1887

Chapter 16 : The Geomycology of Elemental Cycling and Transformations in the Environment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Geomycology of Elemental Cycling and Transformations in the Environment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap16-2.gif

Abstract:

The significance of fungi in natural environments is extensive and profound. Their most obvious roles are as decomposers of organic materials and as animal and plant pathogens and symbionts. It is therefore obvious that they are of major importance in the global carbon cycle through such activities and as important determinants of plant growth and productivity. However, their importance in terms of nutrient and element cycling greatly extends beyond these core activities, and they are involved in the biogeochemical cycling of many other elements and substances, as well as many other related processes of environmental significance. The growing discipline of geomicrobiology addresses the roles of microorganisms in geological and geochemical processes ( ), and geomycology can be considered to be a part of this topic that focuses on the fungi ( ). The often clear demarcation between mycological and bacteriological research has ensured that the geoactive properties and significance of fungi have been unappreciated in wider geomicrobiological contexts. The range of prokaryotic metabolic diversity found in archaea and bacteria, including their abilities to use a variety of different terminal electron acceptors in respiration and effect redox transformations of many metal species ( ), has also contributed to a narrow overall view of the significance of eukaryotic organisms in important biosphere processes. A recent collection of geomicrobiology review articles managed to completely exclude fungi (as well as algae), even to the extent of defining “microbes” as being only bacteria and archaea ( ). Nevertheless, appreciation of fungi as agents of geochemical change is growing, and their significance is being discovered even in locations not usually regarded as prime fungal habitats, e.g., rocks, acid mine drainage, deep aquatic sediments, hydrothermal vents, and the igneous oceanic crust ( ). Their significance as bioweathering agents of rocks and minerals is probably better understood than bacterial roles ( ), and this ability is of prime importance in the weathering of human structures in the built environment and cultural heritage ( ). On the positive side, the geoactive properties of fungi can be used for human benefit, and several aspects may contribute to providing solutions to several important global challenges. Geomycology is relevant to reclamation and revegetation of polluted habitats, bioremediation, nuclear decommissioning and radionuclide containment, biorecovery of important elements, and the production of novel biomaterials. This chapter outlines important geoactive properties of fungi in relation to important environmental processes, their positive and negative applications, and their impact on human society.

Citation: Gadd G. 2017. The Geomycology of Elemental Cycling and Transformations in the Environment, p 371-386. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0010-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555819583.chap16
1. Ehrlich HL,, Newman DK . 2009. Geomicrobiology, 5th ed. CRC Press, Boca Raton, FL.
2. Gadd GM . 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156 : 609 643.[CrossRef] [PubMed]
3. Gadd GM . 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111 : 3 49.[CrossRef]
4. Gadd GM, . 2008. Fungi and their role in the biosphere, p 1709 1717. In Jorgensen SE,, Fath B (ed), Encyclopedia of Ecology. Elsevier, Amsterdam, The Netherlands.
5. Gadd GM . 2008. Bacterial and fungal geomicrobiology: a problem with communities? Geobiology 6 : 278 284.[CrossRef] [PubMed]
6. Kim BH,, Gadd GM . 2008. Bacterial Physiology and Metabolism. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
7. Druschel GK,, Kappler A . 2015. Geomicrobiology and microbial geochemistry. Elements 11 : 389 394.[CrossRef]
8. Reitner J,, Schumann G,, Pedersen K, . 2006. Fungi in subterranean environments, p 377 403. In Gadd GM (ed), Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
9. Gorbushina AA . 2007. Life on the rocks. Environ Microbiol 9 : 1613 1631.[CrossRef] [PubMed]
10. Vázquez-Campos X,, Kinsela AS,, Waite TD,, Collins RN,, Neilan BA . 2014. Fodinomyces uranophilus gen. nov. sp. nov. and Coniochaeta fodinicola sp. nov., two uranium mine-inhabiting Ascomycota fungi from northern Australia. Mycologia 106 : 1073 1089.[CrossRef]
11. Ivarsson M,, Bengtson S,, Neubeck A . 2016. The igneous oceanic crust: Earth’s largest fungal habitat? Fungal Ecol 20 : 249 255.[CrossRef]
12. Uroz S,, Calvaruso C,, Turpault M-P,, Frey-Klett P . 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17 : 378 387.[CrossRef] [PubMed]
13. Scheerer S,, Ortega-Morales O,, Gaylarde C . 2009. Microbial deterioration of stone monuments: an updated overview. Adv Appl Microbiol 66 : 97 139.[CrossRef] [PubMed]
14. Cutler N,, Viles H . 2010. Eukaryotic microorganisms and stone biodeterioration. Geomicrobiol J 27 : 630 646.[CrossRef]
