1887

Chapter 2 : Cytokines and Chemokines in Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cytokines and Chemokines in Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555819569/9781555819552_Chap02-2.gif

Abstract:

Cytokines are soluble, small proteins that are produced by cells and act in a largely paracrine manner to influence the activity of other cells. Currently, the term “cytokine” describes proteins such as the tumor necrosis factor family, the interleukins, and the chemokines. Virtually every nucleated cell can produce and respond to cytokines, placing these molecules at the center of most of the body’s homeostatic mechanisms ( ). Much of our knowledge of the function of cytokines has been derived from studies wherein homeostasis has been disrupted by infection and the absence of specific cytokines results in a failure to control the disease process. In this context, infection with has proven to be very informative and has highlighted the role of cytokines in controlling infection without promoting uncontrolled and damaging inflammatory responses ( ). Herein, we focus on the key cytokine and chemokines that have been studied in the context of human TB using experimental medicine as well as infection of various animal models, including non-human primates (NHPs), mice, and rabbits. Perhaps the most important message of this review is that in a complex disease such as TB the role of any one cytokine cannot be designated either “good” or “bad” but rather that cytokines can elicit both protective and pathologic consequences depending on context.

Citation: Domingo-Gonzalez R, Prince O, Cooper A, Khader S. 2017. Cytokines and Chemokines in Infection, p 33-72. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0018-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The role of chemokines and cytokines in the innate response to infection. Upon early infection of the lower airways, encounters alveolar macrophages and lung epithelial cells. Alveolar macrophages are a major source of proinflammatory cytokines (TNFα), although stromal cells can produce cytokines and chemokines that will also modulate immune responses. During early infection, dendritic cell trafficking from the lungs to the lymph node via CCR7 results in primed naive T cells and initiation of adaptive immune responses. Replicating bacteria generate a fulminant reaction that results in the mobilization and recruitment of both neutrophils and monocytes from the bone marrow via the induction of proinflammatory cytokines and chemokines. Regulation of cellular recruitment occurs via coordinated cytokine and chemokine induction. While initial recruitment of monocytes requires type I IFN, overexpression of this cytokine results in high levels of CCR2-expressing monocytes with limited ability to control bacterial growth. Type II IFN (IFNγ) regulates the recruitment of neutrophils, which is promoted by IL-17. CXCL5 and CXCR2 mediate the recruitment of damaging neutrophils. Mtb, .

Citation: Domingo-Gonzalez R, Prince O, Cooper A, Khader S. 2017. Cytokines and Chemokines in Infection, p 33-72. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0018-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The role of chemokines and cytokines in the adaptive response to infection. Following infection of the lung, migratory cells take the bacteria to the draining lymph node likely using both cytokine (IL-12p40) and chemokine (CCR2, CCR7) pathways. Antigen is then transferred to antigen-presenting cells that stimulate naïve T cells via MHC class I and class II. Antigen-presenting cells make cytokines and chemokines to potentiate T-cell proliferation and polarization. Activated T cells migrate from the draining lymph node through the vasculature to the inflamed site. Some T cells remain in the vasculature (CX3CR3) while others migrate into the parenchyma (CXCR3CCR6). Expression of CXCR5 on antigen-specific T cells allows them to respond to IL-23- and IL-17-dependent CXCL13 and locate effectively within the granuloma, where they activate -infected macrophages. T cells express a variety of cytokines in the lung including IFNγ, TNFα, IL-17, and IL-10 that have both protective and negative effects depending upon the context.

Citation: Domingo-Gonzalez R, Prince O, Cooper A, Khader S. 2017. Cytokines and Chemokines in Infection, p 33-72. In Jacobs, Jr. W, McShane H, Mizrahi V, Orme I (ed), Tuberculosis and the Tubercle Bacillus, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.TBTB2-0018-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819569.chap2
