1887

Chapter 34 : Plant Pathogenic Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Plant Pathogenic Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap34-2.gif

Abstract:

Fungi have developed a plethora of strategies to colonize plants, and these interactions result in a broad spectrum of outcomes ranging from beneficial interactions to death of the host. With respect to plant pathogens, fungi represent probably the most diverse group of ecologically and economically relevant threats. Fungal plant pathogen species are primarily in the phyla Ascomycota and Basidiomycota. Among ascomycetes, plant pathogens are in various classes such as the Dothideomycetes (e.g., spp.), Sordariomycetes (e.g., spp.), or the Leotiomycetes (e.g., spp.). Basidiomycetes are represented by the two largest plant pathogen groups: the rusts (Pucciniomycetes) and the smuts (spread among the subphylum of Ustilaginomycotina).

Citation: Doehlemann G, Ökmen B, Zhu W, Sharon A. 2017. Plant Pathogenic Fungi, p 703-726. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0023-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555819583.chap34
1. Agrios GN . 2005. Plant Pathology, 5th ed. Elsevier Academic Press, London, United Kingdom.
2. Avelino J,, Cristancho M,, Georgiou S,, Imbach P,, Aguilar L,, Bornemann G,, Läderach P,, Anzueto F,, Hruska AJ,, Morales C . 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur 7 : 303321.[CrossRef]
3. Callaway E . 2016. Devastating wheat fungus appears in Asia for first time. Nature 532 : 421422.[CrossRef] [PubMed]
4. Smith RE . 1900. Botrytis and Sclerotinia: their relation to certain plant diseases and to each other. Bot Gaz 29 : 369407.[CrossRef]
5. Staats M,, van Baarlen P,, van Kan JA . 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22 : 333346.[CrossRef] [PubMed]
6. Coley-Smith JR,, Verhoeff K,, Jarvis WR . 1980. The Biology of Botrytis. Academic Press, London, United Kingdom.
7. Walker AS,, Gautier AL,, Confais J,, Martinho D,, Viaud M,, Le Pecheur P,, Dupont J,, Fournier E . 2011. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea . Phytopathology 101 : 14331445.[CrossRef]
8. Choquer M,, Fournier E,, Kunz C,, Levis C,, Pradier J-M,, Simon A,, Viaud M . 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277 : 110.[CrossRef] [PubMed]
9. Leroch M,, Plesken C,, Weber RW,, Kauff F,, Scalliet G,, Hahn M . 2013. Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea . Appl Environ Microbiol 79 : 159167.[CrossRef]
10. Joosten M,, de Wit P . 1999. The tomato-Cladosporium fulvum interaction: a versatile experimental system to study plant-pathogen interactions. Annu Rev Phytopathol 37 : 335367.[CrossRef]
11. Thomma BP,, van Esse HP,, Crous PW,, de Wit PJ . 2005. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6 : 379393.[CrossRef]
12. de Jonge R,, van Esse HP,, Kombrink A,, Shinya T,, Desaki Y,, Bours R,, van der Krol S,, Shibuya N,, Joosten MH,, Thomma BP . 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329 : 953955.[CrossRef]
13. de Wit PJ,, van der Burgt A,, Ökmen B,, Stergiopoulos I,, Abd-Elsalam KA,, Aerts AL,, Bahkali AH,, Beenen HG,, Chettri P,, Cox MP,, Datema E,, de Vries RP,, Dhillon B,, Ganley AR,, Griffiths SA,, Guo Y,, Hamelin RC,, Henrissat B,, Kabir MS,, Jashni MK,, Kema G,, Klaubauf S,, Lapidus A,, Levasseur A,, Lindquist E,, Mehrabi R,, Ohm RA,, Owen TJ,, Salamov A,, Schwelm A,, Schijlen E,, Sun H,, van den Burg HA,, van Ham RC,, Zhang S,, Goodwin SB,, Grigoriev IV,, Collemare J,, Bradshaw RE . 2012. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet 8 : e1003088. (Erratum, 11:e1005775. doi:10.1371/journal.pgen.1005775.)[CrossRef]
14. Stergiopoulos I,, van den Burg HA,, Okmen B,, Beenen HG,, van Liere S,, Kema GHJ,, de Wit PJGM . 2010. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci USA 107 : 76107615.[CrossRef]
15. Marshall R,, Kombrink A,, Motteram J,, Loza-Reyes E,, Lucas J,, Hammond-Kosack KE,, Thomma BPHJ,, Rudd JJ . 2011. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol 156 : 756769.[CrossRef]
16. Mentlak TA,, Kombrink A,, Shinya T,, Ryder LS,, Otomo I,, Saitoh H,, Terauchi R,, Nishizawa Y,, Shibuya N,, Thomma BP,, Talbot NJ . 2012. Effector-mediated suppression of chitin-triggered immunity by magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24 : 322335.[CrossRef]
17. Talbot NJ . 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea . Annu Rev Microbiol 57 : 177202.[CrossRef] [PubMed]
