1887

Chapter 21 : Stress Adaptation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Stress Adaptation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap21-2.gif

Abstract:

Planet Earth plays host to an extravagantly diverse range of fungal species. Recent estimates suggest the probable existence of as many as 3 million fungal species ( ), and the 75,000 of these that have been characterized to date display a wide range of lifestyles. Many fungi occupy specific niches within natural environments, playing essential roles in nutrient scavenging and recycling. Some thrive in close harmony with species from other kingdoms, a superb example being the mycorrhizal fungi, which display mutualistic interactions with plants. Other fungi are pathogenic, causing devastating infections of plants or animals. Indeed, the global threats that fungi pose to human health and food security are being increasingly recognized ( ). Fortunately, a relatively small number of fungal species cause infections in humans (circa 400 species are described in the [ ]). Some of these fungi normally occupy environmental niches but are capable of colonizing and damaging human (or animal) tissues, whereas other fungi appear to be obligately associated with their host.

Citation: Brown A, Cowen L, di Pietro A, Quinn J. 2017. Stress Adaptation, p 463-485. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0048-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Cartoon summarizing stress pathways in the model fungus . See text. This figure summarizes some, but not all, of the known components of these signaling pathways. Components of MAPK signaling modules are highlighted in blue, transcription factors in pink, components of the calmodulin-calcineurin pathway in cyan, Rim pathway components in green, and the molecular chaperone Hsp90 in yellow. Note that the Cek1 MAPK pathway, which contributes to cell wall remodeling in this fungus, is included (dark blue ovals with white lettering).

Citation: Brown A, Cowen L, di Pietro A, Quinn J. 2017. Stress Adaptation, p 463-485. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0048-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The CSR can lead to stress cross-protection. CSRs, which have been defined by genome-wide transcriptional profiling, represent the set of genes that is commonly up- or downregulated by different types of stress (see text). This Venn diagram illustrates the conceptual overlap between these sets of genes, highlighting the core stress genes. A CSR can lead to stress cross-protection during exposure to sequential stresses; i.e., cells that are exposed to one type of stress can then display elevated resistance to a subsequent stress of a different type (see text). In some cases no cross-protection is observed. In other cases it is observed, but this cross-protection can be reciprocal or nonreciprocal. This can depend on the nature and dose of the initial and subsequent stress.

Citation: Brown A, Cowen L, di Pietro A, Quinn J. 2017. Stress Adaptation, p 463-485. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0048-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Exposure to combinatorial stresses can yield nonadditive outputs. Simultaneous exposure to some combinations of stress (i.e., certain combinatorial stresses) can yield additive outputs if there are no significant interactions between the stress pathways that mediate these responses. However, for some combinatorial stresses (see text), stress pathway interference can block the normal response to one of the imposed stresses, leading to combinatorial stress sensitivity. We are unaware of any examples of the opposite effect, where stress pathway enhancement might lead to elevated levels of combinatorial stress resistance.

Citation: Brown A, Cowen L, di Pietro A, Quinn J. 2017. Stress Adaptation, p 463-485. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0048-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Different aspects of stress adaptation occur over different timescales. This generic figure summarizes this principle of an environmental insult such as osmotic stress (see text). However, some stresses may include adaptation mechanisms that occur over other timescales.

Citation: Brown A, Cowen L, di Pietro A, Quinn J. 2017. Stress Adaptation, p 463-485. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0048-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819583.chap21
1. Hawksworth DL . 2012. Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21 : 24252433.[CrossRef]
2. Fisher MC,, Henk DA,, Briggs CJ,, Brownstein JS,, Madoff LC,, McCraw SL,, Gurr SJ . 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484 : 186194.[CrossRef]
3. de Hoog GS,, Guarro J,, Gene J,, Figueras MJ . 2000. Atlas of Clinical Fungi, 2nd ed. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands/Universitat Rovira i Virgili, Reus, Spain.
4. Lindquist S,, Craig EA . 1988. The heat-shock proteins. Annu Rev Genet 22 : 631677.[CrossRef]
5. Steen BR,, Lian T,, Zuyderduyn S,, MacDonald WK,, Marra M,, Jones SJ,, Kronstad JW . 2002. Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans . Genome Res 12 : 13861400.[CrossRef]
6. Brown SM,, Campbell LT,, Lodge JK . 2007. Cryptococcus neoformans, a fungus under stress. Curr Opin Microbiol 10 : 320325.[CrossRef]
7. Pócsi I,, Miskei M,, Karányi Z,, Emri T,, Ayoubi P,, Pusztahelyi T,, Balla G,, Prade RA . 2005. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures: linking genome-wide transcriptional changes to cellular physiology. BMC Genomics 6 : 182.[CrossRef]
8. Breuer U,, Harms H . 2006. Debaryomyces hanseniian extremophilic yeast with biotechnological potential. Yeast 23 : 415437.[CrossRef]
9. Stefanini I,, Dapporto L,, Legras JL,, Calabretta A,, Di Paola M,, De Filippo C,, Viola R,, Capretti P,, Polsinelli M,, Turillazzi S,, Cavalieri D . 2012. Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci USA 109 : 1339813403.[CrossRef]
10. Roetzer A,, Gratz N,, Kovarik P,, Schüller C . 2010. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 12 : 199216.[CrossRef]
11. Nikolaou E,, Agrafioti I,, Stumpf M,, Quinn J,, Stansfield I,, Brown AJP . 2009. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9 : 44.[CrossRef]
12. Shapiro RS,, Cowen LE . 2012. Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. MBio 3 : 00238-12.[CrossRef] [PubMed]
13. Bergman A,, Casadevall A . 2010. Mammalian endothermy optimally restricts fungi and metabolic costs. MBio 1 : 00212-10.[CrossRef]
14. Garcia-Solache MA,, Casadevall A . 2010. Global warming will bring new fungal diseases for mammals. MBio 1 : 00061-10.[CrossRef]
15. Klein BS,, Tebbets B . 2007. Dimorphism and virulence in fungi. Curr Opin Microbiol 10 : 314319.[CrossRef]
16. Gow NA,, van de Veerdonk FL,, Brown AJ,, Netea MG . 2011. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10 : 112122.