1. Dinarello CA . 2007. Historical insights into cytokines. Eur J Immunol 37( Suppl 1) : S34 S45. [CrossRef] [PubMed] [CrossRef]
2. Cooper AM . 2009. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27 : 393 422. [CrossRef] [PubMed] [CrossRef]
3. Flynn JL,, Chan J . 2003. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol 15 : 450 455. [CrossRef] [PubMed] [CrossRef]
4. Flynn JL,, Chan J . 2001. Immunology of tuberculosis. Annu Rev Immunol 19 : 93 129. [CrossRef] [CrossRef]
5. Brites D,, Gagneux S . 2015. Co-evolution of Mycobacterium tuberculosis and Homo sapiens . Immunol Rev 264 : 6 24. [CrossRef] [PubMed] [CrossRef]
6. Comas I,, Coscolla M,, Luo T,, Borrell S,, Holt KE,, Kato-Maeda M,, Parkhill J,, Malla B,, Berg S,, Thwaites G,, Yeboah-Manu D,, Bothamley G,, Mei J,, Wei L,, Bentley S,, Harris SR,, Niemann S,, Diel R,, Aseffa A,, Gao Q,, Young D,, Gagneux S . 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45 : 1176 1182. [CrossRef] [CrossRef]
7. Orme IM,, Robinson RT,, Cooper AM . 2015. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16 : 57 63. [CrossRef] [PubMed] [CrossRef]
8. Dye C,, Glaziou P,, Floyd K,, Raviglione M . 2013. Prospects for tuberculosis elimination. Annu Rev Public Health 34 : 271 286. [CrossRef] [PubMed] [CrossRef]
9. Robinson RT,, Orme IM,, Cooper AM . 2015. The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunol Rev 264 : 46 59. [CrossRef] [PubMed] [CrossRef]
10. Wajant H,, Pfizenmaier K,, Scheurich P . 2003. Tumor necrosis factor signaling. Cell Death Differ 10 : 45 65. [CrossRef] [PubMed] [CrossRef]
11. Black RA,, Rauch CT,, Kozlosky CJ,, Peschon JJ,, Slack JL,, Wolfson MF,, Castner BJ,, Stocking KL,, Reddy P,, Srinivasan S,, Nelson N,, Boiani N,, Schooley KA,, Gerhart M,, Davis R,, Fitzner JN,, Johnson RS,, Paxton RJ,, March CJ,, Cerretti DP . 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385 : 729 733. [CrossRef] [CrossRef]
12. Bazan JF . 1993. Emerging families of cytokines and receptors. Curr Biol 3 : 603 606. [CrossRef] [CrossRef]
13. Devin A,, Lin Y,, Yamaoka S,, Li Z,, Karin M,, Liu Zg . 2001. The alpha and beta subunits of IkappaB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF. Mol Cell Biol 21 : 3986 3994. [CrossRef] [PubMed] [CrossRef]
14. Hsu H,, Huang J,, Shu HB,, Baichwal V,, Goeddel DV . 1996. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4 : 387 396. [CrossRef] [PubMed] [CrossRef]
15. Hsu H,, Xiong J,, Goeddel DV . 1995. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81 : 495 504. [CrossRef] [PubMed] [CrossRef]
16. Jiang Y,, Woronicz JD,, Liu W,, Goeddel DV . 1999. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283 : 543 546. [CrossRef] [PubMed] [CrossRef]
17. Naismith JH,, Sprang SR . 1998. Modularity in the TNF-receptor family. Trends Biochem Sci 23 : 74 79. [CrossRef] [CrossRef]
18. Banner DW,, D’Arcy A,, Janes W,, Gentz R,, Schoenfeld HJ,, Broger C,, Loetscher H,, Lesslauer W . 1993. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73 : 431 445. [CrossRef] [CrossRef]
19. Chan FK,, Chun HJ,, Zheng L,, Siegel RM,, Bui KL,, Lenardo MJ . 2000. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288 : 2351 2354. [CrossRef]
20. Faustman DL,, Davis M . 2013. TNF Receptor 2 and Disease: Autoimmunity and Regenerative Medicine. Front Immunol 4 : 478 [CrossRef] [PubMed] [CrossRef]
21. Carswell EA,, Old LJ,, Kassel RL,, Green S,, Fiore N,, Williamson B . 1975. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72 : 3666 3670. [PubMed] [CrossRef]
22. Keane J,, Balcewicz-Sablinska MK,, Remold HG,, Chupp GL,, Meek BB,, Fenton MJ,, Kornfeld H . 1997. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 65 : 298 304.[PubMed]
23. Keane J,, Remold HG,, Kornfeld H . 2000. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 164 : 2016 2020. [CrossRef] [CrossRef]
24. Balcewicz-Sablinska MK,, Keane J,, Kornfeld H,, Remold HG . 1998. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol 161 : 2636 2641.[PubMed]
25. Serbina NV,, Flynn JL . 1999. Early emergence of CD8(+) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect Immun 67 : 3980 3988.[PubMed]
26. Flynn JL,, Goldstein MM,, Chan J,, Triebold KJ,, Pfeffer K,, Lowenstein CJ,, Schreiber R,, Mak TW,, Bloom BR . 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2 : 561 572. [CrossRef] [CrossRef]
27. Algood HM,, Lin PL,, Flynn JL . 2005. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis 41( Suppl 3) : S189 S193. [CrossRef] [PubMed] [CrossRef]
28. Roach DR,, Bean AG,, Demangel C,, France MP,, Briscoe H,, Britton WJ . 2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 168 : 4620 4627. [CrossRef] [CrossRef]