15. Gadd GM . Geomicrobiology of the built environment. Nat Microbiol In press.
16. Burford EP,, Fomina M,, Gadd GM . 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67 : 1127 1155.[CrossRef]
17. Miyata N,, Tani Y,, Iwahori K,, Soma M . 2004. Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol Ecol 47 : 101 109.[CrossRef] [PubMed]
18. Fomina M,, Burford EP,, Gadd GM, . 2005. Toxic metals and fungal communities, p 733 758. In Dighton J,, White JF,, Oudemans P (ed), The Fungal Community. Its Organization and Role in the Ecosystem. CRC Press, Boca Raton, FL.[CrossRef]
19. Vázquez-Campos X,, Kinsela AS,, Collins RN,, Neilan BA,, Aoyagi N,, Waite TD . 2015. Uranium binding mechanisms of the acid-tolerant fungus Coniochaeta fodinicola . Environ Sci Technol 49 : 8487 8496.[CrossRef]
20. Horiike T,, Yamashita M . 2015. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl Environ Microbiol 81 : 3062 3068.[CrossRef] [PubMed]
21. Gadd GM . 2004. Mycotransformation of organic and inorganic substrates. Mycologist 18 : 60 70.[CrossRef]
22. Braissant O,, Cailleau G,, Aragno M,, Verrecchia EP . 2004. Biologically induced mineralization in the tree Milicia excelsa Moraceae: its causes and consequences to the environment. Geobiol 2 : 59 66.[CrossRef]
23. Wainwright M,, Ali TA,, Barakah F . 1993. A review of the role of oligotrophic microorganisms in biodeterioration. Int Biodet Biodeg 31 : 1 13.[CrossRef]
24. Sterflinger K . 2000. Fungi as geologic agents. Geomicrobiol J 17 : 97 124.[CrossRef]
25. Gorbushina AA,, Krumbein WE,, Hamman R,, Panina L,, Soukharjevsky S,, Wollenzien U . 1993. On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11 : 205 221.[CrossRef]
26. Ivarsson M . 2012. The subseafloor basalts as fungal habitats. Biogeosciences 9 : 3625 3635.[CrossRef]
27. Nagano Y,, Nagahama T . 2012. Fungal diversity in deep-sea extreme environments. Fungal Ecol 5 : 463 471.[CrossRef]
28. Orsi W,, Biddle JF,, Edgcomb V . 2013. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8 : e56335.[CrossRef]
29. Nagano Y,, Nagahama T,, Hatada Y,, Nunoura T,, Takami H,, Miyazaki J,, Takai K,, Horikoshi K . 2010. Fungal diversity in deep-sea sediments: the presence of novel fungal groups. Fungal Ecol 3 : 316 325.[CrossRef]
30. Le Calvez T,, Burgaud G,, Mahé S,, Barbier G,, Vandenkoornhuyse P . 2009. Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75 : 6415 6421.[CrossRef] [PubMed]
31. Connell L,, Barrett A,, Templeton A,, Staudigel H . 2009. Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26 : 597 605.[CrossRef]
32. Nagahama T,, Takahashi E,, Nagano Y,, Abdel-Wahab MA,, Miyazaki M . 2011. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13 : 2359 2370.[CrossRef]
33. Ivarsson M,, Bengtson S,, Skogby H,, Lazor P,, Broman C,, Belivanova V,, Marone F . 2015. A fungal-prokaryotic consortium at the basalt-zeolite interface in subseafloor igneous crust. PLoS One 10 : e0140106.[CrossRef]
34. Bengtson S,, Ivarsson M,, Astolfo A,, Belivanova V,, Broman C,, Marone F,, Stampanoni M . 2014. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiology 12 : 489 496.[CrossRef] [PubMed]
35. Schumann G,, Manz W,, Reitner J,, Lustrino M . 2004. Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol J 21 : 241 246.[CrossRef]
36. Gadd GM (ed) . 2006. Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
37. Boddy L, . 2016. Fungi, ecosystems, and global change, p 361 400. In Watkinson SC,, Boddy L,, Money NP (ed), The Fungi. Elsevier, Amsterdam, The Netherlands.[CrossRef]
38. Gadd GM . 2000. Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258 : 119 127.[CrossRef]
39. Cerniglia CE,, Sutherland JB, . 2001. Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi, p 136 187. In Gadd GM (ed), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
40. Cerniglia CE,, Sutherland JB, . 2006. Relative roles of bacteria and fungi in polycyclic aromatic hydrocarbon biodegradation and bioremediation of contaminated soils, p 182 211. In Gadd GM (ed), Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
41. Singleton I, . 2001. Fungal remediation of soils contaminated with persistent organic pollutants, p 79 96. In Gadd GM (ed), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
42. Gadd GM (ed) . 2001. Fungi in Bioremediation. Cambridge University Press, Cambridge.[CrossRef]
43. Sutherland JB, . 2004. Degradation of hydrocarbons by yeasts and filamentous fungi, p 443 455. In Arora DK (ed), Fungal Biotechnology in Agricultural, Food, and Environmental Applications. Marcel Dekker, New York, NY.