17. Shapiro RS,, Robbins N,, Cowen LE . 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75 : 213267.[CrossRef]
18. Leach MD,, Farrer RA,, Tan K,, Miao Z,, Walker LA,, Cuomo CA,, Wheeler RT,, Brown AJ,, Wong KH,, Cowen LE . 2016. Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans . Nat Commun 7 : 11704.[CrossRef]
19. Leach MD,, Klipp E,, Cowen LE,, Brown AJ . 2012. Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nat Rev Microbiol 10 : 693704.[CrossRef]
20. Gasch AP,, Spellman PT,, Kao CM,, Carmel-Harel O,, Eisen MB,, Storz G,, Botstein D,, Brown PO . 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11 : 42414257.[CrossRef]
21. Nicholls S,, Leach MD,, Priest CL,, Brown AJ . 2009. Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals. Mol Microbiol 74 : 844861.[CrossRef]
22. Campos EI,, Fillingham J,, Li G,, Zheng H,, Voigt P,, Kuo WH,, Seepany H,, Gao Z,, Day LA,, Greenblatt JF,, Reinberg D . 2010. The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17 : 13431351.[CrossRef]
23. Sawarkar R,, Sievers C,, Paro R . 2012. Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149 : 807818.[CrossRef]
24. Zhao R,, Davey M,, Hsu YC,, Kaplanek P,, Tong A,, Parsons AB,, Krogan N,, Cagney G,, Mai D,, Greenblatt J,, Boone C,, Emili A,, Houry WA . 2005. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120 : 715727.[CrossRef] [PubMed]
25. Taipale M,, Jarosz DF,, Lindquist S . 2010. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11 : 515528.[CrossRef]
26. Taipale M,, Tucker G,, Peng J,, Krykbaeva I,, Lin ZY,, Larsen B,, Choi H,, Berger B,, Gingras AC,, Lindquist S . 2014. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158 : 434448.[CrossRef]
27. Diezmann S,, Michaut M,, Shapiro RS,, Bader GD,, Cowen LE . 2012. Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry. PLoS Genet 8 : e1002562.[CrossRef]
28. Hawle P,, Horst D,, Bebelman JP,, Yang XX,, Siderius M,, van der Vies SM . 2007. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p). Eukaryot Cell 6 : 521532.[CrossRef]
29. Leach MD,, Budge S,, Walker L,, Munro C,, Cowen LE,, Brown AJ . 2012. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast. PLoS Pathog 8 : e1003069.[CrossRef]
30. O’Meara TR,, Veri AO,, Polvi EJ,, Li X,, Valaei SF,, Diezmann S,, Cowen LE . 2016. Mapping the Hsp90 genetic network reveals ergosterol biosynthesis and phosphatidylinositol-4-kinase signaling as core circuitry governing cellular stress. PLoS Genet 12 : e1006142.[CrossRef]
31. Hohmann S . 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66 : 300372.[CrossRef]
32. Ferreira C,, van Voorst F,, Martins A,, Neves L,, Oliveira R,, Kielland-Brandt MC,, Lucas C,, Brandt A . 2005. A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae . Mol Biol Cell 16 : 20682076.[CrossRef]
33. Dušková M,, Ferreira C,, Lucas C,, Sychrová H . 2015. Two glycerol uptake systems contribute to the high osmotolerance of Zygosaccharomyces rouxii . Mol Microbiol 97 : 541559.[CrossRef]
34. Kayingo G,, Martins A,, Andrie R,, Neves L,, Lucas C,, Wong B . 2009. A permease encoded by STL1 is requiredfor active glycerol uptake by Candida albicans . Microbiology 155 : 15471557.[CrossRef]
35. Luyten K,, Albertyn J,, Skibbe WF,, Prior BA,, Ramos J,, Thevelein JM,, Hohmann S . 1995. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14 : 13601371.[PubMed]
36. Klipp E,, Nordlander B,, Krüger R,, Gennemark P,, Hohmann S . 2005. Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23 : 975982.[CrossRef]
37. Ene IV,, Walker LA,, Schiavone M,, Lee KK,, Martin-Yken H,, Dague E,, Gow NA,, Munro CA,, Brown AJ . 2015. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. MBio 6 : e00986.[CrossRef]
38. Muir A,, Roelants FM,, Timmons G,, Leskoske KL,, Thorner J . 2015. Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress. eLife 4 : 09336.[CrossRef]
39. Hohmann S,, Krantz M,, Nordlander B . 2007. Yeast osmoregulation. Methods Enzymol 428 : 2945.[CrossRef]
40. Yu Z,, Armant O,, Fischer R . 2016. Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 1 : 16019.[CrossRef]