29. Bean AG,, Roach DR,, Briscoe H,, France MP,, Korner H,, Sedgwick JD,, Britton WJ . 1999. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 162 : 3504 3511.[PubMed]
30. Lin PL,, Plessner HL,, Voitenok NN,, Flynn JL . 2007. Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc 12 : 22 25. [CrossRef] [PubMed] [CrossRef]
31. Kindler V,, Sappino AP,, Grau GE,, Piguet PF,, Vassalli P . 1989. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56 : 731 740. [CrossRef] [PubMed] [CrossRef]
32. Farber JM . 1997. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 61 : 246 257.[PubMed]
33. Cole KE,, Strick CA,, Paradis TJ,, Ogborne KT,, Loetscher M,, Gladue RP,, Lin W,, Boyd JG,, Moser B,, Wood DE,, Sahagan BG,, Neote K . 1998. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187 : 2009 2021. [CrossRef] [CrossRef]
34. Griffith JW,, Sokol CL,, Luster AD . 2014. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32 : 659 702. [CrossRef] [PubMed] [CrossRef]
35. Saunders BM,, Britton WJ . 2007. Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol 85 : 103 111. [CrossRef] [PubMed] [CrossRef]
36. Lynch K,, Farrell M . 2010. Cerebral tuberculoma in a patient receiving anti-TNF alpha (adalimumab) treatment. Clin Rheumatol 29 : 1201 1204. [CrossRef] [PubMed] [CrossRef]
37. Seong SS,, Choi CB,, Woo JH,, Bae KW,, Joung CL,, Uhm WS,, Kim TH,, Jun JB,, Yoo DH,, Lee JT,, Bae SC . 2007. Incidence of tuberculosis in Korean patients with rheumatoid arthritis (RA): effects of RA itself and of tumor necrosis factor blockers. J Rheumatol 34 : 706 711.[PubMed]
38. Be NA,, Kim KS,, Bishai WR,, Jain SK . 2009. Pathogenesis of central nervous system tuberculosis. Curr Mol Med 9 : 94 99. [CrossRef] [PubMed] [CrossRef]
39. Leonard JM,, Des Prez RM . 1990. Tuberculous meningitis. Infect Dis Clin North Am 4 : 769 787.[PubMed]
40. Tsenova L,, Bergtold A,, Freedman VH,, Young RA,, Kaplan G . 1999. Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc Natl Acad Sci USA 96 : 5657 5662. [CrossRef] [PubMed] [CrossRef]
41. Francisco NM,, Hsu NJ,, Keeton R,, Randall P,, Sebesho B,, Allie N,, Govender D,, Quesniaux V,, Ryffel B,, Kellaway L,, Jacobs M . 2015. TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis. J Neuroinflammation 12 : 125. [CrossRef]
42. Mohan VP,, Scanga CA,, Yu K,, Scott HM,, Tanaka KE,, Tsang E,, Tsai MM,, Flynn JL,, Chan J . 2001. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun 69 : 1847 1855. [CrossRef] [CrossRef]
43. Feldmann M . 2002. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2 : 364 371. [CrossRef] [PubMed] [CrossRef]
44. Peyrin-Biroulet L . 2010. Anti-TNF therapy in inflammatory bowel diseases: a huge review. Minerva Gastroenterol Dietol 56 : 233 243.[PubMed]
45. Shaikha SA,, Mansour K,, Riad H . 2012. Reactivation of tuberculosis in three cases of psoriasis after initiation of anti-TNF therapy. Case Rep Dermatol 4 : 41 46. [CrossRef] [PubMed] [CrossRef]
46. Keane J,, Gershon S,, Wise RP,, Mirabile-Levens E,, Kasznica J,, Schwieterman WD,, Siegel JN,, Braun MM . 2001. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345 : 1098 1104. [CrossRef] [CrossRef]
47. Keane J . 2005. TNF-blocking agents and tuberculosis: new drugs illuminate an old topic. Rheumatology (Oxford) 44 : 714 720. [PubMed] [CrossRef]
48. Raval A,, Akhavan-Toyserkani G,, Brinker A,, Avigan M . 2007. Brief communication: characteristics of spontaneous cases of tuberculosis associated with infliximab. Ann Intern Med 147 : 699 702 [CrossRef] [CrossRef]
49. Gómez-Reino JJ,, Carmona L,, Valverde VR,, Mola EM,, Montero MD , BIOBADASER Group . 2003. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum 48 : 2122 2127. [CrossRef] [CrossRef]
50. Dixon WG,, Watson K,, Lunt M,, Hyrich KL,, Silman AJ,, Symmons DP , British Society for Rheumatology Biologics Register . 2006. Rates of serious infection, including site-specific and bacterial intracellular infection, in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum 54 : 2368 2376. [CrossRef]
51. Askling J,, Fored CM,, Brandt L,, Baecklund E,, Bertilsson L,, Cöster L,, Geborek P,, Jacobsson LT,, Lindblad S,, Lysholm J,, Rantapää-Dahlqvist S,, Saxne T,, Romanus V,, Klareskog L,, Feltelius N . 2005. Risk and case characteristics of tuberculosis in rheumatoid arthritis associated with tumor necrosis factor antagonists in Sweden. Arthritis Rheum 52 : 1986 1992. [CrossRef]
