1887

Chapter 31 : RNA Interference in Fungi: Retention and Loss

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

RNA Interference in Fungi: Retention and Loss, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap31-2.gif

Abstract:

RNA interference (RNAi) is a mechanism conserved in eukaryotes that represses gene expression by means of small noncoding RNAs (sRNAs) of about 20 to 30 nucleotides (nt). Before the identification of the RNAi mechanism, its effects were observed in different organisms and described as independent processes. These effects were first observed in plants, in which the introduction of sequences intended to increase the production of floral pigments had the opposite effects, resulting in albino transformants. Hence, this phenomenon was called cosuppression ( ). The same phenomenon was also observed in the fungus , in which an albino phenotype was obtained after transformation with extra copies of the gene , which is involved in the production of carotenoids ( ). The characterization of this phenomenon revealed reversibility of the albino phenotype, since some descendants of the original albino transformants reverted to the wild type phenotype. At that time, this phenomenon was not linked to the process of cosuppression observed in plants and was named “quelling.” The discovery of quelling in represented a milestone in the field of RNAi, because this fungal model allowed the use of classic genetic tools to unravel the machinery of RNAi. The molecular mechanism of RNAi was finally uncovered by Fire et al., who discovered the central role of double-stranded RNA (dsRNA) in the RNAi of ( ). This central role of dsRNA was soon established in all the organisms harboring a functional RNAi mechanism, including plants, fungi, and animals. Cosuppression, quelling, and other posttranscriptional gene-silencing-related phenomena were integrated into the same conserved mechanism of RNA interference ( ).

Citation: Nicolás F, Garre V. 2017. RNA Interference in Fungi: Retention and Loss, p 657-671. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0008-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Main RNA interference (RNAi) pathways identified in . Fungal RNAi-mediated defense mechanisms against exogenous nucleic acids in fungi is exemplified by the defense mechanism (left box). This fungus shows an amplification step mediated by RdRP-2, which has not been found in other fungi. In addition to this defense pathway, this fungus shows two distinct RNAi pathways to regulate the expression of endogenous genes (central and right boxes). Question marks indicate that the R3B2 protein participates in these pathways, although its precise function is unknown.

Citation: Nicolás F, Garre V. 2017. RNA Interference in Fungi: Retention and Loss, p 657-671. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0008-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819583.chap31
1. Angenent GC,, Franken J,, Busscher M,, Weiss D,, van Tunen AJ . 1994. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5 : 3344.[CrossRef]
2. Napoli C,, Lemieux C,, Jorgensen R . 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2 : 279289.[CrossRef]
3. Romano N,, Macino G . 1992. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6 : 33433353.[CrossRef]
4. Fire A,, Xu S,, Montgomery MK,, Kostas SA,, Driver SE,, Mello CC . 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature 391 : 806811.[CrossRef]
5. Sen GL,, Blau HM . 2006. A brief history of RNAi: the silence of the genes. FASEB J 20 : 12931299.[CrossRef]
6. Nicolás FE,, Ruiz-Vázquez RM . 2013. Functional diversity of RNAi-associated sRNAs in fungi. Int J Mol Sci 14 : 1534815360.[CrossRef]
7. Nicolas FE,, Lopez-Gomollon S,, Lopez-Martinez AF,, Dalmay T . 2009. RNA silencing: recent developments on miRNAs. Recent Pat DNA Gene Seq 3 : 7787.[CrossRef]
8. Alvarez-Fernandez R,, Lopez-Gomollon S,, Lopez-Martinez AF,, Nicolas FE . 2011. Bioengineering RNA silencing across the life kingdoms. Recent Pat Biotechnol 5 : 118146.[CrossRef]
9. Cervantes M,, Vila A,, Nicolás FE,, Moxon S,, de Haro JP,, Dalmay T,, Torres-Martínez S,, Ruiz-Vázquez RM . 2013. A single argonaute gene participates in exogenous and endogenous RNAi and controls cellular functions in the basal fungus Mucor circinelloides . PLoS One 8 : e69283.[CrossRef]
10. Nicolás FE,, de Haro JP,, Torres-Martínez S,, Ruiz-Vázquez RM . 2007. Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44 : 504516.[CrossRef]