18. Valent B,, Chumley FG . 1991. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea . Annu Rev Phytopathol 29 : 443467.[CrossRef] [PubMed]
19. Wilson RA,, Talbot NJ . 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae . Nat Rev Microbiol 7 : 185195.[CrossRef] [PubMed]
20. Cruz CD,, Bockus WW,, Stack JP,, Tang X,, Valent B,, Pedley KF,, Peterson GL . 2012. Preliminary assessment of resistance among U.S. wheat cultivars to the Triticum pathotype of Magnaporthe oryzae . Plant Dis 96 : 15011505.[CrossRef]
21. Dean R,, Van Kan JA,, Pretorius ZA,, Hammond-Kosack KE,, Di Pietro A,, Spanu PD,, Rudd JJ,, Dickman M,, Kahmann R,, Ellis J,, Foster GD . 2012. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13 : 414430.[CrossRef] [PubMed]
22. Ebbole DJ . 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol 45 : 437456.[CrossRef] [PubMed]
23. de Jong JC,, McCormack BJ,, Smirnoff N,, Talbot NJ . 1997. Glycerol generates turgor in rice blast. Nature 389 : 244.[CrossRef]
24. Dagdas YF,, Yoshino K,, Dagdas G,, Ryder LS,, Bielska E,, Steinberg G,, Talbot NJ . 2012. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae . Science 336 : 15901595.[CrossRef] [PubMed]
25. Kankanala P,, Czymmek K,, Valent B . 2007. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19 : 706724.[CrossRef] [PubMed]
26. Khang CH,, Berruyer R,, Giraldo MC,, Kankanala P,, Park S-Y,, Czymmek K,, Kang S,, Valent B . 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22 : 13881403.[CrossRef]
27. Zhao X,, Xu JR . 2007. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea . Mol Microbiol 63 : 881894.[CrossRef] [PubMed]
28. Dong Y,, Li Y,, Zhao M,, Jing M,, Liu X,, Liu M,, Guo X,, Zhang X,, Chen Y,, Liu Y,, Liu Y,, Ye W,, Zhang H,, Wang Y,, Zheng X,, Wang P,, Zhang Z . 2015. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS Pathog 11 : e1004801.[CrossRef]
29. Sharpee W,, Oh Y,, Yi M,, Franck W,, Eyre A,, Okagaki L,, Valent B,, Dean R . 2016. Identification and characterization of suppressors of plant cell death (SPD) genes from Magnaporthe oryzae . Mol Plant Pathol. [Epub ahead of print.][CrossRef] [PubMed]
30. Park CH,, Chen S,, Shirsekar G,, Zhou B,, Khang CH,, Songkumarn P,, Afzal AJ,, Ning Y,, Wang R,, Bellizzi M,, Valent B,, Wang GL . 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24 : 47484762.[CrossRef]
31. Wang Y,, Wu J,, Kim SG,, Tsuda K,, Gupta R,, Park SY,, Kim ST,, Kang KY . 2016. Magnaporthe oryzae-secreted protein MSP1 induces cell death and elicits defense responses in rice. Mol Plant Microbe Interact 29 : 299312.[CrossRef]
32. Brefort T,, Doehlemann G,, Mendoza-Mendoza A,, Reissmann S,, Djamei A,, Kahmann R . 2009. Ustilago maydis as a pathogen. Annu Rev Phytopathol 47 : 423445.[CrossRef] [PubMed]
33. Kämper J , , et al . 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis . Nature 444 : 97101.[CrossRef] [PubMed]
34. Doehlemann G,, Wahl R,, Vranes M,, de Vries RP,, Kämper J,, Kahmann R . 2008. Establishment of compatibility in the Ustilago maydis/maize pathosystem. J Plant Physiol 165 : 2940.[PubMed] [CrossRef]
35. Lo Presti L,, Lanver D,, Schweizer G,, Tanaka S,, Liang L,, Tollot M,, Zuccaro A,, Reissmann S,, Kahmann R . 2015. Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66 : 513545.[CrossRef] [PubMed]
36. Cohen L,, Eyal Z . 1993. The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici . Plant Pathol 42 : 737743.[CrossRef]
37. Duncan KE,, Howard RJ . 2000. Cytological analysis of wheat infection by the leaf blotch pathogen Mycosphaerella graminicola . Mycol Res 104 : 10741082.[CrossRef]
38. Kema GHJ,, Yu DZ,, Rijkenberg FHJ,, Shaw MW,, Baayen RP . 1996. Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology 86 : 777786.[CrossRef]
39. Quaedvlieg W,, Kema GHJ,, Groenewald JZ,, Verkley GJM,, Seifbarghi S,, Razavi M,, Mirzadi Gohari A,, Mehrabi R,, Crous PW . 2011. Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26 : 5769.[CrossRef] [PubMed]
40. Suffert F,, Sache I,, Lannou C . 2011. Early stages of Septoria tritici blotch epidemics of winter wheat: build-up, overseasoning, and release of primary inoculum. Plant Pathol 60 : 166177.[CrossRef]
41. Cools HJ,, Fraaije BA . 2008. Are azole fungicides losing ground against Septoria wheat disease? Resistance mechanisms in Mycosphaerella graminicola . Pest Manag Sci 64 : 681684.[CrossRef]