44. Gadd GM,, Burford EP,, Fomina M,, Melville K, . 2007. Mineral transformations and biogeochemical cycles: a geomycological perspective, p 77 111. In Gadd GM,, Dyer P,, Watkinson S (ed), Fungi in the Environment. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
45. Hochella MF Jr . 2002. Sustaining Earth: thoughts on the present and future roles in mineralogy in environmental science. Mineral Mag 66 : 627 652.[CrossRef]
46. Kraemer SM,, Cheah SF,, Zapf R,, Xu JD,, Raymond KN,, Sposito G . 1999. Effect of hydroxamate siderophores on Fe release and PbII. adsorption by goethite. Geochim Cosmochim Acta 63 : 3003 3008.[CrossRef]
47. Vaughan DJ,, Pattrick RAD,, Wogelius RA . 2002. Minerals, metals and molecules: ore and environmental mineralogy in the new millennium. Mineral Mag 66 : 653 676.[CrossRef]
48. Burford EP,, Kierans M,, Gadd GM . 2003. Geomycology: fungi in mineral substrata. Mycologist 17 : 98 107.[CrossRef]
49. Boswell GP,, Jacobs H,, Davidson FA,, Gadd GM,, Ritz K . 2002. Functional consequences of nutrient translocation in mycelial fungi. J Theor Biol 217 : 459 477.[CrossRef] [PubMed]
50. Boswell GP,, Jacobs H,, Davidson FA,, Gadd GM,, Ritz K . 2003. Growth and function of fungal mycelia in heterogeneous environments. Bull Math Biol 65 : 447 477.[CrossRef] [PubMed]
51. Boswell GP,, Jacobs H,, Ritz K,, Gadd GM,, Davidson FA . 2007. The development of fungal networks in complex environments. Bull Math Biol 69 : 605 634.[CrossRef] [PubMed]
52. Verrecchia EP, . 2000. Fungi and sediments, p 68 75. In Riding RE,, Awramik SM (ed), Microbial Sediments. Springer-Verlag, Berlin, Germany.[CrossRef]
53. Gadd GM . 1993. Interactions of fungi with toxic metals. New Phytol 124 : 25 60.[CrossRef]
54. Banfield JF,, Barker WW,, Welch SA,, Taunton A . 1999. Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96 : 3404 3411.[CrossRef]
55. Bonneville S,, Smits MM,, Brown A,, Harrington J,, Leake JR,, Brydson R,, Benning LG . 2009. Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37 : 615 618.[CrossRef]
56. Li L,, Liu L,, Chen J,, Teng HH . 2016. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology 44 : 319 322.
57. Bowen AD,, Davidson FA,, Keatch R,, Gadd GM . 2007. Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure. Fungal Genet Biol 44 : 484 491.[CrossRef]
58. Burgstaller W,, Schinner F . 1993. Leaching of metals with fungi. J Biotechnol 27 : 91 116.[CrossRef]
59. Gadd GM . 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41 : 47 92.[CrossRef]
60. Ehrlich HL . 1998. Geomicrobiology: its significance for geology. Earth Sci Rev 45 : 45 60.[CrossRef]
61. Gharieb MM,, Sayer JA,, Gadd GM . 1998. Solubilization of natural gypsum (CaSO 4.2H 2O.) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides . Mycol Res 102 : 825 830.[CrossRef]
62. Adeyemi AO,, Gadd GM . 2005. Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18 : 269 281.[CrossRef] [PubMed]
63. Strasser H,, Burgstaller W,, Schinner F . 1994. High-yield production of oxalic acid for metal leaching processes by Aspergillus niger . FEMS Microbiol Lett 119 : 365 370.[CrossRef] [PubMed]
64. Sayer JA,, Cotter-Howells JD,, Watson C,, Hillier S,, Gadd GM . 1999. Lead mineral transformation by fungi. Curr Biol 9 : 691 694.[CrossRef] [PubMed]
65. Fomina MA,, Alexander IJ,, Hillier S,, Gadd GM . 2004. Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21 : 351 366.[CrossRef]
66. Fomina MA,, Alexander IJ,, Colpaert JV,, Gadd GM . 2005. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37 : 851 866.[CrossRef]
67. Gadd GM . 1993. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11 : 297 316.[CrossRef]
68. Gadd GM . 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11 : 271 279.[CrossRef]
69. Gadd GM, . 2001. Accumulation and transformation of metals by microorganisms, p 225 264. In Rehm H-J,, Reed G,, Puhler A,, Stadler P (ed), Biotechnology: A Multi-Volume Comprehensive Treatise. Vol. 10. Special Processes. Wiley-VCH Verlag GmbH, Weinheim, Germany.