11. Nicolás FE,, Vila A,, Moxon S,, Cascales MD,, Torres-Martínez S,, Ruiz-Vázquez RM,, Garre V . 2015. The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides . BMC Genomics 16 : 237.[CrossRef]
12. Nicolás FE,, Moxon S,, de Haro JP,, Calo S,, Grigoriev IV,, Torres-Martínez S,, Moulton V,, Ruiz-Vázquez RM,, Dalmay T . 2010. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides . Nucleic Acids Res 38 : 55355541.[CrossRef]
13. Choi J,, Kim KT,, Jeon J,, Wu J,, Song H,, Asiegbu FO,, Lee YH . 2014. funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi. BMC Genomics 15(Suppl 9): S14.[CrossRef]
14. Lee HC,, Aalto AP,, Yang Q,, Chang SS,, Huang G,, Fisher D,, Cha J,, Poranen MM,, Bamford DH,, Liu Y . 2010. The DNA/RNA-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein A and a DNA helicase. PLoS Biol 8 : e1000496.[CrossRef]
15. Laurila MR,, Salgado PS,, Makeyev EV,, Nettelship J,, Stuart DI,, Grimes JM,, Bamford DH . 2005. Gene silencing pathway RNA-dependent RNA polymerase of Neurospora crassa: yeast expression and crystallization of selenomethionated QDE-1 protein. J Struct Biol 149 : 111115.[CrossRef]
16. Yang Q,, Ye QA,, Liu Y . 2015. Mechanism of siRNA production from repetitive DNA. Genes Dev 29 : 526537.[CrossRef]
17. Cogoni C,, Macino G . 1999. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399 : 166169.[CrossRef]
18. Xie Z,, Johansen LK,, Gustafson AM,, Kasschau KD,, Lellis AD,, Zilberman D,, Jacobsen SE,, Carrington JC . 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2 : e104.[CrossRef]
19. Sijen T,, Fleenor J,, Simmer F,, Thijssen KL,, Parrish S,, Timmons L,, Plasterk RH,, Fire A . 2001. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107 : 465476.[CrossRef]
20. Vaistij FE,, Jones L,, Baulcombe DC . 2002. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14 : 857867.[CrossRef]
21. Calo S,, Nicolás FE,, Vila A,, Torres-Martínez S,, Ruiz-Vázquez RM . 2012. Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides . Mol Microbiol 83 : 379394.[CrossRef]
22. Goldoni M,, Azzalin G,, Macino G,, Cogoni C . 2004. Efficient gene silencing by expression of double stranded RNA in Neurospora crassa . Fungal Genet Biol 41 : 10161024.[CrossRef]
23. MacRae IJ,, Doudna JA . 2007. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17 : 138145.[CrossRef]
24. Bernstein E,, Caudy AA,, Hammond SM,, Hannon GJ . 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409 : 363366.[CrossRef]
25. MacRae IJ,, Zhou K,, Li F,, Repic A,, Brooks AN,, Cande WZ,, Adams PD,, Doudna JA . 2006. Structural basis for double-stranded RNA processing by Dicer. Science 311 : 195198.[CrossRef]
26. MacRae IJ,, Zhou K,, Doudna JA . 2007. Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14 : 934940.[CrossRef]
27. Catalanotto C,, Pallotta M,, ReFalo P,, Sachs MS,, Vayssie L,, Macino G,, Cogoni C . 2004. Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa . Mol Cell Biol 24 : 25362545.[CrossRef]
28. de Haro JP,, Calo S,, Cervantes M,, Nicolás FE,, Torres-Martínez S,, Ruiz-Vázquez RM . 2009. A single dicer gene is required for efficient gene silencing associated with two classes of small antisense RNAs in Mucor circinelloides . Eukaryot Cell 8 : 14861497.[CrossRef]
29. Hutvágner G,, Zamore PD . 2002. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297 : 20562060.[CrossRef]
30. Doench JG,, Petersen CP,, Sharp PA . 2003. siRNAs can function as miRNAs. Genes Dev 17 : 438442.[CrossRef]
31. Jackson RJ,, Standart N . 2007. How do microRNAs regulate gene expression? Sci STKE 2007 : re1.[CrossRef]
32. Höck J,, Meister G . 2008. The Argonaute protein family. Genome Biol 9 : 210.[CrossRef]
33. Wei KF,, Wu LJ,, Chen J,, Chen YF,, Xie DX . 2012. Structural evolution and functional diversification analyses of argonaute protein. J Cell Biochem 113 : 25762585.[CrossRef]
34. Lingel A,, Simon B,, Izaurralde E,, Sattler M . 2003. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426 : 465469.[CrossRef]
35. Ma JB,, Yuan YR,, Meister G,, Pei Y,, Tuschl T,, Patel DJ . 2005. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434 : 666670.[CrossRef]
36. Fagard M,, Boutet S,, Morel JB,, Bellini C,, Vaucheret H . 2000. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA 97 : 1165011654.[CrossRef]
37. Lee DW,, Pratt RJ,, McLaughlin M,, Aramayo R . 2003. An argonaute-like protein is required for meiotic silencing. Genetics 164 : 821828.