42. Fraaije BA,, Cools HJ,, Fountaine J,, Lovell DJ,, Motteram J,, West JS,, Lucas JA . 2005. Role of ascospores in further spread of QoI-resistant cytochrome b alleles (G143A) in field populations of Mycosphaerella graminicola . Phytopathology 95 : 933941.[CrossRef]
43. Choi Y-E,, Goodwin SB . 2011. Gene encoding a c-type cyclin in Mycosphaerella graminicola is involved in aerial mycelium formation, filamentous growth, hyphal swelling, melanin biosynthesis, stress response, and pathogenicity. Mol Plant Microbe Interact 24 : 469477.[CrossRef]
44. Mehrabi R,, Van der Lee T,, Waalwijk C,, Kema GHJ . 2006. MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol Plant Microbe Interact 19 : 389398.[CrossRef]
45. Mehrabi R,, Zwiers L-H,, de Waard MA,, Kema GHJ . 2006. MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola . Mol Plant Microbe Interact 19 : 12621269.[CrossRef]
46. Hamer JE,, Howard RJ,, Chumley FG,, Valent B . 1988. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239 : 288290.[CrossRef] [PubMed]
47. DeZwaan TM,, Carroll AM,, Valent B,, Sweigard JA . 1999. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11 : 20132030.[CrossRef]
48. Kleemann J,, Rincon-Rivera LJ,, Takahara H,, Neumann U,, Ver Loren van Themaat E,, van der Does HC,, Hacquard S,, Stüber K,, Will I,, Schmalenbach W,, Schmelzer E,, O’Connell RJ . 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 8 : e1002643.[CrossRef]
49. Howard RJ,, Valent B . 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea . Annu Rev Microbiol 50 : 491512.[CrossRef] [PubMed]
50. Howard RJ,, Ferrari MA,, Roach DH,, Money NP . 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88 : 1128111284.[CrossRef] [PubMed]
51. Saunders DGO,, Aves SJ,, Talbot NJ . 2010. Cell cycle-mediated regulation of plant infection by the rice blast fungus. Plant Cell 22 : 497507.[CrossRef] [PubMed]
52. Gupta YK,, Dagdas YF,, Martinez-Rocha A-L,, Kershaw MJ,, Littlejohn GR,, Ryder LS,, Sklenar J,, Menke F,, Talbot NJ . 2015. Septin-dependent assembly of the exocyst is essential for plant infection by Magnaporthe oryzae . Plant Cell 27 : 32773289.[CrossRef]
53. Gourgues M,, Brunet-Simon A,, Lebrun MH,, Levis C . 2004. The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51 : 619629.[CrossRef]
54. Schirawski J,, Böhnert HU,, Steinberg G,, Snetselaar K,, Adamikowa L,, Kahmann R . 2005. Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis . Plant Cell 17 : 35323543.[CrossRef] [PubMed]
55. Mendoza-Mendoza A,, Berndt P,, Djamei A,, Weise C,, Linne U,, Marahiel M,, Vraneš M,, Kämper J,, Kahmann R . 2009. Physical-chemical plant-derived signals induce differentiation in Ustilago maydis . Mol Microbiol 71 : 895911.[CrossRef]
56. Maheshwari R,, Hildebrandt AC . 1967. Directional growth of the urediospore germ tubes and stomatal penetration. Nature 214 : 11451146.[CrossRef]
57. Hoch HC,, Staples RC,, Whitehead B,, Comeau J,, Wolf ED . 1987. Signaling for growth orientation and cell differentiation by surface topography in uromyces. Science 235 : 16591662.[CrossRef] [PubMed]
58. Schulze-Lefert P,, Panstruga R . 2003. Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41 : 641667.[PubMed] [CrossRef]
59. Petersen RH . 1974. The rust fungus life cycle. Bot Rev 40 : 453513.[CrossRef]
60. Duplessis S,, Cuomo CA,, Lin YC,, Aerts A,, Tisserant E,, Veneault-Fourrey C,, Joly DL,, Hacquard S,, Amselem J,, Cantarel BL,, Chiu R,, Coutinho PM,, Feau N,, Field M,, Frey P,, Gelhaye E,, Goldberg J,, Grabherr MG,, Kodira CD,, Kohler A,, Kües U,, Lindquist EA,, Lucas SM,, Mago R,, Mauceli E,, Morin E,, Murat C,, Pangilinan JL,, Park R,, Pearson M,, Quesneville H,, Rouhier N,, Sakthikumar S,, Salamov AA,, Schmutz J,, Selles B,, Shapiro H,, Tanguay P,, Tuskan GA,, Henrissat B,, Van de Peer Y,, Rouzé P,, Ellis JG,, Dodds PN,, Schein JE,, Zhong S,, Hamelin RC,, Grigoriev IV,, Szabo LJ,, Martin F . 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 108 : 91669171.[CrossRef]
61. Spanu PD , , et al . 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330 : 15431546.[CrossRef] [PubMed]
62. Hückelhoven R,, Panstruga R . 2011. Cell biology of the plant-powdery mildew interaction. Curr Opin Plant Biol 14 : 738746.[CrossRef] [PubMed]
63. Heath MC,, Skalamera D, . 1997. Cellular interactions between plants and biotrophic fungal parasites, 195225. In Andrews PR,, Tommerup IC (ed), Advances in Botanical Research, vol. 24. Academic Press, San Diego, CA.
