19 : 10211029.[PubMed]
118. Menkin V . 1943. Studies on the isolation of the factor responsible for tissue injury in inflammation. Science 97 : 165167. [PubMed] [CrossRef]
119. Menkin V . 1944. Chemical basis of fever. Science 100 : 337338. [PubMed] [CrossRef]
120. Gross O,, Yazdi AS,, Thomas CJ,, Masin M,, Heinz LX,, Guarda G,, Quadroni M,, Drexler SK,, Tschopp J . 2012. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36 : 388400. [CrossRef] [CrossRef]
121. Sansonetti PJ,, Phalipon A,, Arondel J,, Thirumalai K,, Banerjee S,, Akira S,, Takeda K,, Zychlinsky A . 2000. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12 : 581590. [CrossRef] [PubMed] [CrossRef]
122. Latz E,, Xiao TS,, Stutz A . 2013. Activation and regulation of the inflammasomes. Nat Rev Immunol 13 : 397411. [CrossRef] [PubMed] [CrossRef]
123. Kayagaki N,, Warming S,, Lamkanfi M,, Vande Walle L,, Louie S,, Dong J,, Newton K,, Qu Y,, Liu J,, Heldens S,, Zhang J,, Lee WP,, Roose-Girma M,, Dixit VM . 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479 : 117121. [CrossRef] [CrossRef]
124. Bossaller L,, Chiang PI,, Schmidt-Lauber C,, Ganesan S,, Kaiser WJ,, Rathinam VA,, Mocarski ES,, Subramanian D,, Green DR,, Silverman N,, Fitzgerald KA,, Marshak-Rothstein A,, Latz E . 2012. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189 : 55085512. [CrossRef] [CrossRef]
125. Chen CJ,, Kono H,, Golenbock D,, Reed G,, Akira S,, Rock KL . 2007. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13 : 851856. [CrossRef]
126. Rider P,, Carmi Y,, Guttman O,, Braiman A,, Cohen I,, Voronov E,, White MR,, Dinarello CA,, Apte RN . 2011. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 187 : 48354843. [CrossRef] [CrossRef]
127. Berda-Haddad Y,, Robert S,, Salers P,, Zekraoui L,, Farnarier C,, Dinarello CA,, Dignat-George F,, Kaplanski G . 2011. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α. Proc Natl Acad Sci USA 108 : 2068420689. [CrossRef] [PubMed] [CrossRef]
128. Botelho FM,, Bauer CM,, Finch D,, Nikota JK,, Zavitz CC,, Kelly A,, Lambert KN,, Piper S,, Foster ML,, Goldring JJ,, Wedzicha JA,, Bassett J,, Bramson J,, Iwakura Y,, Sleeman M,, Kolbeck R,, Coyle AJ,, Humbles AA,, Stämpfli MR . 2011. IL-1α/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PLoS One 6 : e28457. [CrossRef]
129. Freigang S,, Ampenberger F,, Weiss A,, Kanneganti T-D,, Iwakura Y,, Hersberger M,, Kopf M . 2013. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat Immunol 14 : 10451053. [CrossRef] [CrossRef]
130. Barry KC,, Fontana MF,, Portman JL,, Dugan AS,, Vance RE . 2013. IL-1α signaling initiates the inflammatory response to virulent Legionella pneumophila in vivo. J Immunol 190 : 63296339. [CrossRef] [CrossRef]
131. Biondo C,, Mancuso G,, Midiri A,, Signorino G,, Domina M,, Lanza Cariccio V,, Mohammadi N,, Venza M,, Venza I,, Teti G,, Beninati C . 2014. The interleukin-1β/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect Immun 82 : 45084517. [CrossRef] [CrossRef]
132. Guo H,, Gao J,, Taxman DJ,, Ting JP,, Su L . 2014. HIV-1 infection induces interleukin-1β production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem 289 : 2171621726. [CrossRef] [CrossRef]
133. Rynko AE,, Fryer AD,, Jacoby DB . 2014. Interleukin-1β mediates virus-induced m2 muscarinic receptor dysfunction and airway hyperreactivity. Am J Respir Cell Mol Biol 51 : 494501. [CrossRef] [PubMed] [CrossRef]
134. Shigematsu Y,, Niwa T,, Rehnberg E,, Toyoda T,, Yoshida S,, Mori A,, Wakabayashi M,, Iwakura Y,, Ichinose M,, Kim YJ,, Ushijima T . 2013. Interleukin-1β induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer Lett 340 : 141147. [CrossRef] [CrossRef]
135. Dinarello CA . 2011. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117 : 37203732. [CrossRef] [PubMed] [CrossRef]
136. Konsman JP,, Vigues S,, Mackerlova L,, Bristow A,, Blomqvist A . 2004. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J Comp Neurol 472 : 113129. [CrossRef] [CrossRef]
137. Marshall JD,, Aste-Amézaga M,, Chehimi SS,, Murphy M,, Olsen H,, Trinchieri G . 1999. Regulation of human IL-18 mRNA expression. Clin Immunol 90 : 1521. [CrossRef] [PubMed]