38. Francia S,, Michelini F,, Saxena A,, Tang D,, de Hoon M,, Anelli V,, Mione M,, Carninci P,, d’Adda di Fagagna F . 2012. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488 : 231235.[CrossRef]
39. Lippman Z,, Gendrel AV,, Black M,, Vaughn MW,, Dedhia N,, McCombie WR,, Lavine K,, Mittal V,, May B,, Kasschau KD,, Carrington JC,, Doerge RW,, Colot V,, Martienssen R . 2004. Role of transposable elements in heterochromatin and epigenetic control. Nature 430 : 471476.[CrossRef]
40. Cogoni C,, Macino G . 1997. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa . Proc Natl Acad Sci USA 94 : 1023310238.[CrossRef]
41. Wang X,, Wang P,, Sun S,, Darwiche S,, Idnurm A,, Heitman J . 2012. Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans . PLoS Genet 8 : e1002885.[CrossRef]
42. Nicolás FE,, Torres-Martínez S,, Ruiz-Vázquez RM . 2003. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO J 22 : 39833991.[CrossRef]
43. Fulci V,, Macino G . 2007. Quelling: post-transcriptional gene silencing guided by small RNAs in Neurospora crassa . Curr Opin Microbiol 10 : 199203.[CrossRef]
44. Feretzaki M,, Billmyre RB,, Clancey SA,, Wang X,, Heitman J . 2016. Gene network polymorphism illuminates loss and retention of novel RNAi silencing components in the Cryptococcus pathogenic species complex. PLoS Genet 12 : e1005868.[CrossRef]
45. Ruiz-Vázquez RM,, Nicolás FE,, Torres-Martínez S,, Garre V . 2015. Distinct RNAi pathways in the regulation of physiology and development in the fungus Mucor circinelloides . Adv Genet 91 : 55102.[CrossRef]
46. Zhang Z,, Chang SS,, Zhang Z,, Xue Z,, Zhang H,, Li S,, Liu Y . 2013. Homologous recombination as a mechanism to recognize repetitive DNA sequences in an RNAi pathway. Genes Dev 27 : 145150.[CrossRef]
47. Zhang Z,, Yang Q,, Sun G,, Chen S,, He Q,, Li S,, Liu Y . 2014. Histone H3K56 acetylation is required for quelling-induced small RNA production through its role in homologous recombination. J Biol Chem 289 : 93659371.[CrossRef]
48. Cogoni C,, Macino G . 1999. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286 : 23422344.[CrossRef]
49. Cecere G,, Cogoni C . 2009. Quelling targets the rDNA locus and functions in rDNA copy number control. BMC Microbiol 9 : 44.[CrossRef]
50. Lee HC,, Chang SS,, Choudhary S,, Aalto AP,, Maiti M,, Bamford DH,, Liu Y . 2009. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459 : 274277.[CrossRef]
51. Bzymek M,, Lovett ST . 2001. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci USA 98 : 83198325.[CrossRef]
52. Vader G,, Blitzblau HG,, Tame MA,, Falk JE,, Curtin L,, Hochwagen A . 2011. Protection of repetitive DNA borders from self-induced meiotic instability. Nature 477 : 115119.[CrossRef]
53. Castel SE,, Ren J,, Bhattacharjee S,, Chang AY,, Sánchez M,, Valbuena A,, Antequera F,, Martienssen RA . 2014. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159 : 572583.[CrossRef]
54. Ghabrial SA,, Castón JR,, Jiang D,, Nibert ML,, Suzuki N . 2015. 50-plus years of fungal viruses. Virology 479-480 : 356368.[CrossRef]