70. Gadd GM, . 2001. Metal transformations, p 359 382. In Gadd GM (ed), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
71. Gadd GM . 2009. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84 : 13 28.[CrossRef]
72. Baldrian P . 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32 : 78 91.[CrossRef]
73. Fomina M,, Charnock JM,, Hillier S,, Alvarez R,, Gadd GM . 2007. Fungal transformations of uranium oxides. Environ Microbiol 9 : 1696 1710.[CrossRef] [PubMed]
74. Fomina M,, Charnock J,, Bowen AD,, Gadd GM . 2007. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9 : 308 321.[CrossRef]
75. Fomina M,, Podgorsky VS,, Olishevska SV,, Kadoshnikov VM,, Pisanska IR,, Hillier S,, Gadd GM . 2007. Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol J 24 : 643 653.[CrossRef]
76. Fomina M,, Gadd GM . 2014. Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160 : 3 14.[CrossRef] [PubMed]
77. Gadd GM,, Raven JA . 2010. Geomicrobiology of eukaryotic microorganisms. Geomicrobiol J 27 : 491 519.[CrossRef]
78. Gadd GM,, Rhee YJ,, Stephenson K,, Wei Z . 2012. Geomycology: metals, actinides and biominerals. Environ Microbiol Rep 4 : 270 296.[CrossRef] [PubMed]
79. Gadd GM,, Bahri-Esfahani J,, Li Q,, Rhee YJ,, Wei Z,, Fomina M,, Liang X . 2014. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28 : 36 55.[CrossRef]
80. Liang X,, Hillier S,, Pendlowski H,, Gray N,, Ceci A,, Gadd GM . 2015. Uranium phosphate biomineralization by fungi. Environ Microbiol 17 : 2064 2075.[CrossRef] [PubMed]
81. Liang X,, Kierans M,, Ceci A,, Hillier S,, Gadd GM . 2016. Phosphatase-mediated bioprecipitation of lead by soil fungi. Environ Microbiol 18 : 219 231.[CrossRef] [PubMed]
82. Liang X,, Csetenyi L,, Gadd GM . 2016. Lead bioprecipitation by yeasts utilizing organic phosphorus substrates. Geomicrobiol J 33 : 294 307.[CrossRef]
83. Lloyd JR,, Pearce CI,, Coker VS,, Pattrick RADP,, van der Laan G,, Cutting R,, Vaughan DJ,, Paterson-Beedle M,, Mikheenko IP,, Yong P,, Macaskie LE . 2008. Biomineralization: linking the fossil record to the production of high value functional materials. Geobiology 6 : 285 297.[CrossRef]
84. Rosling A,, Roose T,, Herrmann AM,, Davidson FA,, Finlay RD,, Gadd GM . 2009. Approaches to modelling mineral weathering by fungi. Fungal Biol Rev 23 : 138 144.[CrossRef]
85. Smits MM . 2009. Scale matters? Exploring the effect of scale on fungal-mineral interactions. Fungal Biol Rev 23 : 132 137.[CrossRef]
86. Hutchens E . 2009. Microbial selectivity on mineral surfaces: possible implications for weathering processes. Fungal Biol Rev 23 : 115 121.[CrossRef]
87. Adamo P,, Violante P . 2000. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16 : 229 256.[CrossRef]
88. Cockell CS,, Herrera A . 2008. Why are some microorganisms boring? Trends Microbiol 16 : 101 106.[CrossRef]
89. Lian B,, Wang B,, Pan M,, Liu C,, Teng HH . 2008. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus . Geochim Cosmochim Acta 72 : 87 98.[CrossRef]
90. Golubic S,, Radtke G,, Le Campion-Alsumard T . 2005. Endolithic fungi in marine ecosystems. Trends Microbiol 13 : 229 235.[CrossRef] [PubMed]
91. Kolo K,, Keppens E,, Preat A,, Claeys P . 2007. Experimental observations on fungal diagenesis of carbonate substrates. J Geophys Res 112 : G01007.[CrossRef]
92. Verrecchia EP,, Dumont J-L,, Rolko KE . 1990. Do fungi building limestones exist in semi-arid regions? Naturwissenschaften 77 : 584 586.[CrossRef]
93. Burford EP,, Hillier S,, Gadd GM . 2006. Biomineralization of fungal hyphae with calcite (CaCO 3.) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms. Geomicrobiol J 23 : 599 611.[CrossRef]
94. Li Q,, Csetenyi L,, Gadd GM . 2014. Biomineralization of metal carbonates by Neurospora crassa . Environ Sci Technol 48 : 14409 14416.[CrossRef] [PubMed]
95. Li Q,, Csetenyi L,, Paton GI,, Gadd GM . 2015. CaCO 3 and SrCO 3 bioprecipitation by fungi isolated from calcareous soil. Environ Microbiol 17 : 3082 3097.[CrossRef] [PubMed]
96. Kumari D,, Qian X-Y,, Pan X,, Achal V,, Li Q,, Gadd GM . 2016. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv Appl Microbiol 94 : 79 108.[PubMed] [CrossRef]
97. Rhee YJ,, Hillier S,, Gadd GM . 2016. A new lead hydroxycarbonate produced during transformation of lead metal by the soil fungus Paecilomyces javanicus . Geomicrobiol J 33 : 250 260.
98. Adamo P,, Vingiani S,, Violante P . 2002. Lichen-rock interactions and bioformation of minerals. Dev Soil Sci 28 : 377 391.[CrossRef]
99. Pinzari F,, Zotti M,, De Mico A,, Calvini P . 2010. Biodegradation of inorganic components in paper documents: formation of calcium oxalate crystals as a consequence of Aspergillus terreus Thom growth. Int Biodet Biodegrad 64 : 499 505.[CrossRef]
100. Arnott HJ, . 1995. Calcium oxalate in fungi, p 73 111. In Khan SR (ed), Calcium Oxalate in Biological Systems. CRC Press, Boca Raton, FL.