64. Struck C . 2015. Amino acid uptake in rust fungi. Front Plant Sci 6 : 40.[CrossRef] [PubMed]
65. Voegele RT,, Mendgen KW . 2011. Nutrient uptake in rust fungi: how sweet is parasitic life? Euphytica 179 : 4155.[CrossRef]
66. Voegele RT,, Struck C,, Hahn M,, Mendgen K . 2001. The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae . Proc Natl Acad Sci USA 98 : 81338138.[CrossRef] [PubMed]
67. Petre B,, Kamoun S . 2014. How do filamentous pathogens deliver effector proteins into plant cells? PLoS Biol 12 : e1001801.[CrossRef] [PubMed]
68. Kemen E,, Kemen A,, Ehlers A,, Voegele R,, Mendgen K . 2013. A novel structural effector from rust fungi is capable of fibril formation. Plant J 75 : 767780.[CrossRef] [PubMed]
69. Kemen E,, Kemen AC,, Rafiqi M,, Hempel U,, Mendgen K,, Hahn M,, Voegele RT . 2005. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact 18 : 11301139.[CrossRef] [PubMed]
70. Petre B,, Lorrain C,, Saunders DG,, Win J,, Sklenar J,, Duplessis S,, Kamoun S . 2016. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 18 : 453465.[CrossRef] [PubMed]
71. Wernegreen JJ . 2005. For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr Opin Genet Dev 15 : 572583.[CrossRef] [PubMed]
72. Links MG,, Holub E,, Jiang RH,, Sharpe AG,, Hegedus D,, Beynon E,, Sillito D,, Clarke WE,, Uzuhashi S,, Borhan MH . 2011. De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes. BMC Genomics 12 : 503.[CrossRef]
73. Kemen E,, Jones JDG . 2012. Obligate biotroph parasitism: can we link genomes to lifestyles? Trends Plant Sci 17 : 448457.[CrossRef] [PubMed]
74. Fernandez J,, Marroquin-Guzman M,, Wilson RA . 2014. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. Annu Rev Phytopathol 52 : 155174.[PubMed] [CrossRef]
75. Both M,, Csukai M,, Stumpf MP,, Spanu PD . 2005. Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell 17 : 21072122.[CrossRef]
76. Spanu PD . 2006. Why do some fungi give up their freedom and become obligate dependants on their host? New Phytol 171 : 447450.[CrossRef] [PubMed]
77. Williams PG, . 1984. Obligate parasitism and axenic culture, p 399430. In Bushnell W (ed), The Cereal Rusts. Academic Press, San Diego, CA.[PubMed]
78. Maclean DJ, . 1982. Axenic culture of rust fungi, p 37120. In Scott K (ed), The Rust Fungi. Academic Press, San Diego, CA.[PubMed]
79. Sohn J,, Voegele RT,, Mendgen K,, Hahn M . 2000. High level activation of vitamin B1 biosynthesis genes in haustoria of the rust fungus Uromyces fabae . Mol Plant Microbe Interact 13 : 629636.[CrossRef] [PubMed]
80. Jakupović M,, Heintz M,, Reichmann P,, Mendgen K,, Hahn M . 2006. Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae . Fungal Genet Biol 43 : 819.[CrossRef] [PubMed]
81. Tudzynski P,, Scheffer J . 2004. Claviceps purpurea: molecular aspects of a unique pathogenic lifestyle. Mol Plant Pathol 5 : 377388.[CrossRef]
82. Tudzynski P,, Tenberge KB, . 2003. Molecular aspects of host-pathogen interactions and ergot alkaloid biosynthesis in Claviceps , p 414. In White JF Jr,, Bacon CW,, Hywel-Jones NL,, Spatafora JW (eds), Clavicipitalean Fungi. CRC Press, Boca Raton, FL.