55. Pearson MN,, Beever RE,, Boine B,, Arthur K . 2009. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol Plant Pathol 10 : 115128.[CrossRef]
56. Segers GC,, Zhang X,, Deng F,, Sun Q,, Nuss DL . 2007. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci USA 104 : 1290212906.[CrossRef]
57. Sun Q,, Choi GH,, Nuss DL . 2009. A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination. Proc Natl Acad Sci USA 106 : 1792717932.[CrossRef]
58. Zhang DX,, Spiering MJ,, Nuss DL . 2014. Characterizing the roles of Cryphonectria parasitica RNA-dependent RNA polymerase-like genes in antiviral defense, viral recombination and transposon transcript accumulation. PLoS One 9 : e108653.[CrossRef]
59. Eusebio-Cope A,, Sun L,, Tanaka T,, Chiba S,, Kasahara S,, Suzuki N . 2015. The chestnut blight fungus for studies on virus/host and virus/virus interactions: from a natural to a model host. Virology 477 : 164175.[CrossRef]
60. Wang X,, Hsueh YP,, Li W,, Floyd A,, Skalsky R,, Heitman J . 2010. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev 24 : 25662582.[CrossRef]
61. Wang X,, Darwiche S,, Heitman J . 2013. Sex-induced silencing operates during opposite-sex and unisexual reproduction in Cryptococcus neoformans . Genetics 193 : 11631174.[CrossRef]
62. Shiu PK,, Metzenberg RL . 2002. Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161 : 14831495.
63. Jacobson DJ,, Raju NB,, Freitag M . 2008. Evidence for the absence of meiotic silencing by unpaired DNA in Neurospora tetrasperma . Fungal Genet Biol 45 : 351362.[CrossRef]
64. Hammond TM,, Xiao H,, Boone EC,, Decker LM,, Lee SA,, Perdue TD,, Pukkila PJ,, Shiu PK . 2013. Novel proteins required for meiotic silencing by unpaired DNA and siRNA generation in Neurospora crassa . Genetics 194 : 91100.[CrossRef]
65. Samarajeewa DA,, Sauls PA,, Sharp KJ,, Smith ZJ,, Xiao H,, Groskreutz KM,, Malone TL,, Boone EC,, Edwards KA,, Shiu PK,, Larson ED,, Hammond TM . 2014. Efficient detection of unpaired DNA requires a member of the rad54-like family of homologous recombination proteins. Genetics 198 : 895904.[CrossRef]
66. Decker LM,, Boone EC,, Xiao H,, Shanker BS,, Boone SF,, Kingston SL,, Lee SA,, Hammond TM,, Shiu PK . 2015. Complex formation of RNA silencing proteins in the perinuclear region of Neurospora crassa . Genetics 199 : 10171021.[CrossRef]
67. Chang SS,, Zhang Z,, Liu Y . 2012. RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 66 : 305323.[CrossRef]
68. Hu Y,, Stenlid J,, Elfstrand M,, Olson A . 2013. Evolution of RNA interference proteins dicer and argonaute in Basidiomycota . Mycologia 105 : 14891498.[CrossRef]
69. Garre V,, Nicolás FE,, Torres-Martínez S,, Ruiz-Vázquez RM, . 2014. The RNAi machinery in Mucorales: the emerging role of endogenous small RNAs, p 291313. In Sesma A,, von der Haar T (ed), Fungal RNA Biology. Springer International Publishing, Cham, Switzerland.[CrossRef]
70. Turner JM,, Mahadevaiah SK,, Fernandez-Capetillo O,, Nussenzweig A,, Xu X,, Deng CX,, Burgoyne PS . 2005. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37 : 4147.