41. Posas F,, Wurgler-Murphy SM,, Maeda T,, Witten EA,, Thai TC,, Saito H . 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86 : 865875.[CrossRef]
42. Posas F,, Saito H . 1998. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J 17 : 13851394.[CrossRef]
43. Tatebayashi K,, Yamamoto K,, Tanaka K,, Tomida T,, Maruoka T,, Kasukawa E,, Saito H . 2006. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J 25 : 30333044.[CrossRef]
44. Wu C,, Jansen G,, Zhang J,, Thomas DY,, Whiteway M . 2006. Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association. Genes Dev 20 : 734746.[CrossRef]
45. Maeda T,, Takekawa M,, Saito H . 1995. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269 : 554558.[CrossRef]
46. Tatebayashi K,, Tanaka K,, Yang HY,, Yamamoto K,, Matsushita Y,, Tomida T,, Imai M,, Saito H . 2007. Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO J 26 : 35213533.[CrossRef]
47. Tanaka K,, Tatebayashi K,, Nishimura A,, Yamamoto K,, Yang HY,, Saito H . 2014. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Sci Signal 7 : ra21.[CrossRef]
48. Yamamoto K,, Tatebayashi K,, Saito H . 2016. Binding of the extracellular eight-cysteine motif of Opy2 to the putative osmosensor Msb2 is essential for activation of the yeast high-osmolarity glycerol pathway. Mol Cell Biol 36 : 475487.[CrossRef]
49. Pitoniak A,, Birkaya B,, Dionne HM,, Vadaie N,, Cullen PJ . 2009. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol Biol Cell 20 : 31013114.[CrossRef]
50. Nishimura A,, Yamamoto K,, Oyama M,, Kozuka-Hata H,, Saito H,, Tatebayashi K . 2016. Scaffold protein Ahk1, which associates with Hkr1, Sho1, Ste11, and Pbs2, inhibits cross talk signaling from the Hkr1 osmosensor to the Kss1 mitogen-activated protein kinase. Mol Cell Biol 36 : 11091123.[CrossRef]
51. Buck V,, Quinn J,, Soto Pino T,, Martin H,, Saldanha J,, Makino K,, Morgan BA,, Millar JB . 2001. Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol Biol Cell 12 : 407419.[CrossRef]
52. Román E,, Cottier F,, Ernst JF,, Pla J . 2009. Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans . Eukaryot Cell 8 : 12351249.[CrossRef]
53. Román E,, Nombela C,, Pla J . 2005. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans . Mol Cell Biol 25 : 1061110627.[CrossRef]
54. Cheetham J,, Smith DA,, da Silva Dantas A,, Doris KS,, Patterson MJ,, Bruce CR,, Quinn J . 2007. A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans . Mol Biol Cell 18 : 46034614.[CrossRef]
55. Chauhan N,, Inglis D,, Roman E,, Pla J,, Li D,, Calera JA,, Calderone R . 2003. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell 2 : 10181024.[CrossRef]
56. Gregori C,, Schüller C,, Roetzer A,, Schwarzmüller T,, Ammerer G,, Kuchler K . 2007. The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker’s yeast. Eukaryot Cell 6 : 16351645.[CrossRef]
57. Bahn YS,, Geunes-Boyer S,, Heitman J . 2007. Ssk2 mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in Cryptococcus neoformans . Eukaryot Cell 6 : 22782289.[CrossRef]
58. Bahn YS,, Kojima K,, Cox GM,, Heitman J . 2005. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans . Mol Biol Cell 16 : 22852300.[CrossRef]
59. Rep M,, Krantz M,, Thevelein JM,, Hohmann S . 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275 : 82908300.[CrossRef]
60. Lee J,, Reiter W,, Dohnal I,, Gregori C,, Beese-Sims S,, Kuchler K,, Ammerer G,, Levin DE . 2013. MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27 : 25902601.[CrossRef]
61. Yaakov G,, Duch A,, García-Rubio M,, Clotet J,, Jimenez J,, Aguilera A,, Posas F . 2009. The stress-activated protein kinase Hog1 mediates S phase delay in response to osmostress. Mol Biol Cell 20 : 35723582.[CrossRef]
62. Muzzey D,, Gómez-Uribe CA,, Mettetal JT,, van Oudenaarden A . 2009. A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138 : 160171.[CrossRef]
63. Halliwell B . 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141 : 312322.[CrossRef]
64. Cadenas E,, Davies KJ . 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29 : 222230.[CrossRef]
65. O’Brien JA,, Daudi A,, Butt VS,, Bolwell GP . 2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236 : 765779.[CrossRef]