101. Sayer JA,, Gadd GM . 1997. Solubilization and transformation of insoluble metal compounds to insoluble metal oxalates by Aspergillus niger . Mycol Res 101 : 653 661.[CrossRef]
102. Jarosz-Wilkołazka A,, Gadd GM . 2003. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52 : 541 547.[CrossRef]
103. Wei Z,, Hillier S,, Gadd GM . 2012. Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environ Microbiol 14 : 1744 1753.[CrossRef] [PubMed]
104. Verrecchia EP,, Braissant O,, Cailleau G, . 2006. The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria, p 289 310. In Gadd GM (ed), Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
105. Kolo K,, Claeys P . 2005. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences 2 : 277 293.[CrossRef]
106. Miyata N,, Tani Y,, Sakata M,, Iwahori K . 2007. Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104 : 1 8.[CrossRef] [PubMed]
107. Saratovsky I,, Gurr SJ,, Hayward MA . 2009. The structure of manganese oxide formed by the fungus Acremonium sp. strain KR21-2. Geochim Cosmochim Acta 73 : 3291 3300.[CrossRef]
108. Grote G,, Krumbein WE . 1992. Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiol J 10 : 49 57.[CrossRef]
109. Eckhardt FEW, . 1985. Solubilisation, transport, and deposition of mineral cations by microorganisms: efficient rock-weathering agents, p 161 173. In Drever J (ed), The Chemistry of Weathering, vol 149. Nato Asi Ser C. D. Reidel Publishing, Dordrecht, The Netherlands.[CrossRef]
110. Whitelaw MA,, Harden TJ,, Helyar KR . 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum . Soil Biol Biochem 31 : 655 665.[CrossRef]
111. Rhee YJ,, Hillier S,, Gadd GM . 2012. Lead transformation to pyromorphite by fungi. Curr Biol 22 : 237 241.[PubMed] [CrossRef]
112. Rhee YJ,, Hillier S,, Pendlowski H,, Gadd GM . 2014. Pyromorphite formation in a fungal biofilm community growing on lead metal. Environ Microbiol 16 : 1441 1451.[CrossRef] [PubMed]
113. Rhee YJ,, Hillier S,, Pendlowski H,, Gadd GM . 2014. Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere 113 : 17 21.[CrossRef] [PubMed]
114. Fomina M,, Charnock JM,, Hillier S,, Alvarez R,, Livens F,, Gadd GM . 2008. Role of fungi in the biogeochemical fate of depleted uranium. Curr Biol 18 : R375 R377.[CrossRef] [PubMed]
115. Gadd GM,, Fomina M . 2011. Uranium and fungi. Geomicrobiol J 28 : 471 482.[CrossRef]
116. Brehm U,, Gorbushina A,, Mottershead D . 2005. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeogr Palaeoclimatol Palaeoecol 219 : 117 129.[CrossRef]
117. Barker WW,, Banfield JF . 1996. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiotic communities. Chem Geol 132 : 55 69.[CrossRef]
118. Barker WW,, Banfield JF . 1998. Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiol J 15 : 223 244.[CrossRef]
119. Arocena JM,, Glowa KR,, Massicotte HB,, Lavkulich L . 1999. Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir Abies lasiocarpa Hook. Nutt. in the AE horizon of a Luvisol. Can J Soil Sci 79 : 25 35.[CrossRef]
120. Arocena JM,, Zhu LP,, Hall K . 2003. Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau, China. Earth Surf Process Landf 28 : 1429 1437.[CrossRef]
121. Tazaki K, . 2006. Clays, microorganisms, and biomineralization, p 477 497. In Bergaya F,, Theng BKG,, Lagaly G (ed), Handbook of Clay Science, Developments in Clay Science, vol 1. Elsevier, Amsterdam, The Netherlands.[CrossRef]
122. Theng BKG,, Yuan G . 2008. Nanoparticles in the soil environment. Elements 4 : 395 399.[CrossRef]
123. Cromack K,, Sollins P,, Grausten WC,, Speidel K,, Todd AW,, Spycher G,, Li CY,, Todd RL . 1979. Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum . Soil Biol Biochem 11 : 463 468.[CrossRef]
124. de la Torre MA,, Gomez-Alarcon G,, Vizcaino C,, Garcia MT . 1992. Biochemical mechanisms of stone alteration carried out by filamentous fungi living on monuments. Biogeochem 19 : 129 147.[CrossRef]
125. Bennett PC,, Rogers JA,, Choi WJ,, Hiebert FK . 2001. Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18 : 3 19.[CrossRef]
126. Wei Z,, Kierans M,, Gadd GM . 2012. A model sheet mineral system to study fungal bioweathering of mica. Geomicrobiol J 29 : 323 331.[CrossRef]
127. Wei Z,, Liang X,, Pendlowski H,, Hillier S,, Suntornvongsagul K,, Sihanonth P,, Gadd GM . 2013. Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol 15 : 2173 2186.[CrossRef] [PubMed]
128. Gorbushina AA,, Boettcher M,, Brumsack H-J,, Krumbein WE,, Vendrell-Saz M . 2001. Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems tepuis. of Venezuela. Geomicrobiol J 18 : 117 132.[CrossRef]
129. Ritz K,, Young IM . 2004. Interaction between soil structure and fungi. Mycologist 18 : 52 59.[CrossRef]
130. Fomina M,, Gadd GM . 2003. Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. J Chem Technol Biotechnol 78 : 23 34.[CrossRef]
131. Morley GF,, Gadd GM . 1995. Sorption of toxic metals by fungi and clay minerals. Mycol Res 99 : 1429 1438.[CrossRef]
132. Fomina M,, Gadd GM . 2002. Influence of clay minerals on the morphology of fungal pellets. Mycol Res 106 : 107 117.[CrossRef]