83. Oliver RP,, Solomon PS . 2010. New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13 : 415419.[CrossRef] [PubMed]
84. Mengiste T . 2012. Plant immunity to necrotrophs. Annu Rev Phytopathol 50 : 267294.[CrossRef] [PubMed]
85. Wolpert TJ,, Dunkle LD,, Ciuffetti LM . 2002. Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40 : 251285.[CrossRef] [PubMed]
86. Faris JD,, Zhang Z,, Lu H,, Lu S,, Reddy L,, Cloutier S,, Fellers JP,, Meinhardt SW,, Rasmussen JB,, Xu SS,, Oliver RP,, Simons KJ,, Friesen TL . 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107 : 1354413549.[CrossRef]
87. Bolton MD,, Thomma BP,, Nelson BD . 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7 : 116.[CrossRef]
88. Amselem J , , et al . 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea . PLoS Genet 7 : e1002230.[CrossRef]
89. Williamson B,, Tudzynski B,, Tudzynski P,, van Kan JA . 2007. Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8 : 561580.[CrossRef] [PubMed]
90. Shlezinger N,, Minz A,, Gur Y,, Hatam I,, Dagdas YF,, Talbot NJ,, Sharon A . 2011. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog 7 : e1002185.[CrossRef]
91. Govrin EM,, Levine A . 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea . Curr Biol 10 : 751757.[CrossRef]
92. González C,, Brito N,, Sharon A, . 2016. Infection process and fungal virulence factors, p 229246. In Fillinger S,, Elad Y (ed), Botrytis: the Fungus, the Pathogen and its Management in Agricultural Systems. Springer International Publishing, Heidelberg, Germany.[CrossRef]
93. Kabbage M,, Williams B,, Dickman MB . 2013. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum . PLoS Pathog 9 : e1003287.[PubMed] [CrossRef]
94. Kim KS,, Min JY,, Dickman MB . 2008. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe Interact 21 : 605612.[CrossRef]
95. Minina EA,, Bozhkov PV,, Hofius D . 2014. Autophagy as initiator or executioner of cell death. Trends Plant Sci 19 : 692697.[CrossRef] [PubMed]
96. Heller J,, Tudzynski P . 2011. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol 49 : 369390.[CrossRef] [PubMed]
97. Williams B,, Kabbage M,, Kim HJ,, Britt R,, Dickman MB . 2011. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7 : e1002107.[CrossRef]
98. Li C,, Barker SJ,, Gilchrist DG,, Lincoln JE,, Cowling WA . 2008. Leptosphaeria maculans elicits apoptosis coincident with leaf lesion formation and hyphal advance in Brassica napus . Mol Plant Microbe Interact 21 : 11431153.[CrossRef]
99. Cole JS . 1956. Studies in the physiology of parasitism. XX. The pathogenicity of Botrytis cinerea, Sclerotinia fructigena, and Sclerotinia laxa, with special reference to the part played by pectolytic enzymes. Ann Bot (Lond) 20 : 1538.
100. Soanes DM,, Alam I,, Cornell M,, Wong HM,, Hedeler C,, Paton NW,, Rattray M,, Hubbard SJ,, Oliver SG,, Talbot NJ . 2008. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 3 : e2300.[CrossRef]
101. Kim K-T,, Jeon J,, Choi J,, Cheong K,, Song H,, Choi G,, Kang S,, Lee Y-H . 2016. Kingdom-wide analysis of fungal small secreted proteins (SSPs) reveals their potential role in host association. Front Plant Sci 7 : 186.[CrossRef]
102. McCotter SW,, Horianopoulos LC,, Kronstad JW . 2016. Regulation of the fungal secretome. Curr Genet 62 : 533545.[CrossRef] [PubMed]
103. Yi M,, Valent B . 2013. Communication between filamentous pathogens and plants at the biotrophic interface. Annu Rev Phytopathol 51 : 587611.[CrossRef] [PubMed]
104. O’Connell RJ , , et al . 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44 : 10601065.[CrossRef]
105. Perfect SE,, O’Connell RJ,, Green EF,, Doering-Saad C,, Green JR . 1998. Expression cloning of a fungal proline-rich glycoprotein specific to the biotrophic interface formed in the Colletotrichum-bean interaction. Plant J 15 : 273279.[CrossRef]
106. Ma LJ,, Geiser DM,, Proctor RH,, Rooney AP,, O’Donnell K,, Trail F,, Gardiner DM,, Manners JM,, Kazan K . 2013. Fusarium pathogenomics. Annu Rev Microbiol 67 : 399416.[PubMed] [CrossRef]
107. Ploetz RC . 2015. Management of Fusarium wilt of banana: a review with special reference to tropical race 4. Crop Prot 73 : 715.[CrossRef]
108. Fradin EF,, Thomma BP . 2006. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum . Mol Plant Pathol 7 : 7186.[CrossRef] [PubMed]
109. Churchill AC . 2011. Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol Plant Pathol 12 : 307328.[CrossRef]