66. Brown AJ,, Haynes K,, Quinn J . 2009. Nitrosative and oxidative stress responses in fungal pathogenicity. Curr Opin Microbiol 12 : 384391.[CrossRef] [PubMed]
67. Causton HC,, Ren B,, Koh SS,, Harbison CT,, Kanin E,, Jennings EG,, Lee TI,, True HL,, Lander ES,, Young RA . 2001. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12 : 323337.[CrossRef]
68. Chen D,, Toone WM,, Mata J,, Lyne R,, Burns G,, Kivinen K,, Brazma A,, Jones N,, Bähler J . 2003. Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14 : 214229.[CrossRef]
69. Enjalbert B,, Nantel A,, Whiteway M . 2003. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14 : 14601467.[CrossRef]
70. Enjalbert B,, Smith DA,, Cornell MJ,, Alam I,, Nicholls S,, Brown AJ,, Quinn J . 2006. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans . Mol Biol Cell 17 : 10181032.[CrossRef]
71. Roetzer A,, Gregori C,, Jennings AM,, Quintin J,, Ferrandon D,, Butler G,, Kuchler K,, Ammerer G,, Schüller C . 2008. Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol 69 : 603620.[CrossRef]
72. Ralser M,, Wamelink MM,, Kowald A,, Gerisch B,, Heeren G,, Struys EA,, Klipp E,, Jakobs C,, Breitenbach M,, Lehrach H,, Krobitsch S . 2007. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6 : 10.[CrossRef]
73. Flattery-O’Brien JA,, Dawes IW . 1998. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J Biol Chem 273 : 85648571.[CrossRef]
74. Finn K,, Lowndes NF,, Grenon M . 2012. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 69 : 14471473.[CrossRef]
75. da Silva Dantas A,, Patterson MJ,, Smith DA,, Maccallum DM,, Erwig LP,, Morgan BA,, Quinn J . 2010. Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans . Mol Cell Biol 30 : 45504563.[CrossRef]
76. Shi QM,, Wang YM,, Zheng XD,, Lee RT,, Wang Y . 2007. Critical role of DNA checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida albicans . Mol Biol Cell 18 : 815826.[CrossRef]
77. Delaunay A,, Isnard AD,, Toledano MB . 2000. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J 19 : 51575166.[CrossRef]
78. Delaunay A,, Pflieger D,, Barrault MB,, Vinh J,, Toledano MB . 2002. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111 : 471481.[CrossRef]
79. Veal EA,, Ross SJ,, Malakasi P,, Peacock E,, Morgan BA . 2003. Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J Biol Chem 278 : 3089630904.[CrossRef]
80. Wood MJ,, Storz G,, Tjandra N . 2004. Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430 : 917921.[CrossRef]
81. Patterson MJ,, McKenzie CG,, Smith DA,, da Silva Dantas A,, Sherston S,, Veal EA,, Morgan BA,, MacCallum DM,, Erwig LP,, Quinn J . 2013. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape. Antioxid Redox Signal 19 : 22442260.[CrossRef]
82. Bozonet SM,, Findlay VJ,, Day AM,, Cameron J,, Veal EA,, Morgan BA . 2005. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J Biol Chem 280 : 2331923327.[CrossRef]
83. Cartwright GM,, Scott B . 2013. Redox regulation of an AP-1-like transcription factor, YapA, in the fungal symbiont Epichloe festucae . Eukaryot Cell 12 : 13351348.[CrossRef]
84. Lessing F,, Kniemeyer O,, Wozniok I,, Loeffler J,, Kurzai O,, Haertl A,, Brakhage AA . 2007. The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot Cell 6 : 22902302.[CrossRef]
85. Paul S,, Doering TL,, Moye-Rowley WS . 2015. Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance. Fungal Genet Biol 74 : 19.[CrossRef]
86. Jain C,, Pastor K,, Gonzalez AY,, Lorenz MC,, Rao RP . 2013. The role of Candida albicans AP-1 protein against host derived ROS in in vivo models of infection. Virulence 4 : 6776.[CrossRef]
87. Guo M,, Chen Y,, Du Y,, Dong Y,, Guo W,, Zhai S,, Zhang H,, Dong S,, Zhang Z,, Wang Y,, Wang P,, Zheng X . 2011. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae . PLoS Pathog 7 : e1001302.[CrossRef]
88. Molina L,, Kahmann R . 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19 : 22932309.[CrossRef]
89. Yu PL,, Wang CL,, Chen PY,, Lee MH . 2016. The YAP1 homolog-mediated redox sensing is crucial for a successful infection by Monilinia fructicola . Mol Plant Pathol 30 : 12438.