71. Duan G,, Saint RB,, Helliwell CA,, Behm CA,, Wang MB,, Waterhouse PM,, Gordon KH . 2013. C. elegans RNA-dependent RNA polymerases rrf-1 and ego-1 silence Drosophila transgenes by differing mechanisms. Cell Mol Life Sci 70 : 14691481.[CrossRef]
72. Girard A,, Hannon GJ . 2008. Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol 18 : 136148.[CrossRef]
73. Wang Y,, Smith KM,, Taylor JW,, Freitag M,, Stajich JE . 2015. Endogenous small RNA mediates meiotic silencing of a novel DNA transposon. G3 (Bethesda) 5 : 19491960.[CrossRef]
74. Grewal SI,, Elgin SC . 2007. Transcription and RNA interference in the formation of heterochromatin. Nature 447 : 399406.[CrossRef]
75. Pidoux AL,, Allshire RC . 2004. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12 : 521534.[CrossRef]
76. Volpe TA,, Kidner C,, Hall IM,, Teng G,, Grewal SI,, Martienssen RA . 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297 : 18331837.[CrossRef]
77. Motamedi MR,, Verdel A,, Colmenares SU,, Gerber SA,, Gygi SP,, Moazed D . 2004. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119 : 789802.[CrossRef]
78. Verdel A,, Jia S,, Gerber S,, Sugiyama T,, Gygi S,, Grewal SI,, Moazed D . 2004. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303 : 672676.[CrossRef]
79. Martienssen R,, Moazed D . 2015. RNAi and heterochromatin assembly. Cold Spring Harb Perspect Biol 7 : a019323.[CrossRef]
80. Bayne EH,, Portoso M,, Kagansky A,, Kos-Braun IC,, Urano T,, Ekwall K,, Alves F,, Rappsilber J,, Allshire RC . 2008. Splicing factors facilitate RNAi-directed silencing in fission yeast. Science 322 : 602606.[CrossRef]
81. Bayne EH,, Bijos DA,, White SA,, de Lima Alves F,, Rappsilber J,, Allshire RC . 2014. A systematic genetic screen identifies new factors influencing centromeric heterochromatin integrity in fission yeast. Genome Biol 15 : 481.[CrossRef]
82. Dumesic PA,, Madhani HD . 2013. The spliceosome as a transposon sensor. RNA Biol 10 : 16531660.[CrossRef]
83. Volanakis EJ,, Boothby MR,, Sherr CJ . 2013. Epigenetic regulation of the Ink4a-Arf (Cdkn2a) tumor suppressor locus in the initiation and progression of Notch1-driven T cell acute lymphoblastic leukemia. Exp Hematol 41 : 377386.[CrossRef]
84. Ausin I,, Greenberg MV,, Li CF,, Jacobsen SE . 2012. The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis . Epigenetics 7 : 2933.[CrossRef]
85. Tabach Y,, Billi AC,, Hayes GD,, Newman MA,, Zuk O,, Gabel H,, Kamath R,, Yacoby K,, Chapman B,, Garcia SM,, Borowsky M,, Kim JK,, Ruvkun G . 2013. Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence. Nature 493 : 694698.[CrossRef]
86. Xiong XP,, Kurthkoti K,, Chang KY,, Lichinchi G,, De N,, Schneemann A,, MacRae IJ,, Rana TM,, Perrimon N,, Zhou R . 2013. Core small nuclear ribonucleoprotein particle splicing factor SmD1 modulates RNA interference in Drosophila . Proc Natl Acad Sci USA 110 : 1652016525.[CrossRef]
87. Bartel DP . 2009. MicroRNAs: target recognition and regulatory functions. Cell 136 : 215233.[CrossRef]
88. Lee HC,, Li L,, Gu W,, Xue Z,, Crosthwaite SK,, Pertsemlidis A,, Lewis ZA,, Freitag M,, Selker EU,, Mello CC,, Liu Y . 2010. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 38 : 803814.[CrossRef]
89. Faghihi MA,, Wahlestedt C . 2009. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10 : 637643.[CrossRef]
90. Donaldson ME,, Saville BJ . 2012. Natural antisense transcripts in fungi. Mol Microbiol 85 : 405417.[CrossRef]
91. Drinnenberg IA,, Weinberg DE,, Xie KT,, Mower JP,, Wolfe KH,, Fink GR,, Bartel DP . 2009. RNAi in budding yeast. Science 326 : 544550.[CrossRef]