110. Goodwin SB , , et al . 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7 : e1002070.[CrossRef]
111. Crouch JA,, Beirn LA,, Cortese LM,, Bonos SA,, Clarke BB . 2009. Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas . Mycol Res 113 : 14111421.[CrossRef]
112. Kubo Y,, Harata K,, Kodama S,, Fukada F . 2016. Development of the infection strategy of the hemibiotrophic plant pathogen, Colletotrichum orbiculare, and plant immunity. Physiol Mol Plant Pathol 95 : 3236.[CrossRef]
113. Peres NA,, Timmer W,, Adaskaveg JE,, Correll JC . 2005. Lifestyles of Colletotrichum acutatum . Plant Dis 89 : 784796.[CrossRef]
114. Weir BS,, Johnston PR,, Damm U . 2012. The Colletotrichum gloeosporioides species complex. Stud Mycol 73 : 115180.[CrossRef] [PubMed]
115. Robinson M,, Sharon A . 1999. Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. aeschynomene by electroporation of germinated conidia. Curr Genet 36 : 98104.[CrossRef] [PubMed]
116. Barhoom S,, Sharon A . 2004. cAMP regulation of “pathogenic” and “saprophytic” fungal spore germination. Fungal Genet Biol 41 : 317326.[CrossRef] [PubMed]
117. Barhoom S,, Kupiec M,, Zhao X,, Xu JR,, Sharon A . 2008. Functional characterization of CgCTR2, a putative vacuole copper transporter that is involved in germination and pathogenicity in Colletotrichum gloeosporioides . Eukaryot Cell 7 : 10981108.[CrossRef]
118. Nesher I,, Minz A,, Kokkelink L,, Tudzynski P,, Sharon A . 2011. Regulation of pathogenic spore germination by CgRac1 in the fungal plant pathogen Colletotrichum gloeosporioides . Eukaryot Cell 10 : 11221130.[CrossRef]
119. Li G,, Zhou X,, Xu JR . 2012. Genetic control of infection-related development in Magnaporthe oryzae . Curr Opin Microbiol 15 : 678684.[CrossRef] [PubMed]
120. Soanes DM,, Chakrabarti A,, Paszkiewicz KH,, Dawe AL,, Talbot NJ . 2012. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae . PLoS Pathog 8 : e1002514.[CrossRef] [PubMed]
121. Heath MC,, Valent B,, Howard RJ,, Chumley FG . 1990. Interactions of two strains of Magnaporthe grisea with rice, goosegrass, and weeping lovegrass. Can J Bot 68 : 16271637.[CrossRef]
122. Zhang S,, Xu JR . 2014. Effectors and effector delivery in Magnaporthe oryzae . PLoS Pathog 10 : e1003826.[CrossRef] [PubMed]
123. Mosquera G,, Giraldo MC,, Khang CH,, Coughlan S,, Valent B . 2009. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21 : 12731290.[CrossRef]
124. Giraldo MC,, Dagdas YF,, Gupta YK,, Mentlak TA,, Yi M,, Martinez-Rocha AL,, Saitoh H,, Terauchi R,, Talbot NJ,, Valent B . 2013. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae . Nat Commun 4 : 1996.[CrossRef]
125. Mims CW,, Vaillancourt LJ . 2002. Ultrastructural characterization of infection and colonization of maize leaves by Colletotrichum graminicola, and by a C. graminicola pathogenicity mutant. Phytopathology 92 : 803812.[CrossRef]
126. Vargas WA,, Martín JM,, Rech GE,, Rivera LP,, Benito EP,, Díaz-Mínguez JM,, Thon MR,, Sukno SA . 2012. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiol 158 : 13421358.[CrossRef]
127. Gan P,, Ikeda K,, Irieda H,, Narusaka M,, O’Connell RJ,, Narusaka Y,, Takano Y,, Kubo Y,, Shirasu K . 2013. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197 : 12361249.[CrossRef]
128. Sharon A,, Shlezinger N . 2013. Fungi infecting plants and animals: killers, non-killers, and cell death. PLoS Pathog 9 : e1003517.[CrossRef] [PubMed]
129. Dickman MB,, Park YK,, Oltersdorf T,, Li W,, Clemente T,, French R . 2001. Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA 98 : 69576962. (Erratum, 100:11816.)[CrossRef]
130. Imani J,, Baltruschat H,, Stein E,, Jia G,, Vogelsberg J,, Kogel KH,, Hückelhoven R . 2006. Expression of barley BAX inhibitor-1 in carrots confers resistance to Botrytis cinerea . Mol Plant Pathol 7 : 279284.[CrossRef] [PubMed]
131. Eichmann R,, Schultheiss H,, Kogel KH,, Hückelhoven R . 2004. The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici . Mol Plant Microbe Interact 17 : 484490.[CrossRef] [PubMed]
132. Weis C,, Hückelhoven R,, Eichmann R . 2013. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. J Exp Bot 64 : 38553867.[CrossRef] [PubMed]
133. Bélanger RR,, Bushnell WR,, Dik AJ,, Carver TLW (ed). 2002. The Powdery Mildews: A Comprehensive Treatise. APS Press, Saint Paul, MN.