90. Roetzer A,, Klopf E,, Gratz N,, Marcet-Houben M,, Hiller E,, Rupp S,, Gabaldón T,, Kovarik P,, Schüller C . 2011. Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585 : 319327.[CrossRef]
91. Chen D,, Wilkinson CR,, Watt S,, Penkett CJ,, Toone WM,, Jones N,, Bähler J . 2008. Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol Biol Cell 19 : 308317.[CrossRef]
92. Mulford KE,, Fassler JS . 2011. Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. Eukaryot Cell 10 : 761769.[CrossRef]
93. Quinn J,, Malakasi P,, Smith DA,, Cheetham J,, Buck V,, Millar JB,, Morgan BA . 2011. Two-component mediated peroxide sensing and signal transduction in fission yeast. Antioxid Redox Signal 15 : 153165.[CrossRef]
94. Fassler JS,, West AH . 2011. Fungal Skn7 stress responses and their relationship to virulence. Eukaryot Cell 10 : 156167.[CrossRef]
95. Wilkinson MG,, Samuels M,, Takeda T,, Toone WM,, Shieh JC,, Toda T,, Millar JB,, Jones N . 1996. The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev 10 : 22892301.[CrossRef]
96. Lawrence CL,, Jones N,, Wilkinson CR . 2009. Stress-induced phosphorylation of S. pombe Atf1 abrogates its interaction with F box protein Fbh1. Curr Biol 19 : 19071911.[CrossRef]
97. Lawrence CL,, Maekawa H,, Worthington JL,, Reiter W,, Wilkinson CR,, Jones N . 2007. Regulation of Schizosaccharomyces pombe Atf1 protein levels by Sty1-mediated phosphorylation and heterodimerization with Pcr1. J Biol Chem 282 : 51605170.[CrossRef]
98. Missall TA,, Lodge JK . 2005. Function of the thioredoxin proteins in Cryptococcus neoformans during stress or virulence and regulation by putative transcriptional modulators. Mol Microbiol 57 : 847858.[CrossRef]
99. Guo M,, Guo W,, Chen Y,, Dong S,, Zhang X,, Zhang H,, Song W,, Wang W,, Wang Q,, Lv R,, Zhang Z,, Wang Y,, Zheng X . 2010. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae . Mol Plant Microbe Interact 23 : 10531068.[CrossRef]
100. Hagiwara D,, Suzuki S,, Kamei K,, Gonoi T,, Kawamoto S . 2014. The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus . Fungal Genet Biol 73 : 138149.[CrossRef]
101. Lara-Rojas F,, Sánchez O,, Kawasaki L,, Aguirre J . 2011. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 80 : 436454.[CrossRef]
102. Bahn YS,, Jung KW . 2013. Stress signaling pathways for the pathogenicity of Cryptococcus . Eukaryot Cell 12 : 15641577.[CrossRef]
103. Schüller C,, Brewster JL,, Alexander MR,, Gustin MC,, Ruis H . 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13 : 43824389.
104. Degols G,, Shiozaki K,, Russell P . 1996. Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe . Mol Cell Biol 16 : 28702877.[CrossRef]
105. Alonso-Monge R,, Navarro-García F,, Román E,, Negredo AI,, Eisman B,, Nombela C,, Pla J . 2003. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans . Eukaryot Cell 2 : 351361.[CrossRef]
106. Du C,, Sarfati J,, Latge JP,, Calderone R . 2006. The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus . Med Mycol 44 : 211218.[CrossRef]
107. Moriwaki A,, Kubo E,, Arase S,, Kihara J . 2006. Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae . FEMS Microbiol Lett 257 : 253261.[CrossRef]
108. Zheng D,, Zhang S,, Zhou X,, Wang C,, Xiang P,, Zheng Q,, Xu JR . 2012. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum . PLoS One 7 : e49495.[CrossRef]
109. Veal EA,, Findlay VJ,, Day AM,, Bozonet SM,, Evans JM,, Quinn J,, Morgan BA . 2004. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol Cell 15 : 129139.[CrossRef]
110. Smith DA,, Nicholls S,, Morgan BA,, Brown AJ,, Quinn J . 2004. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans . Mol Biol Cell 15 : 41794190.[CrossRef]
111. Li D,, Gurkovska V,, Sheridan M,, Calderone R,, Chauhan N . 2004. Studies on the regulation of the two-component histidine kinase gene CHK1 in Candida albicans using the heterologous lacZ reporter gene. Microbiology 150 : 33053313.[CrossRef]
112. Furukawa K,, Hoshi Y,, Maeda T,, Nakajima T,, Abe K . 2005. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol Microbiol 56 : 12461261.[CrossRef]
113. Fang FC . 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2 : 820832.[CrossRef] [PubMed]
114. Gross NT,, Nessa K,, Camner P,, Jarstrand C . 1999. Production of nitric oxide by rat alveolar macrophages stimulated by Cryptococcus neoformans or Aspergillus fumigatus . Med Mycol 37 : 151157.[CrossRef]
115. Nathan C,, Shiloh MU . 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97 : 88418848.[CrossRef]
116. Hromatka BS,, Noble SM,, Johnson AD . 2005. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16 : 48144826.[CrossRef]
117. Missall TA,, Pusateri ME,, Donlin MJ,, Chambers KT,, Corbett JA,, Lodge JK . 2006. Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot Cell 5 : 518529.[CrossRef]