133. Kierans M,, Staines AM,, Bennett H,, Gadd GM . 1991. Silver tolerance and accumulation in yeasts. Biol Met 4 : 100 106.[CrossRef] [PubMed]
134. Gharieb MM,, Wilkinson SC,, Gadd GM . 1995. Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol 14 : 300 311.[CrossRef]
135. Gharieb MM,, Kierans M,, Gadd GM . 1999. Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycol Res 103 : 299 305.[CrossRef]
136. Cánovas D,, Durán C,, Rodríguez N,, Amils R,, de Lorenzo V . 2003. Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto. Environ Microbiol 5 : 133 138.[CrossRef] [PubMed]
137. Cánovas D,, Mukhopadhyay R,, Rosen BP,, de Lorenzo V . 2003. Arsenate transport and reduction in the hyper-tolerant fungus Aspergillus sp. P37. Environ Microbiol 5 : 1087 1093.[CrossRef]
138. Hirsch P,, Eckhardt FEW,, Palmer RJ Jr . 1995. Methods for the study of rock inhabiting microorganisms: a mini review. J Microbiol Methods 23 : 143 167.[CrossRef]
139. Watling R,, Harper DB . 1998. Chloromethane production by wood-rotting fungi and an estimate of the global flux to the atmosphere. Mycol Res 102 : 769 787.[CrossRef]
140. Redeker KR,, Treseder KK,, Allen MF . 2004. Ectomycorrhizal fungi:a new source of atmospheric methyl halides? Glob Change Biol 10 : 1009 1016.[CrossRef]
141. Ban-nai T,, Muramatsu Y,, Amachi S . 2006. Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures. Chemosphere 65 : 2216 2222.[CrossRef]
142. Haas JR,, Purvis OW, . 2006. Lichen biogeochemistry, p 344 376. In Gadd GM (ed), Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
143. Chen J,, Blume H-P,, Beyer L . 2000. Weathering of rocks induced by lichen colonization: a review. Catena 39 : 121 146.[CrossRef]
144. Purvis OW,, Pawlik-Skowronska B, . 2008. Lichens and metals, p 175 200. In Avery SV,, Stratford M,, van West P (ed), Stress in Yeasts and Filamentous Fungi. Elsevier, Amsterdam, The Netherlands.[CrossRef]
145. Purvis OW . 1996. Interactions of lichens with metals. Sci Prog 79 : 283 309.
146. Purvis OW,, Halls C . 1996. A review of lichens in metal-enriched environments. Lichenologist 28 : 571 601.[CrossRef]
147. Smith SE,, Read DJ . 1997. Mycorrhizal Symbiosis, 2nd ed. Academic Press, San Diego, CA.
148. Wang B,, Qiu Y-L . 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16 : 299 363.[CrossRef] [PubMed]
149. Lapeyrie F,, Picatto C,, Gerard J,, Dexheimer J . 1990. TEM Study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 9 : 163 166.
150. Lapeyrie F,, Ranger J,, Vairelles D . 1991. Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro . Can J Bot 69 : 342 346.[CrossRef]
151. Blaudez D,, Botton B,, Chalot M . 2000. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus . Microbiology 146 : 1109 1117.[CrossRef]
152. Fomina M,, Charnock JM,, Hillier S,, Alexander IJ,, Gadd GM . 2006. Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb Ecol 52 : 322 333.[CrossRef] [PubMed]
153. Christie P,, Li XL,, Chen BD . 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261 : 209 217.[CrossRef]
154. Bellion M,, Courbot M,, Jacob C,, Blaudez D,, Chalot M . 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254 : 173 181.[CrossRef] [PubMed]
155. Finlay R,, Wallander H,, Smits M,, Holmstrom S,, Van Hees P,, Lian B,, Rosling A . 2009. The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev 23 : 101 106.[CrossRef]
156. Smits MM,, Bonneville S,, Benning LG,, Banwart SA,, Leake JR . 2012. Plant-driven weathering of apatite: the role of an ectomycorrhizal fungus. Geobiology 10 : 445 456.[CrossRef] [PubMed]
157. McMaster TJ . 2012. Atomic force microscopy of the fungi-mineral interface: applications in mineral dissolution, weathering and biogeochemistry. Curr Opin Biotechnol 23 : 562 569.[CrossRef]
158. Bonneville S,, Morgan DJ,, Schmalenberger A,, Bray A,, Brown A,, Banwart SA,, Benning LG . 2011. Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim Cosmochim Acta 75 : 6988 7005.[CrossRef]
159. Rosling A,, Lindahl BD,, Taylor AFS,, Finlay RD . 2004. Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47 : 31 37.[CrossRef] [PubMed]
160. Rosling A,, Lindahl BD,, Finlay RD . 2004. Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytol 162 : 795 802.[CrossRef]
161. Martino E,, Perotto S,, Parsons R,, Gadd GM . 2003. Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35 : 133 141.[CrossRef]
162. Jongmans AG,, van Breemen N,, Lundstrom US,, van Hees PAW,, Finlay RD,, Srinivasan M,, Unestam T,, Giesler R,, Melkerud P-A,, Olsson M . 1997. Rock-eating fungi. Nature 389 : 682 683.[CrossRef]
163. van Breemen N,, Lundstrom US,, Jongmans AG . 2000. Do plants drive podzolization via rock-eating mycorrhizal fungi? Geoderma 94 : 163 171.[CrossRef]
164. Wallander H,, Mahmood S,, Hagerberg D,, Johansson L,, Pallon J . 2003. Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44 : 57 65.[PubMed]
165. Leyval C,, Joner EJ, . 2001. Bioavailability of heavy metals in the mycorrhizosphere, p 165 185. In Gobran GR,, Wenzel WW,, Lombi E (ed), Trace Elements in the Rhizosphere. CRC Press, Boca Raton, FL.