134. Bowyer P,, Clarke BR,, Lunness P,, Daniels MJ,, Osbourn AE . 1995. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267 : 371374.[PubMed] [CrossRef]
135. Osbourn AE,, Clarke BR,, Lunness P,, Scott PR,, Daniels MJ . 1994. An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici . Physiol Mol Plant Pathol 45 : 457467.[CrossRef]
136. Nicaise V,, Roux M,, Zipfel C . 2009. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150 : 16381647.[CrossRef]
137. Zipfel C . 2014. Plant pattern-recognition receptors. Trends Immunol 35 : 345351.[CrossRef] [PubMed]
138. Jones JD,, Dangl JL . 2006. The plant immune system. Nature 444 : 323329.[CrossRef] [PubMed]
139. Dodds PN,, Rathjen JP . 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11 : 539548.[CrossRef] [PubMed]
140. Elmore JM,, Lin ZJ,, Coaker G . 2011. Plant NB-LRR signaling: upstreams and downstreams. Curr Opin Plant Biol 14 : 365371.[CrossRef] [PubMed]
141. Bernoux M,, Ellis JG,, Dodds PN . 2011. New insights in plant immunity signaling activation. Curr Opin Plant Biol 14 : 512518.[CrossRef] [PubMed]
142. Howlett BJ . 2006. Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr Opin Plant Biol 9 : 371375.[CrossRef] [PubMed]
143. Deighton N,, Muckenschnabel I,, Colmenares AJ,, Collado IG,, Williamson B . 2001. Botrydial is produced in plant tissues infected by Botrytis cinerea . Phytochemistry 57 : 689692.[CrossRef] [PubMed]
144. Colmenares AJAJ,, Aleu J,, Durán-Patrón R,, Collado IG,, Hernández-Galán R . 2002. The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea . J Chem Ecol 28 : 9971005.[CrossRef]
145. Rossi FR,, Gárriz A,, Marina M,, Romero FM,, Gonzalez ME,, Collado IG,, Pieckenstain FL . 2011. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Mol Plant Microbe Interact 24 : 888896.[CrossRef]
146. Siewers V,, Viaud M,, Jimenez-Teja D,, Collado IG,, Gronover CS,, Pradier JM,, Tudzynski B,, Tudzynski P . 2005. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact 18 : 602612.[CrossRef]
147. Dutton MV,, Evans CS . 1996. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42 : 881895.[CrossRef]
148. Godoy G,, Steadman JR,, Dickman MB,, Dam R . 1990. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris . Physiol Mol Plant Pathol 37 : 179191.[CrossRef]
149. Cessna SG,, Sears VE,, Dickman MB,, Low PS . 2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12 : 21912200.[CrossRef]
150. Stone JM,, Heard JE,, Asai T,, Ausubel FM . 2000. Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants . Plant Cell 12 : 18111822.[CrossRef] [PubMed]
151. Asai T,, Stone JM,, Heard JE,, Kovtun Y,, Yorgey P,, Sheen J,, Ausubel FM . 2000. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12 : 18231836.[CrossRef]
152. Glenn AE,, Zitomer NC,, Zimeri AM,, Williams LD,, Riley RT,, Proctor RH . 2008. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant Microbe Interact 21 : 8797.[CrossRef]
153. Myung K,, Zitomer NC,, Duvall M,, Glenn AE,, Riley RT,, Calvo AM . 2012. The conserved global regulator VeA is necessary for symptom production and mycotoxin synthesis in maize seedlings by Fusarium verticillioides . Plant Pathol 61 : 152160.[CrossRef]
154. McMullen M,, Jones R,, Gallenberg D . 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81 : 13401348.[CrossRef]
155. Pestka JJ,, Smolinski AT . 2005. Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev 8 : 3969.[CrossRef] [PubMed]
156. Bai GHDA,, Desjardins AE,, Plattner RD . 2002. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153 : 9198.[CrossRef]
157. Desjardins AE . 2003. Gibberella from A (venaceae) to Z (eae). Annu Rev Phytopathol 41 : 177198.[PubMed] [CrossRef]
158. Proctor RH,, Hohn TM,, McCormick SP . 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8 : 593601.[CrossRef] [PubMed]
159. Wang C,, Zhang S,, Hou R,, Zhao Z,, Zheng Q,, Xu Q,, Zheng D,, Wang G,, Liu H,, Gao X,, Ma JW,, Kistler HC,, Kang Z,, Xu JR . 2011. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum . PLoS Pathog 7 : e1002460.[PubMed] [CrossRef]