118. Baidya S,, Cary JW,, Grayburn WS,, Calvo AM . 2011. Role of nitric oxide and flavohemoglobin homolog genes in Aspergillus nidulans sexual development and mycotoxin production. Appl Environ Microbiol 77 : 55245528.[CrossRef]
119. Prats E,, Carver TL,, Mur LA . 2008. Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis . Res Microbiol 159 : 476480.[CrossRef]
120. Zhang Z,, Wang J,, Chai R,, Qiu H,, Jiang H,, Mao X,, Wang Y,, Liu F,, Sun G . 2015. An S-(hydroxymethyl)glutathione dehydrogenase is involved in conidiation and full virulence in the rice blast fungus Magnaporthe oryzae . PLoS One 10 : e0120627.[CrossRef]
121. Arasimowicz-Jelonek M,, Floryszak-Wieczorek J . 2016. Nitric oxide in the offensive strategy of fungal and oomycete plant pathogens. Front Plant Sci 7 : 252.[CrossRef]
122. Grant CM,, Collinson LP,, Roe JH,, Dawes IW . 1996. Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21 : 171179.[CrossRef]
123. Liu L,, Hausladen A,, Zeng M,, Que L,, Heitman J,, Stamler JS . 2001. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410 : 490494.[CrossRef]
124. Tillmann AT,, Strijbis K,, Cameron G,, Radmaneshfar E,, Thiel M,, Munro CA,, MacCallum DM,, Distel B,, Gow NA,, Brown AJ . 2015. Contribution of Fdh3 and Glr1 to glutathione redox state, stress adaptation and virulence in Candida albicans . PLoS One 10 : e0126940.[CrossRef]
125. Tillmann A,, Gow NA,, Brown AJ . 2011. Nitric oxide and nitrosative stress tolerance in yeast. Biochem Soc Trans 39 : 219223.[CrossRef]
126. Sarver A,, DeRisi J . 2005. Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae . Mol Biol Cell 16 : 47814791.[CrossRef] [PubMed]
127. Chiranand W,, McLeod I,, Zhou H,, Lynn JJ,, Vega LA,, Myers H,, Yates JR III,, Lorenz MC,, Gustin MC . 2008. CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans . Eukaryot Cell 7 : 268278.[CrossRef]
128. Ullmann BD,, Myers H,, Chiranand W,, Lazzell AL,, Zhao Q,, Vega LA,, Lopez-Ribot JL,, Gardner PR,, Gustin MC . 2004. Inducible defense mechanism against nitric oxide in Candida albicans . Eukaryot Cell 3 : 715723.[CrossRef]
129. de Jesús-Berríos M,, Liu L,, Nussbaum JC,, Cox GM,, Stamler JS,, Heitman J . 2003. Enzymes that counteract nitrosative stress promote fungal virulence. Curr Biol 13 : 19631968.[CrossRef]
130. Levin DE . 2005. Cell wall integrity signaling in Saccharomyces cerevisiae . Microbiol Mol Biol Rev 69 : 262291.[CrossRef] [PubMed]
131. Xie X,, Lipke PN . 2010. On the evolution of fungal and yeast cell walls. Yeast 27 : 479488.[CrossRef]
132. Erwig LP,, Gow NA . 2016. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14 : 163176.[CrossRef] [PubMed]
133. Roemer T,, Krysan DJ . 2014. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4 : a019703.[CrossRef]
134. Munro CA . 2013. Chitin and glucan, the yin and yang of the fungal cell wall, implications for antifungal drug discovery and therapy. Adv Appl Microbiol 83 : 145172.[CrossRef] [PubMed]
135. Walker LA,, Gow NA,, Munro CA . 2013. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother 57 : 146154.[CrossRef]
136. Walker LA,, Munro CA,, de Bruijn I,, Lenardon MD,, McKinnon A,, Gow NA . 2008. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog 4 : e1000040.[CrossRef]
137. Cowen LE . 2013. The fungal Achilles’ heel: targeting Hsp90 to cripple fungal pathogens. Curr Opin Microbiol 16 : 377384.[CrossRef] [PubMed]
138. Singh SD,, Robbins N,, Zaas AK,, Schell WA,, Perfect JR,, Cowen LE . 2009. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 5 : e1000532.[CrossRef]
139. LaFayette SL,, Collins C,, Zaas AK,, Schell WA,, Betancourt-Quiroz M,, Gunatilaka AA,, Perfect JR,, Cowen LE . 2010. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 6 : e1001069.[CrossRef]
140. Millson SH,, Truman AW,, King V,, Prodromou C,, Pearl LH,, Piper PW . 2005. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4 : 849860.[CrossRef]
141. Truman AW,, Millson SH,, Nuttall JM,, Mollapour M,, Prodromou C,, Piper PW . 2007. In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity. Eukaryot Cell 6 : 744752.[CrossRef]
142. Munro CA,, Selvaggini S,, de Bruijn I,, Walker L,, Lenardon MD,, Gerssen B,, Milne S,, Brown AJ,, Gow NA . 2007. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans . Mol Microbiol 63 : 13991413.[CrossRef]
143. Dichtl K,, Samantaray S,, Wagener J . 2016. Cell wall integrity signalling in human pathogenic fungi. Cell Microbiol 18 : 12281238.[CrossRef]
144. Lamoth F,, Juvvadi PR,, Steinbach WJ . 2016. Heat shock protein 90 (Hsp90): a novel antifungal target against Aspergillus fumigatus . Crit Rev Microbiol 42 : 310321.