52. Tubach F,, Salmon D,, Ravaud P,, Allanore Y,, Goupille P,, Bréban M,, Pallot-Prades B,, Pouplin S,, Sacchi A,, Chichemanian RM,, Bretagne S,, Emilie D,, Lemann M,, Lortholary O,, Mariette X ; Research Axed on Tolerance of Biotherapies Group . 2009. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective French Research Axed on Tolerance of Biotherapies registry. Arthritis Rheum 60 : 1884 1894. (Erratum 60:2540.)[CrossRef]
53. Fallahi-Sichani M,, Flynn JL,, Linderman JJ,, Kirschner DE . 2012. Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability. J Immunol 188 : 3169 3178. [CrossRef] [PubMed] [CrossRef]
54. Bruns H,, Meinken C,, Schauenberg P,, Härter G,, Kern P,, Modlin RL,, Antoni C,, Stenger S . 2009. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest 119 : 1167 1177. [CrossRef] [CrossRef]
55. Lin PL,, Myers A,, Smith LK,, Bigbee C,, Bigbee M,, Fuhrman C,, Grieser H,, Chiosea I,, Voitenek NN,, Capuano SV,, Klein E,, Flynn JL . 2010. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62 : 340 350.[PubMed]
56. Clay H,, Volkman HE,, Ramakrishnan L . 2008. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29 : 283 294. [CrossRef] [CrossRef]
57. Harari A,, Rozot V,, Bellutti Enders F,, Perreau M,, Stalder JM,, Nicod LP,, Cavassini M,, Calandra T,, Blanchet CL,, Jaton K,, Faouzi M,, Day CL,, Hanekom WA,, Bart PA,, Pantaleo G . 2011. Dominant TNF-α+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med 17 : 372 376. [CrossRef] [CrossRef]
58. Schroder K,, Hertzog PJ,, Ravasi T,, Hume DA . 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75 : 163 189. [CrossRef] [PubMed] [CrossRef]
59. Greenlund AC,, Farrar MA,, Viviano BL,, Schreiber RD . 1994. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J 13 : 1591 1600.[PubMed]
60. Kovarik P,, Stoiber D,, Novy M,, Decker T . 1998. Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation. EMBO J 17 : 3660 3668. [CrossRef] [PubMed] [CrossRef]
61. Frucht DM,, Fukao T,, Bogdan C,, Schindler H,, O’Shea JJ,, Koyasu S . 2001. IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol 22 : 556 560. [CrossRef] [CrossRef]
62. Reed JM,, Branigan PJ,, Bamezai A . 2008. Interferon gamma enhances clonal expansion and survival of CD4+ T cells. J Interferon Cytokine Res 28 : 611 622. [CrossRef] [PubMed] [CrossRef]
63. Munder M,, Mallo M,, Eichmann K,, Modolell M . 1998. Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187 : 2103 2108. [CrossRef] [CrossRef]
64. Otani T,, Nakamura S,, Toki M,, Motoda R,, Kurimoto M,, Orita K . 1999. Identification of IFN-gamma-producing cells in IL-12/IL-18-treated mice. Cell Immunol 198 : 111 119. [CrossRef] [PubMed] [CrossRef]
65. Zhang SY,, Boisson-Dupuis S,, Chapgier A,, Yang K,, Bustamante J,, Puel A,, Picard C,, Abel L,, Jouanguy E,, Casanova JL . 2008. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunol Rev 226 : 29 40. [CrossRef]
66. Filipe-Santos O,, Bustamante J,, Chapgier A,, Vogt G,, de Beaucoudrey L,, Feinberg J,, Jouanguy E,, Boisson-Dupuis S,, Fieschi C,, Picard C,, Casanova JL . 2006. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 18 : 347 361. [CrossRef] [CrossRef]
67. Sologuren I,, Boisson-Dupuis S,, Pestano J,, Vincent QB,, Fernández-Pérez L,, Chapgier A,, Cárdenes M,, Feinberg J,, García-Laorden MI,, Picard C,, Santiago E,, Kong X,, Jannière L,, Colino E,, Herrera-Ramos E,, Francés A,, Navarrete C,, Blanche S,, Faria E,, Remiszewski P,, Cordeiro A,, Freeman A,, Holland S,, Abarca K,, Valerón-Lemaur M,, Gonçalo-Marques J,, Silveira L,, García-Castellano JM,, Caminero J,, Pérez-Arellano JL,, Bustamante J,, Abel L,, Casanova J-L,, Rodríguez-Gallego C . 2011. Partial recessive IFN-γR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet 20 : 1509 1523. [CrossRef] [CrossRef]
68. Vogt G,, Chapgier A,, Yang K,, Chuzhanova N,, Feinberg J,, Fieschi C,, Boisson-Dupuis S,, Alcais A,, Filipe-Santos O,, Bustamante J,, de Beaucoudrey L,, Al-Mohsen I,, Al-Hajjar S,, Al-Ghonaium A,, Adimi P,, Mirsaeidi M,, Khalilzadeh S,, Rosenzweig S,, de la Calle Martin O,, Bauer TR,, Puck JM,, Ochs HD,, Furthner D,, Engelhorn C,, Belohradsky B,, Mansouri D,, Holland SM,, Schreiber RD,, Abel L,, Cooper DN,, Soudais C,, Casanova JL . 2005. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nat Genet 37 : 692 700. [CrossRef] [CrossRef]
69. Dorman SE,, Holland SM . 1998. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 101 : 2364 2369. [CrossRef] [CrossRef]
70. Cooper AM,, Dalton DK,, Stewart TA,, Griffin JP,, Russell DG,, Orme IM . 1993. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178 : 2243 2247. [PubMed] [CrossRef]
71. Flynn JL,, Chan J,, Triebold KJ,, Dalton DK,, Stewart TA,, Bloom BR . 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178 : 2249 2254. [CrossRef] [PubMed] [CrossRef]