92. Dang Y,, Li L,, Guo W,, Xue Z,, Liu Y . 2013. Convergent transcription induces dynamic DNA methylation at disiRNA loci. PLoS Genet 9 : e1003761.[CrossRef]
93. Li N,, Joska TM,, Ruesch CE,, Coster SJ,, Belden WJ . 2015. The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin. Proc Natl Acad Sci USA 112 : 43574362.[CrossRef]
94. Torres-Martínez S,, Ruiz-Vázquez RM . 2016. RNAi pathways in Mucor: a tale of proteins, small RNAs and functional diversity. Fungal Genet Biol 90 : 4452.[CrossRef]
95. Carreras-Villaseñor N,, Esquivel-Naranjo EU,, Villalobos-Escobedo JM,, Abreu-Goodger C,, Herrera-Estrella A . 2013. The RNAi machinery regulates growth and development in the filamentous fungus Trichoderma atroviride . Mol Microbiol 89 : 96112.[CrossRef]
96. Trieu TA,, Calo S,, Nicolás FE,, Vila A,, Moxon S,, Dalmay T,, Torres-Martínez S,, Garre V,, Ruiz-Vázquez RM . 2015. A non-canonical RNA silencing pathway promotes mRNA degradation in basal fungi. PLoS Genet 11 : e1005168.[CrossRef]
97. Villalobos-Escobedo JM,, Herrera-Estrella A,, Carreras-Villaseñor N . 2016. The interaction of fungi with the environment orchestrated by RNAi. Mycologia 108 : 556571.[CrossRef]
98. Weiberg A,, Wang M,, Lin FM,, Zhao H,, Zhang Z,, Kaloshian I,, Huang HD,, Jin H . 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342 : 118123.[CrossRef]
99. Knip M,, Constantin ME,, Thordal-Christensen H . 2014. Trans-kingdom cross-talk: small RNAs on the move. PLoS Genet 10 : e1004602.[CrossRef]
100. Calo S,, Shertz-Wall C,, Lee SC,, Bastidas RJ,, Nicolás FE,, Granek JA,, Mieczkowski P,, Torres-Martínez S,, Ruiz-Vázquez RM,, Cardenas ME,, Heitman J . 2014. Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature 513 : 555558.[CrossRef]
101. Lee SC,, Li A,, Calo S,, Heitman J . 2013. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides . PLoS Pathog 9 : e1003625.[CrossRef]
102. Liu J,, Farmer JD Jr,, Lane WS,, Friedman J,, Weissman I,, Schreiber SL . 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66 : 807815.[CrossRef]
103. Drinnenberg IA,, Fink GR,, Bartel DP . 2011. Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333 : 1592.[CrossRef]
104. Lye LF,, Owens K,, Shi H,, Murta SM,, Vieira AC,, Turco SJ,, Tschudi C,, Ullu E,, Beverley SM . 2010. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6 : e1001161.[CrossRef]
105. Robinson KA,, Beverley SM . 2003. Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania . Mol Biochem Parasitol 128 : 217228.[CrossRef]
106. Lange H,, Zuber H,, Sement FM,, Chicher J,, Kuhn L,, Hammann P,, Brunaud V,, Bérard C,, Bouteiller N,, Balzergue S,, Aubourg S,, Martin-Magniette ML,, Vaucheret H,, Gagliardi D . 2014. The RNA helicases AtMTR4 and HEN2 target specific subsets of nuclear transcripts for degradation by the nuclear exosome in Arabidopsis thaliana . PLoS Genet 10 : e1004564.[CrossRef]
107. Thran M,, Link K,, Sonnewald U . 2012. The Arabidopsis DCP2 gene is required for proper mRNA turnover and prevents transgene silencing in Arabidopsis . Plant J 72 : 368377.[CrossRef]
108. Voinnet O . 2008. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13 : 317328.[CrossRef]
109. Gazzani S,, Lawrenson T,, Woodward C,, Headon D,, Sablowski R . 2004. A link between mRNA turnover and RNA interference in Arabidopsis . Science 306 : 10461048.[CrossRef]
110. Luo Z,, Chen Z . 2007. Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis . Plant Cell 19 : 943958.[CrossRef]
111. Nicolás FE,, Torres-Martínez S,, Ruiz-Vázquez RM . 2009. Transcriptional activation increases RNA silencing efficiency and stability in the fungus Mucor circinelloides . J Biotechnol 142 : 123126.[CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error