145. Ortiz-Urquiza A,, Keyhani NO . 2015. Stress response signaling and virulence: insights from entomopathogenic fungi. Curr Genet 61 : 239249. (Erratum, 61:251. doi:10.1007/s00294-015-0485-y.)[CrossRef]
146. Valiante V,, Macheleidt J,, Föge M,, Brakhage AA . 2015. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol 6 : 325.[CrossRef]
147. Juvvadi PR,, Lee SC,, Heitman J,, Steinbach WJ . 2017. Calcineurin in fungal virulence and drug resistance: prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 8 : 186197.[CrossRef]
148. Hast MA,, Nichols CB,, Armstrong SM,, Kelly SM,, Hellinga HW,, Alspaugh JA,, Beese LS . 2011. Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens. J Biol Chem 286 : 3514935162.[CrossRef]
149. Robbins N,, Spitzer M,, Yu T,, Cerone RP,, Averette AK,, Bahn YS,, Heitman J,, Sheppard DC,, Tyers M,, Wright GD . 2015. An antifungal combination matrix identifies a rich pool of adjuvant molecules that enhance drug activity against diverse fungal pathogens. Cell Rep 13 : 14811492.[CrossRef]
150. Cyert MS,, Philpott CC . 2013. Regulation of cation balance in Saccharomyces cerevisiae . Genetics 193 : 677713.[CrossRef]
151. Serrano R,, Bernal D,, Simón E,, Ariño J . 2004. Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem 279 : 1969819704.[CrossRef]
152. Davis DA . 2009. How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12 : 365370.[CrossRef]
153. Peñalva MA,, Lucena-Agell D,, Arst HN Jr . 2014. Liaison alcaline: pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Curr Opin Microbiol 22 : 4959.[CrossRef]
154. Li W,, Mitchell AP . 1997. Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145 : 6373.[PubMed]
155. Tilburn J,, Sarkar S,, Widdick DA,, Espeso EA,, Orejas M,, Mungroo J,, Peñalva MA,, Arst HN Jr . 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14 : 779790.[PubMed]
156. Galindo A,, Calcagno-Pizarelli AM,, Arst HN Jr,, Peñalva MA . 2012. An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. J Cell Sci 125 : 17841795.[CrossRef]
157. Herrador A,, Herranz S,, Lara D,, Vincent O . 2010. Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein. Mol Cell Biol 30 : 897907.[CrossRef]
158. Hervás-Aguilar A,, Galindo A,, Peñalva MA . 2010. Receptor-independent ambient pH signaling by ubiquitin attachment to fungal arrestin-like PalF. J Biol Chem 285 : 1809518102.[CrossRef]
159. Obara K,, Yamamoto H,, Kihara A . 2012. Membrane protein Rim21 plays a central role in sensing ambient pH in Saccharomyces cerevisiae . J Biol Chem 287 : 3847338481.[CrossRef]
160. Nishino K,, Obara K,, Kihara A . 2015. The C-terminal cytosolic region of Rim21 senses alterations in plasma membrane lipid composition: insights into sensing mechanisms for plasma membrane lipid asymmetry. J Biol Chem 290 : 3079730805.[CrossRef]
161. De Bernardis F,, Mühlschlegel FA,, Cassone A,, Fonzi WA . 1998. The pH of the host niche controls gene expression in and virulence of Candida albicans . Infect Immun 66 : 33173325.[PubMed]
162. El Barkani A,, Kurzai O,, Fonzi WA,, Ramon A,, Porta A,, Frosch M,, Mühlschlegel FA . 2000. Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans . Mol Cell Biol 20 : 46354647.[CrossRef]
163. Bertuzzi M,, Schrettl M,, Alcazar-Fuoli L,, Cairns TC,, Muñoz A,, Walker LA,, Herbst S,, Safari M,, Cheverton AM,, Chen D,, Liu H,, Saijo S,, Fedorova ND,, Armstrong-James D,, Munro CA,, Read ND,, Filler SG,, Espeso EA,, Nierman WC,, Haas H,, Bignell EM . 2014. The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog 10 : e1004413. (Erratum, 11:e1004802. doi:10.1371/journal.ppat.1004802.)[CrossRef]
164. Ortoneda M,, Guarro J,, Madrid MP,, Caracuel Z,, Roncero MI,, Mayayo E,, Di Pietro A . 2004. Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun 72 : 17601766.[CrossRef]
165. O’Meara TR,, Norton D,, Price MS,, Hay C,, Clements MF,, Nichols CB,, Alspaugh JA . 2010. Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 6 : e1000776.[CrossRef]
166. Ost KS,, O’Meara TR,, Huda N,, Esher SK,, Alspaugh JA . 2015. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator. PLoS Genet 11 : e1005159.[CrossRef]
167. Huang W,, Shang Y,, Chen P,, Gao Q,, Wang C . 2015. MrpacC regulates sporulation, insect cuticle penetration and immune evasion in Metarhizium robertsii . Environ Microbiol 17 : 9941008.[CrossRef]