160. Schaller A,, Oecking C . 1999. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11 : 263272.
161. Hammond-Kosack KE,, Rudd JJ . 2008. Plant resistance signalling hijacked by a necrotrophic fungal pathogen. Plant Signal Behav 3 : 993995.[CrossRef]
162. Lorang J,, Kidarsa T,, Bradford CS,, Gilbert B,, Curtis M,, Tzeng SC,, Maier CS,, Wolpert TJ . 2012. Tricking the guard: exploiting plant defense for disease susceptibility. Science 338 : 659662.[CrossRef]
163. Lorang JM,, Sweat TA,, Wolpert TJ . 2007. Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci USA 104 : 1486114866.[CrossRef] [PubMed]
164. Nagy ED,, Bennetzen JL . 2008. Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster. Genome Res 18 : 19181923.[CrossRef]
165. Liu Z,, Friesen TL,, Ling H,, Meinhardt SW,, Oliver RP,, Rasmussen JB,, Faris JD . 2006. The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49 : 12651273.[CrossRef]
166. Liu ZH,, Faris JD,, Meinhardt SW,, Ali S,, Rasmussen JB,, Friesen TL . 2004. Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum . Phytopathology 94 : 10561060.[CrossRef]
167. Friesen TL,, Meinhardt SW,, Faris JD . 2007. The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J 51 : 681692.[CrossRef]
168. Friesen TL,, Zhang Z,, Solomon PS,, Oliver RP,, Faris JD . 2008. Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene. Plant Physiol 146 : 682693.[CrossRef]
169. Liu Z,, Faris JD,, Oliver RP,, Tan KC,, Solomon PS,, McDonald MC,, McDonald BA,, Nunez A,, Lu S,, Rasmussen JB,, Friesen TL . 2009. SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog 5 : e1000581.[CrossRef]
170. Zhang Z,, Friesen TL,, Xu SS,, Shi G,, Liu Z,, Rasmussen JB,, Faris JD . 2011. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum . Plant J 65 : 2738.[CrossRef]
171. Abeysekara NS,, Friesen TL,, Keller B,, Faris JD . 2009. Identification and characterization of a novel host-toxin interaction in the wheat-Stagonospora nodorum pathosystem. Theor Appl Genet 120 : 117126.[CrossRef] [PubMed]
172. Friesen TL,, Chu C,, Xu SS,, Faris JD . 2012. SnTox5-Snn5: a novel Stagonospora nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions. Mol Plant Pathol 13 : 11011109.[CrossRef]
173. Gao Y,, Faris JD,, Liu Z,, Kim YM,, Syme RA,, Oliver RP,, Xu SS,, Friesen TL . 2015. Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem. Mol Plant Microbe Interact 28 : 615625.[CrossRef]
174. Shi GFT,, Saini J,, Xu SS,, Rasmussen JB,, Faris JD . 2015. The wheat Snn7 gene confers susceptibility on recognition of the Parastagonospora nodorum necrotrophic effector SnTox7. Plant Genome 8.[CrossRef]
175. Cantarel BL,, Coutinho PM,, Rancurel C,, Bernard T,, Lombard V,, Henrissat B . 2009. The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database): D233D238.[CrossRef]
176. Cosgrove DJ . 2005. Growth of the plant cell wall. Nat Rev Mol Cell Biol 6 : 850861.[CrossRef] [PubMed]
177. Hématy K,, Cherk C,, Somerville S . 2009. Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12 : 406413.[CrossRef] [PubMed]
178. Kubicek CP,, Starr TL,, Glass NL . 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52 : 427451.[CrossRef] [PubMed]
179. Brito N,, Espino JJ,, González C . 2006. The endo-beta-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea . Mol Plant Microbe Interact 19 : 2532.[CrossRef] [PubMed]
180. Yakoby N,, Beno-Moualem D,, Keen NT,, Dinoor A,, Pines O,, Prusky D . 2001. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Mol Plant Microbe Interact 14 : 988995.[CrossRef]
181. Ben-Daniel BH,, Bar-Zvi D,, Tsror Lahkim L . 2012. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines. Mol Plant Pathol 13 : 187197.[CrossRef]
182. Van Vu B,, Itoh K,, Nguyen QB,, Tosa Y,, Nakayashiki H . 2012. Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzae . Mol Plant Microbe Interact 25 : 11351141.[CrossRef]
183. ten Have A,, Mulder W,, Visser J,, van Kan JA . 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea . Mol Plant Microbe Interact 11 : 10091016.[CrossRef] [PubMed]
184. Kars I,, Krooshof GH,, Wagemakers L,, Joosten R,, Benen JA,, van Kan JA . 2005. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris . Plant J 43 : 213225.[CrossRef]
185. Misas-Villamil JC,, van der Hoorn RA . 2008. Enzyme-inhibitor interactions at the plant-pathogen interface. Curr Opin Plant Biol 11 : 380388.[CrossRef]
186. Nürnberger T,, Brunner F,, Kemmerling B,, Piater L . 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198 : 249266.[CrossRef] [PubMed]
187. Zhang L,, Kars I,, Essenstam B,, Liebrand TW,, Wagemakers L,, Elberse J,, Tagkalaki P,, Tjoitang D,, van den Ackerveken G,, van Kan JA . 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 164 : 352364.[CrossRef]
188. Poinssot B,, Vandelle E,, Bentéjac M,, Adrian M,, Levis C,, Brygoo Y,, Garin J,, Sicilia F,, Coutos-Thévenot P,, Pugin A . 2003. The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16 : 553564.[CrossRef]
189. Zhang Y,, Zhang Y,, Qiu D,, Zeng H,, Guo L,, Yang X . 2015. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants. Biochem Biophys Res Commun 457 : 627634.[CrossRef]
190. Noda J,, Brito N,, González C . 2010. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10 : 38.[CrossRef] [PubMed]
191. Zhang H,, Wu Q,, Cao S,, Zhao T,, Chen L,, Zhuang P,, Zhou X,, Gao Z . 2014.