72. Dalton DK,, Pitts-Meek S,, Keshav S,, Figari IS,, Bradley A,, Stewart TA . 1993. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259 : 1739 1742. [PubMed] [CrossRef]
73. Russell DG . 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2 : 569 586. [CrossRef] [PubMed] [CrossRef]
74. Mogues T,, Goodrich ME,, Ryan L,, LaCourse R,, North RJ . 2001. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 193 : 271 280. [CrossRef] [CrossRef]
75. Green AM,, Difazio R,, Flynn JL . 2013. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol 190 : 270 277. [CrossRef] [CrossRef]
76. Gallegos AM,, van Heijst JW,, Samstein M,, Su X,, Pamer EG,, Glickman MS . 2011. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog 7 : e1002052. [CrossRef]
77. Caruso AM,, Serbina N,, Klein E,, Triebold K,, Bloom BR,, Flynn JL . 1999. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol 162 : 5407 5416.[PubMed]
78. Saunders BM,, Frank AA,, Orme IM,, Cooper AM . 2002. CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol 216 : 65 72. [CrossRef] [PubMed] [CrossRef]
79. Serbina NV,, Lazarevic V,, Flynn JL . 2001. CD4(+) T cells are required for the development of cytotoxic CD8(+) T cells during Mycobacterium tuberculosis infection. J Immunol 167 : 6991 7000. [CrossRef] [PubMed] [CrossRef]
80. Sakai S,, Kauffman KD,, Schenkel JM,, McBerry CC,, Mayer-Barber KD,, Masopust D,, Barber DL . 2014. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol 192 : 2965 2969. [CrossRef]
81. Moguche AO,, Shafiani S,, Clemons C,, Larson RP,, Dinh C,, Higdon LE,, Cambier CJ,, Sissons JR,, Gallegos AM,, Fink PJ,, Urdahl KB . 2015. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med 212 : 715 728. [CrossRef] [CrossRef]
82. Torrado E,, Fountain JJ,, Liao M,, Tighe M,, Reiley WW,, Lai RP,, Meintjes G,, Pearl JE,, Chen X,, Zak DE,, Thompson EG,, Aderem A,, Ghilardi N,, Solache A,, McKinstry KK,, Strutt TM,, Wilkinson RJ,, Swain SL,, Cooper AM . 2015. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection. J Exp Med 212 : 1449 1463. [CrossRef] [CrossRef]
83. Keller C,, Hoffmann R,, Lang R,, Brandau S,, Hermann C,, Ehlers S . 2006. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 74 : 4295 4309. [CrossRef] [CrossRef]
84. Eruslanov EB,, Lyadova IV,, Kondratieva TK,, Majorov KB,, Scheglov IV,, Orlova MO,, Apt AS . 2005. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun 73 : 1744 1753. [CrossRef] [CrossRef]
85. Majorov KB,, Eruslanov EB,, Rubakova EI,, Kondratieva TK,, Apt AS . 2005. Analysis of cellular phenotypes that mediate genetic resistance to tuberculosis using a radiation bone marrow chimera approach. Infect Immun 73 : 6174 6178. [CrossRef] [CrossRef]
86. Mitsos LM,, Cardon LR,, Fortin A,, Ryan L,, LaCourse R,, North RJ,, Gros P . 2000. Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 1 : 467 477. [CrossRef] [PubMed] [CrossRef]
87. Nandi B,, Behar SM . 2011. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med 208 : 2251 2262. [CrossRef] [PubMed] [CrossRef]
88. Desvignes L,, Ernst JD . 2009. Interferon-γ-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis . Immunity 31 : 974 985. [CrossRef] [CrossRef]
89. Stefan DC,, Dippenaar A,, Detjen AK,, Schaaf HS,, Marais BJ,, Kriel B,, Loebenberg L,, Walzl G,, Hesseling AC . 2010. Interferon-gamma release assays for the detection of Mycobacterium tuberculosis infection in children with cancer. Int J Tuberc Lung Dis 14 : 689 694.[PubMed]
90. Abu-Taleb AM,, El-Sokkary RH,, El Tarhouny SA . 2011. Interferon-gamma release assay for detection of latent tuberculosis infection in casual and close contacts of tuberculosis cases. East Mediterr Health J 17 : 749 753.[PubMed]
91. Ferrara G,, Losi M,, D’Amico R,, Cagarelli R,, Pezzi AM,, Meacci M,, Meccugni B,, Marchetti Dori I,, Rumpianesi F,, Roversi P,, Casali L,, Fabbri LM,, Richeldi L . 2009. Interferon-gamma-release assays detect recent tuberculosis re-infection in elderly contacts. Int J Immunopathol Pharmacol 22 : 669 677.[PubMed]
92. Diel R,, Loddenkemper R,, Niemann S,, Meywald-Walter K,, Nienhaus A . 2011. Negative and positive predictive value of a whole-blood interferon-γ release assay for developing active tuberculosis: an update. Am J Respir Crit Care Med 183 : 88 95. [CrossRef] [CrossRef]
93. Isaacs A,, Lindenmann J . 1957. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147 : 258 267. [CrossRef] [CrossRef]
94. McNab F,, Mayer-Barber K,, Sher A,, Wack A,, O’Garra A . 2015. Type I interferons in infectious disease. Nat Rev Immunol 15 : 87 103. [CrossRef] [PubMed] [CrossRef]