168. Zou CG,, Tu HH,, Liu XY,, Tao N,, Zhang KQ . 2010. PacC in the nematophagous fungus Clonostachys rosea controls virulence to nematodes. Environ Microbiol 12 : 18681877.[CrossRef]
169. Caracuel Z,, Roncero MI,, Espeso EA,, González-Verdejo CI,, García-Maceira FI,, Di Pietro A . 2003. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum . Mol Microbiol 48 : 765779.[CrossRef]
170. Landraud P,, Chuzeville S,, Billon-Grande G,, Poussereau N,, Bruel C . 2013. Adaptation to pH and role of PacC in the rice blast fungus Magnaporthe oryzae . PLoS One 8 : e69236.[CrossRef]
171. Zhang T,, Sun X,, Xu Q,, Candelas LG,, Li H . 2013. The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum . Appl Microbiol Biotechnol 97 : 90879098.[CrossRef]
172. Juvvadi PR,, Gehrke C,, Fortwendel JR,, Lamoth F,, Soderblom EJ,, Cook EC,, Hast MA,, Asfaw YG,, Moseley MA,, Creamer TP,, Steinbach WJ . 2013. Phosphorylation of calcineurin at a novel serine-proline rich region orchestrates hyphal growth and virulence in Aspergillus fumigatus . PLoS Pathog 9 : e1003564.[CrossRef]
173. Odom A,, Muir S,, Lim E,, Toffaletti DL,, Perfect J,, Heitman J . 1997. Calcineurin is required for virulence of Cryptococcus neoformans . EMBO J 16 : 25762589.[CrossRef]
174. Schumacher J,, Viaud M,, Simon A,, Tudzynski B . 2008. The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea . Mol Microbiol 67 : 10271050.[CrossRef]
175. Serrano R,, Ruiz A,, Bernal D,, Chambers JR,, Ariño J . 2002. The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol Microbiol 46 : 13191333.[CrossRef]
176. Spielvogel A,, Findon H,, Arst HN Jr,, Araújo-Bazán L,, Hernández-Ortíz P,, Stahl U,, Meyer V,, Espeso EA . 2008. Two zinc finger transcription factors, CrzA and SltA, are involved in cation homoeostasis and detoxification in Aspergillus nidulans . Biochem J 414 : 419429.[CrossRef]
177. Stathopoulos AM,, Cyert MS . 1997. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11 : 34323444.[CrossRef]
178. Zacchi LF,, Gomez-Raja J,, Davis DA . 2010. Mds3 regulates morphogenesis in Candida albicans through the TOR pathway. Mol Cell Biol 30 : 36953710.[CrossRef]
179. Serrano R,, Martín H,, Casamayor A,, Ariño J . 2006. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281 : 3978539795.[CrossRef]
180. Mellado L,, Arst HN Jr,, Espeso EA . 2016. Proteolytic activation of both components of the cation stress-responsive Slt pathway in Aspergillus nidulans . Mol Biol Cell 27 : 25982612.[CrossRef]
181. Mollapour M,, Piper PW . 2007. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27 : 64466456.[CrossRef]
182. Stratford M,, Nebe-von-Caron G,, Steels H,, Novodvorska M,, Ueckert J,, Archer DB . 2013. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae . Int J Food Microbiol 161 : 164171.[CrossRef]
183. Stratford M,, Plumridge A,, Nebe-von-Caron G,, Archer DB . 2009. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. Int J Food Microbiol 136 : 3743.[CrossRef]
184. Piper P,, Calderon CO,, Hatzixanthis K,, Mollapour M . 2001. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147 : 26352642.[CrossRef]
185. Piper P,, Mahé Y,, Thompson S,, Pandjaitan R,, Holyoak C,, Egner R,, Mühlbauer M,, Coote P,, Kuchler K . 1998. The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17 : 42574265.[CrossRef]
186. Holyoak CD,, Stratford M,, McMullin Z,, Cole MB,, Crimmins K,, Brown AJ,, Coote PJ . 1996. Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62 : 31583164.[PubMed]
187. Ullah A,, Orij R,, Brul S,, Smits GJ . 2012. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae . Appl Environ Microbiol 78 : 83778387.[CrossRef]
188. Mira NP,, Palma M,, Guerreiro JF,, Sá-Correia I . 2010. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9 : 79.[CrossRef]
189. Kren A,, Mamnun YM,, Bauer BE,, Schüller C,, Wolfger H,, Hatzixanthis K,, Mollapour M,, Gregori C,, Piper P,, Kuchler K . 2003. War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23 : 17751785.[CrossRef]
190. Schüller C,, Mamnun YM,, Mollapour M,, Krapf G,, Schuster M,, Bauer BE,, Piper PW,, Kuchler K . 2004. Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae . Mol Biol Cell 15 : 706720.[CrossRef]
191. Jandric Z,, Gregori C,, Klopf E,, Radolf M,, Schüller C . 2013. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway. Front Microbiol 4 : 350.[CrossRef]