166. Kangwankraiphaisan T,, Suntornvongsagul K,, Sihanonth P,, Klysubun W,, Gadd GM . 2013. Influence of arbuscular mycorrhizal fungi (AMF) on zinc biogeochemistry in the rhizosphere of Lindenbergia philippensis growing in zinc-contaminated sediment. Biometals 26 : 489 505.[CrossRef]
167. Christie P,, Li XL,, Chen BD . 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261 : 209 217.[CrossRef]
168. Turnau K,, Gawroński S,, Ryszka P,, Zook D, . 2012. Mycorrhizal-based phytostabilization of Zn–Pb tailings: lessons from the Trzebionka mining works Southern Poland, p 327 348. In Kothe E,, Varma A (ed), Bio-Geo Interactions in Metal-Contaminated Soils. Springer-Verlag, Berlin, Germany.[CrossRef]
169. Sand W . 1997. Microbial mechanisms of deterioration of inorganic substrates: a general mechanistic overview. Int Biodeter Biodeg 40 : 183 190.[CrossRef]
170. Wright JS . 2002. Geomorphology and stone conservation: sandstone decay in Stoke-on-Trent. Struct Surv 20 : 50 61.[CrossRef]
171. Gaylarde C,, Morton G, . 2002. Biodeterioration of mineral materials, p 516 528. In Bitton G (ed), Environmental Microbiology, vol 1. Wiley, New York, NY.
172. Seaward MRD . 2003. Lichens, agents of monumental destruction. Microbiol Today 30 : 110 112.
173. Lisci L,, Monte M,, Pacini E . 2003. Lichens and higher plants on stone: a review. Int Biodet Biodegrad 51 : 1 17.[CrossRef]
174. Tiano P . 2002. Biodegradation of cultural heritage: decay mechanisms and control methods. Seminar article, New University of Lisbon, Department of Conservation and Restoration, 7–12 January. http://www.arcchip.cz/w09/w09_tiano.pdf.
175. Pinzari F,, Tate J,, Bicchieri M,, Rhee YJ,, Gadd GM . 2013. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis chessmen. Environ Microbiol 15 : 1050 1062.[CrossRef]
176. Gu JD,, Ford TE,, Berke NS,, Mitchell R . 1998. Biodeterioration of concrete by the fungus Fusarium . Int Biodet Biodegrad 41 : 101 109.[CrossRef]
177. Nica D,, Davis JL,, Kirby L,, Zuo G,, Roberts DJ . 2000. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int Biodet Biodegrad 46 : 61 68.[CrossRef]
178. Gu JD, . 2009. Corrosion, microbial, p 259 269. In Schaechter M (ed), Encyclopedia of Microbiology. Elsevier, Amsterdam, The Netherlands.[CrossRef]
179. Brandl H, . 2001. Heterotrophic leaching, p 383 423. In Gadd GM (ed), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.[CrossRef]
180. Santhiya D,, Ting YP . 2005. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. J Biotechnol 116 : 171 184.[CrossRef]
181. Brandl H,, Faramarzi MA . 2006. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuol 4 : 93 97.[CrossRef]
182. de Rome L,, Gadd GM . 1987. Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium italicum . Appl Microbiol Biotechnol 26 : 84 90.[CrossRef]
183. Gadd GM,, Mowll JL . 1985. Copper uptake by yeast-like cells, hyphae and chlamydospores of Aureobasidium pullulans . Exp Mycol 9 : 0 40.[CrossRef]