95. Honda K,, Takaoka A,, Taniguchi T . 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25 : 349 360 [CrossRef] [CrossRef]
96. Cooper AM,, Pearl JE,, Brooks JV,, Ehlers S,, Orme IM . 2000. Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect Immun 68 : 6879 6882. [CrossRef] [CrossRef]
97. Manca C,, Tsenova L,, Bergtold A,, Freeman S,, Tovey M,, Musser JM,, Barry CE III,, Freedman VH,, Kaplan G . 2001. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc Natl Acad Sci USA 98 : 5752 5757. [CrossRef] [CrossRef]
98. Ordway D,, Henao-Tamayo M,, Harton M,, Palanisamy G,, Troudt J,, Shanley C,, Basaraba RJ,, Orme IM . 2007. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol 179 : 522 531. [CrossRef] [CrossRef]
99. McNab FW,, Ewbank J,, Howes A,, Moreira-Teixeira L,, Martirosyan A,, Ghilardi N,, Saraiva M,, O’Garra A . 2014. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol 193 : 3600 3612. [CrossRef] [CrossRef]
100. Berry MP,, Graham CM,, McNab FW,, Xu Z,, Bloch SA,, Oni T,, Wilkinson KA,, Banchereau R,, Skinner J,, Wilkinson RJ,, Quinn C,, Blankenship D,, Dhawan R,, Cush JJ,, Mejias A,, Ramilo O,, Kon OM,, Pascual V,, Banchereau J,, Chaussabel D,, O’Garra A . 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466 : 973 977. [CrossRef] [CrossRef]
101. Antonelli LR,, Gigliotti Rothfuchs A,, Gonçalves R,, Roffê E,, Cheever AW,, Bafica A,, Salazar AM,, Feng CG,, Sher A . 2010. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120 : 1674 1682. [CrossRef] [CrossRef]
102. Desvignes L,, Wolf AJ,, Ernst JD . 2012. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis . J Immunol 188 : 6205 6215. [CrossRef] [PubMed] [CrossRef]
103. Van Snick J . 1990. Interleukin-6: an overview. Annu Rev Immunol 8 : 253 278. [CrossRef] [PubMed] [CrossRef]
104. Shalaby MR,, Waage A,, Espevik T . 1989. Cytokine regulation of interleukin 6 production by human endothelial cells. Cell Immunol 121 : 372 382. [CrossRef] [PubMed] [CrossRef]
105. Sanceau J,, Beranger F,, Gaudelet C,, Wietzerbin J . 1989. IFN-gamma is an essential cosignal for triggering IFN-beta 2/BSF-2/IL-6 gene expression in human monocytic cell lines. Ann N Y Acad Sci 557 : 130 143, discussion 141–143. [PubMed] [CrossRef]
106. Heinrich PC,, Behrmann I,, Haan S,, Hermanns HM,, Müller-Newen G,, Schaper F . 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374 : 1 20. [CrossRef] [PubMed] [CrossRef]
107. Heinrich PC,, Behrmann I,, Müller-Newen G,, Schaper F,, Graeve L . 1998. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334 : 297 314. [CrossRef] [PubMed] [CrossRef]
108. Ladel CH,, Blum C,, Dreher A,, Reifenberg K,, Kopf M,, Kaufmann SH . 1997. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect Immun 65 : 4843 4849.[PubMed]
109. Appelberg R,, Castro AG,, Pedrosa J,, Minóprio P . 1994. Role of interleukin-6 in the induction of protective T cells during mycobacterial infections in mice. Immunology 82 : 361 364.[PubMed]
110. Saunders BM,, Frank AA,, Orme IM,, Cooper AM . 2000. Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun 68 : 3322 3326. [CrossRef] [CrossRef]
111. Leal IS,, Smedegârd B,, Andersen P,, Appelberg R . 1999. Interleukin-6 and interleukin-12 participate in induction of a type 1 protective T-cell response during vaccination with a tuberculosis subunit vaccine. Infect Immun 67 : 5747 5754.[PubMed]
112. Atreya R,, Neurath MF . 2005. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol 28 : 187 196. [CrossRef] [PubMed] [CrossRef]
113. Sodenkamp J,, Waetzig GH,, Scheller J,, Seegert D,, Grötzinger J,, Rose-John S,, Ehlers S,, Hölscher C . 2012. Therapeutic targeting of interleukin-6 trans-signaling does not affect the outcome of experimental tuberculosis. Immunobiology 217 : 996 1004. [CrossRef] [PubMed] [CrossRef]
114. Nolan A,, Condos R,, Huie ML,, Dawson R,, Dheda K,, Bateman E,, Rom WN,, Weiden MD . 2013. Elevated IP-10 and IL-6 from bronchoalveolar lavage cells are biomarkers of non-cavitary tuberculosis. Int J Tuberc Lung Dis 17 : 922 927. [CrossRef] [PubMed] [CrossRef]
115. el-Ahmady O,, Mansour M,, Zoeir H,, Mansour O . 1997. Elevated concentrations of interleukins and leukotriene in response to Mycobacterium tuberculosis infection. Ann Clin Biochem 34 : 160 164. [CrossRef] [CrossRef]
116. Dinarello CA . 1991. Interleukin-1 and interleukin-1 antagonism. Blood 77 : 1627 1652.[PubMed]
117. Menkin V . 1943. The effect of the leukocytosis-promoting factor on the growth of cells in the bone marrow. Am J Pathol 19 : 1021 1029.[PubMed]