184. Gadd GM,, de Rome L . 1988. Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29 : 610 617.[CrossRef]
185. Volesky B . 1990. Biosorption of Heavy Metals. CRC Press, Boca Raton, FL.
186. Volesky B . 2007. Biosorption and me. Water Res 41 : 4017 4029.[CrossRef] [PubMed]
187. Gadd GM,, White C . 1989. Removal of thorium from simulated acid process streams by fungal biomass. Biotechnol Bioeng 33 : 592 597.[CrossRef] [PubMed]
188. White C,, Gadd GM . 1990. Biosorption of radionuclides by fungal biomass. J Chem Technol Biotechnol 49 : 331 343.[CrossRef] [PubMed]
189. Gadd GM,, White C . 1992. Removal of thorium from simulated acid process streams by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J Chem Technol Biotechnol 55 : 39 44.[CrossRef]
190. Gadd GM,, White C . 1993. Microbial treatment of metal pollution: a working biotechnology? Trends Biotechnol 11 : 353 359.[CrossRef] [PubMed]
191. White C,, Wilkinson SC,, Gadd GM . 1995. The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeter Biodegrad 35 : 17 40.[CrossRef]
192. Wang J,, Chen C . 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24 : 427 451.[CrossRef] [PubMed]
193. Wang J,, Chen C . 2009. Biosorbents for heavy metals removal and their future. Biotechnol Adv 27 : 195 226.[CrossRef]
194. Dameron CT,, Reese RN,, Mehra RK,, Kortan AR,, Carroll PJ,, Steigerwald ML,, Brus LE,, Winge DR . 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338 : 596 597.[CrossRef]
195. Li Q,, Liu D,, Jia Z,, Csetenyi L,, Gadd GM . 2016. Fungal biomineralization of manganese as a novel source of electrochemical materials. Curr Biol 26 : 950 955.[CrossRef] [PubMed]
196. Thomson-Eagle ET,, Frankenberger WT, . 1992. Bioremediation of soils contaminated with selenium, p 261 309. In Lal R,, Stewart BA (ed), Advances in Soil Science. Springer, New York, NY.
197. Rosén K,, Weiliang Z,, Mårtensson A . 2005. Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass. Sci Total Environ 338 : 283 290.[CrossRef] [PubMed]
198. Göhre V,, Paszkowski U . 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223 : 1115 1122.[CrossRef] [PubMed]
199. Salt DE,, Smith RD,, Raskin I . 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49 : 643 668.[CrossRef] [PubMed]
200. Leyval C,, Turnau K,, Haselwandter K . 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7 : 139 153.[CrossRef]
201. Krupa P,, Kozdroj J . 2004. Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J Microbiol Biotechnol 20 : 427 430.[CrossRef]
202. Adriaensen K,, Vrålstad T,, Noben JP,, Vangronsveld J,, Colpaert JV . 2005. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71 : 7279 7284.[CrossRef] [PubMed]
203. González-Chávez MC,, Carrillo-González R,, Wright SF,, Nichols KA . 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130 : 317 323.[CrossRef]
204. Rufyikiri G,, Huysmans L,, Wannijn J,, Van Hees M,, Leyval C,, Jakobsen I . 2004. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Environ Pollut 130 : 427 436.[CrossRef]
205. Chen BD,, Jakobsen I,, Roos P,, Zhu YG . 2005. Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil 275 : 349 359.[CrossRef]
206. Chen B,, Zhu YG,, Zhang X,, Jakobsen I . 2005. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Environ Sci Pollut Res Int 12 : 325 331.[CrossRef] [PubMed]
207. Bradley R,, Burt AJ,, Read DJ . 1981. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris . Nature 292 : 335 337.[CrossRef]
208. Bradley B,, Burt AJ,, Read DJ . 1982. The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91 : 197 209.[CrossRef]
209. Schützendübel A,, Polle A . 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53 : 1351 1365.[CrossRef] [PubMed]
210. Cairney JWG,, Meharg AA . 2003. Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54 : 735 740.[CrossRef]
211. Ruby MV,, Davis A,, Nicholson A . 1994. In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28 : 646 654.[CrossRef] [PubMed]
212. Cotter-Howells J . 1996. Lead phosphate formation in soils. Environ Pollut 93 : 9 16.[CrossRef]
213. Cotter-Howells J,, Caporn S . 1996. Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11 : 335 342.[CrossRef]
214. Ioannidis TA,, Zouboulis AI . 2003. Detoxification of a highly toxic lead-loaded industrial solid waste by stabilization using apatites. J Hazard Mater 97 : 173 191.[CrossRef]
215. Manning DAC . 2008. Phosphate minerals, environmental pollution and sustainable agriculture. Elements 4 : 105 108.[CrossRef]
216. Oelkers EH,, Montel J-M . 2008. Phosphates and nuclear waste storage. Elements 4 : 113 116.[CrossRef]
217. Ceci A,, Rhee YJ,, Kierans M,, Hillier S,, Pendlowski H,, Gray N,, Persiani AM,, Gadd GM . 2015. Transformation of vanadinite [Pb5 (VO4 )3 Cl] by fungi. Environ Microbiol 17 : 2018 2034.[CrossRef] [PubMed]
218. Ceci A,, Kierans M,, Hillier S,, Persiani AM,, Gadd GM . 2015. Fungal bioweathering of mimetite and a general geomycological model for lead apatite mineral biotransformations. Appl Environ Microbiol 81 : 4955 4964.[CrossRef]
219. Guggiari M,, Bloque R,, Aragno M,, Verrecchia E,, Job D,, Junier P . 2011. Experimental calcium-oxalate crystal production and dissolution by selected wood-rot fungi. Int Biodet Biodegrad 65 : 803 809.[CrossRef]
220. Fomina M,, Hillier S,, Charnock JM,, Melville K,, Alexander IJ,, Gadd GM . 2005. Role of oxalic acid overexcretion in toxic metal mineral transformations by Beauveria caledonica . Appl Environ Microbiol 71 : 371 381.[CrossRef] [PubMed]
221. Daghino S,, Turci F,, Tomatis M,, Favier A,, Perotto S,, Douki T,, Fubini B . 2006. Soil fungi reduce the iron content and the DNA damaging effects of asbestos fibers. Environ Sci Technol 40 : 5793 5798.[CrossRef] [PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error