118. Menkin V . 1943. Studies on the isolation of the factor responsible for tissue injury in inflammation. Science 97 : 165 167. [PubMed] [CrossRef]
119. Menkin V . 1944. Chemical basis of fever. Science 100 : 337 338. [PubMed] [CrossRef]
120. Gross O,, Yazdi AS,, Thomas CJ,, Masin M,, Heinz LX,, Guarda G,, Quadroni M,, Drexler SK,, Tschopp J . 2012. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36 : 388 400. [CrossRef] [CrossRef]
121. Sansonetti PJ,, Phalipon A,, Arondel J,, Thirumalai K,, Banerjee S,, Akira S,, Takeda K,, Zychlinsky A . 2000. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12 : 581 590. [CrossRef] [PubMed] [CrossRef]
122. Latz E,, Xiao TS,, Stutz A . 2013. Activation and regulation of the inflammasomes. Nat Rev Immunol 13 : 397 411. [CrossRef] [PubMed] [CrossRef]
123. Kayagaki N,, Warming S,, Lamkanfi M,, Vande Walle L,, Louie S,, Dong J,, Newton K,, Qu Y,, Liu J,, Heldens S,, Zhang J,, Lee WP,, Roose-Girma M,, Dixit VM . 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479 : 117 121. [CrossRef] [CrossRef]
124. Bossaller L,, Chiang PI,, Schmidt-Lauber C,, Ganesan S,, Kaiser WJ,, Rathinam VA,, Mocarski ES,, Subramanian D,, Green DR,, Silverman N,, Fitzgerald KA,, Marshak-Rothstein A,, Latz E . 2012. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189 : 5508 5512. [CrossRef] [CrossRef]
125. Chen CJ,, Kono H,, Golenbock D,, Reed G,, Akira S,, Rock KL . 2007. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13 : 851 856. [CrossRef]
126. Rider P,, Carmi Y,, Guttman O,, Braiman A,, Cohen I,, Voronov E,, White MR,, Dinarello CA,, Apte RN . 2011. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 187 : 4835 4843. [CrossRef] [CrossRef]
127. Berda-Haddad Y,, Robert S,, Salers P,, Zekraoui L,, Farnarier C,, Dinarello CA,, Dignat-George F,, Kaplanski G . 2011. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α. Proc Natl Acad Sci USA 108 : 20684 20689. [CrossRef] [PubMed] [CrossRef]
128. Botelho FM,, Bauer CM,, Finch D,, Nikota JK,, Zavitz CC,, Kelly A,, Lambert KN,, Piper S,, Foster ML,, Goldring JJ,, Wedzicha JA,, Bassett J,, Bramson J,, Iwakura Y,, Sleeman M,, Kolbeck R,, Coyle AJ,, Humbles AA,, Stämpfli MR . 2011. IL-1α/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PLoS One 6 : e28457. [CrossRef]
129. Freigang S,, Ampenberger F,, Weiss A,, Kanneganti T-D,, Iwakura Y,, Hersberger M,, Kopf M . 2013. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat Immunol 14 : 1045 1053. [CrossRef] [CrossRef]
130. Barry KC,, Fontana MF,, Portman JL,, Dugan AS,, Vance RE . 2013. IL-1α signaling initiates the inflammatory response to virulent Legionella pneumophila in vivo. J Immunol 190 : 6329 6339. [CrossRef] [CrossRef]
131. Biondo C,, Mancuso G,, Midiri A,, Signorino G,, Domina M,, Lanza Cariccio V,, Mohammadi N,, Venza M,, Venza I,, Teti G,, Beninati C . 2014. The interleukin-1β/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect Immun 82 : 4508 4517. [CrossRef] [CrossRef]
132. Guo H,, Gao J,, Taxman DJ,, Ting JP,, Su L . 2014. HIV-1 infection induces interleukin-1β production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem 289 : 21716 21726. [CrossRef] [CrossRef]
133. Rynko AE,, Fryer AD,, Jacoby DB . 2014. Interleukin-1β mediates virus-induced m2 muscarinic receptor dysfunction and airway hyperreactivity. Am J Respir Cell Mol Biol 51 : 494 501. [CrossRef] [PubMed] [CrossRef]
134. Shigematsu Y,, Niwa T,, Rehnberg E,, Toyoda T,, Yoshida S,, Mori A,, Wakabayashi M,, Iwakura Y,, Ichinose M,, Kim YJ,, Ushijima T . 2013. Interleukin-1β induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer Lett 340 : 141 147. [CrossRef] [CrossRef]
135. Dinarello CA . 2011. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117 : 3720 3732. [CrossRef] [PubMed] [CrossRef]
136. Konsman JP,, Vigues S,, Mackerlova L,, Bristow A,, Blomqvist A . 2004. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J Comp Neurol 472 : 113 129. [CrossRef] [CrossRef]
137. Marshall JD,, Aste-Amézaga M,, Chehimi SS,, Murphy M,, Olsen H,, Trinchieri G . 1999. Regulation of human IL-18 mRNA expression. Clin Immunol 90 : 15 21. [CrossRef] [PubMed] [CrossRef]
138. Puren AJ,, Fantuzzi G,, Dinarello CA . 1999. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA 96 : 2256 2261. [CrossRef] [CrossRef]
139. Sugawara S,, Uehara A,, Nochi T,, Yamaguchi T,, Ueda H,, Sugiyama A,, Hanzawa K,, Kumagai K,, Okamura H,, Takada H . 2001. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol 167 : 6568 6575. [CrossRef] [PubMed] [CrossRef]
140. Dinarello CA,, Novick D,, Kim S,, Kaplanski G . 2013. Interleukin-18 and IL-18 binding protein. Front Immunol 4 : 289.[CrossRef] [PubMed] [CrossRef]
141. Hölscher C,, Reiling N,, Schaible UE,, Hölscher A,, Bathmann C,, Korbel D,, Lenz I,, Sonntag T,, Kröger S,, Akira S,, Mossmann H,, Kirschning CJ,, Wagner H,, Freudenberg M,, Ehlers S . 2008. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol 38 : 680 694. [CrossRef] [CrossRef]
142. O’Neill LA,, Bowie AG . 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7 : 353 364. [CrossRef] [PubMed] [CrossRef]
143. Fremond CM,, Yeremeev V,, Nicolle DM,, Jacobs M,, Quesniaux VF,, Ryffel B . 2004. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 114 : 1790 1799. [CrossRef] [CrossRef]
144. Fremond CM,, Togbe D,, Doz E,, Rose S,, Vasseur V,, Maillet I,, Jacobs M,, Ryffel B,, Quesniaux VF . 2007. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179 : 1178 1189. [CrossRef] [CrossRef]
145. Mayer-Barber KD,, Andrade BB,, Barber DL,, Hieny S,, Feng CG,, Caspar P,, Oland S,, Gordon S,, Sher A . 2011. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35 : 1023 1034. [CrossRef] [CrossRef]
146. Bourigault ML,, Segueni N,, Rose S,, Court N,, Vacher R,, Vasseur V,, Erard F,, Le Bert M,, Garcia I,, Iwakura Y,, Jacobs M,, Ryffel B,, Quesniaux VF . 2013. Relative contribution of IL-1α, IL-1β and TNF to the host response to Mycobacterium tuberculosis and attenuated M. bovis BCG. Immun Inflamm Dis 1 : 47 62. [CrossRef] [CrossRef]
147. Di Paolo NC,, Shafiani S,, Day T,, Papayannopoulou T,, Russell DW,, Iwakura Y,, Sherman D,, Urdahl K,, Shayakhmetov DM . 2015. Interdependence between interleukin-1 and tumor necrosis factor regulates TNF-dependent control of Mycobacterium tuberculosis infection. Immunity 43 : 1125 1136. (Erratum: 44:438.) [CrossRef]
148. Guler R,, Parihar SP,, Spohn G,, Johansen P,, Brombacher F,, Bachmann MF . 2011. Blocking IL-1α but not IL-1β increases susceptibility to chronic Mycobacterium tuberculosis infection in mice. Vaccine 29 : 1339 1346. [CrossRef] [CrossRef]
149. Gopal R,, Monin L,, Slight S,, Uche U,, Blanchard E,, Fallert Junecko BA,, Ramos-Payan R,, Stallings CL,, Reinhart TA,, Kolls JK,, Kaushal D,, Nagarajan U,, Rangel-Moreno J,, Khader SA . 2014. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog 10 : e1004099. [CrossRef]
150. Schneider BE,, Korbel D,, Hagens K,, Koch M,, Raupach B,, Enders J,, Kaufmann SH,, Mittrücker HW,, Schaible UE . 2010. A role for IL-18 in protective immunity against Mycobacterium tuberculosis . Eur J Immunol 40 : 396 405. [CrossRef] [CrossRef]
151. Suwara MI,, Green NJ,, Borthwick LA,, Mann J,, Mayer-Barber KD,, Barron L,, Corris PA,, Farrow SN,, Wynn TA,, Fisher AJ,, Mann DA . 2014. IL-1α released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol 7 : 684 693. [CrossRef] [CrossRef]
152. Fielding CA,, McLoughlin RM,, McLeod L,, Colmont CS,, Najdovska M,, Grail D,, Ernst M,, Jones SA,, Topley N,, Jenkins BJ . 2008. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol 181 : 2189 2195. [CrossRef]
153. Lalor SJ,, Dungan LS,, Sutton CE,, Basdeo SA,, Fletcher JM,, Mills KH . 2011. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. J Immunol 186 : 5738 5748. [CrossRef]
154. Dunne A,, Ross PJ,, Pospisilova E,, Masin J,, Meaney A,, Sutton CE,, Iwakura Y,, Tschopp J,, Sebo P,, Mills KH . 2010. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis . J Immunol 185 : 1711 1719. [CrossRef] [CrossRef]
155. Chung Y,, Chang SH,, Martinez GJ,, Yang XO,, Nurieva R,, Kang HS,, Ma L,, Watowich SS,, Jetten AM,, Tian Q,, Dong C . 2009. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30 : 576 587. [CrossRef]
156. Monin L,, Griffiths KL,, Slight S,, Lin Y,, Rangel-Moreno J,, Khader SA . 2015. Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol 8 : 1099 1109. [CrossRef] [CrossRef]
157. Khader SA,, Bell GK,, Pearl JE,, Fountain JJ,, Rangel-Moreno J,, Cilley GE,, Shen F,, Eaton SM,, Gaffen SL,, Swain SL,, Locksley RM,, Haynes L,, Randall TD,, Cooper AM . 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8 : 369 377. [CrossRef] [CrossRef]
158. Mayer-Barber KD,, Andrade BB,, Oland SD,, Amaral EP,, Barber DL,, Gonzales J,, Derrick SC,, Shi R,, Kumar NP,, Wei W,, Yuan X,, Zhang G,, Cai Y,, Babu S,, Catalfamo M,, Salazar AM,, Via LE,, Barry CE III,, Sher A . 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511 : 99 103. [CrossRef] [CrossRef]
159. Tominaga K,, Yoshimoto T,, Torigoe K,, Kurimoto M,, Matsui K,, Hada T,, Okamura H,, Nakanishi K . 2000. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int Immunol 12 : 151 160. [CrossRef] [PubMed] [CrossRef]
160. Okamura H,, Kashiwamura S,