1887

Chapter 48 : Host-Microsporidia Interactions in , a Model Nematode Host

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Host-Microsporidia Interactions in , a Model Nematode Host, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap48-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap48-2.gif

Abstract:

The nematode is a highly tractable organism that has been studied in the laboratory for several decades and has provided novel insights into questions of development, neurobiology, and cell biology, among other basic biological processes ( ). Until recently, however, little was known about its natural ecology. Now, because of greatly increased sampling of from the wild, we are learning more about its life outside the laboratory ( ). In particular, it has become clear that and other nematodes are commonly infected by microsporidia in the wild ( ). Microsporidia comprise a phylum of over 1,400 species of fungal-related parasites that can infect nearly all animal hosts ( ), so it is perhaps no surprise that these pathogens commonly infect the nematode .

Citation: Troemel E. 2017. Host-Microsporidia Interactions in , a Model Nematode Host, p 975-980. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0003-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

microsporidia infecting the intestine at the meront stage. meronts are labeled with a fluorescent probe for rRNA in red, the intestine is labeled with cytoplasmic GFP in green, and DNA is labeled with DAPI in blue. DAPI, 4′,6-diamidino-2-phenylindole; GFP, green fluorescent protein. (Image credit Susannah Szumowski.)

Citation: Troemel E. 2017. Host-Microsporidia Interactions in , a Model Nematode Host, p 975-980. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0003-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

restructures intestinal cells and exits via RAB-11-directed apical exocytosis. exit from intestinal cells is a two-phase process. Phase 1: When replicates as a meront inside intestinal cells, the actin isoform ACT-5 is no longer restricted to just the apical side and instead appears to be ectopically expressed on the basolateral side of the cell. This relocalization may trigger gaps in the terminal web that occur just as spores begin to form in the intestinal cell. Phase 2: spores are found in separate membrane-bound compartments, become coated in the host small GTPase RAB-11, which is required for spore-containing compartments to fuse with the apical membrane and allow spores to exit into the lumen.

Citation: Troemel E. 2017. Host-Microsporidia Interactions in , a Model Nematode Host, p 975-980. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0003-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819583.chap48
1. Corsi AK,, Wightman B,, Chalfie M . 2015. A transparent window into biology: a primer on Caenorhabditis elegans . Genetics 200 : 387407. PubMed PMID: 26088431; PubMed Central PMCID: PMCPMC4492366.[PubMed] [CrossRef]
2. Frezal L,, Felix MA . 2015. C. elegans outside the Petri dish. Elife 4 : e05849. PubMed PMID: 25822066; PubMed Central PMCID: PMCPMC4373675.[PubMed] [CrossRef]
3. Troemel ER,, Félix MA,, Whiteman NK,, Barrière A,, Ausubel FM . 2008. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans . PLoS Biol 6 : 27362752.[PubMed] [CrossRef]
4. Félix MA,, Duveau F . 2012. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae . BMC Biol 10 : 59.[PubMed] [CrossRef]
5. Bakowski MA,, Luallen RJ,, Troemel ER, . 2014. Microsporidia infections in Caenorhabditis elegans and other nematodes, p 341356. In Weiss LM,, Becnel JJ (ed), Microsporidia: Pathogens of Opportunity. Wiley-Blackwell, Hoboken, NJ.
6. Vávra J,, Lukeš J . 2013. Microsporidia and ‘the art of living together’. Adv Parasitol 82 : 253319.[PubMed] [CrossRef]
7. Texier C,, Vidau C,, Viguès B,, El Alaoui H,, Delbac F . 2010. Microsporidia: a model for minimal parasite-host interactions. Curr Opin Microbiol 13 : 443449.[PubMed] [CrossRef]
8. Williams BA . 2009. Unique physiology of host-parasite interactions in microsporidia infections. Cell Microbiol 11 : 15511560.[PubMed] [CrossRef]
9. Capella-Gutiérrez S,, Marcet-Houben M,, Gabaldón T . 2012. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10 : 47.[CrossRef]
10. Cuomo CA,, Desjardins CA,, Bakowski MA,, Goldberg J,, Ma AT,, Becnel JJ,, Didier ES,, Fan L,, Heiman DI,, Levin JZ,, Young S,, Zeng Q,, Troemel ER . 2012. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res 22 : 24782488.[CrossRef]
11. Corradi N,, Pombert JF,, Farinelli L,, Didier ES,, Keeling PJ . 2010. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis . Nat Commun 1 : 77.[CrossRef]
12. Luallen RJ,, Bakowski MA,, Troemel ER . 2015. Characterization of microsporidia-induced developmental arrest and a transmembrane leucine-rich repeat protein in Caenorhabditis elegans . PLoS One 10 : e0124065.[CrossRef]
13. Bakowski MA,, Priest M,, Young S,, Cuomo CA,, Troemel ER . 2014. Genome sequence of the microsporidian species Nematocida sp1 strain ERTm6 (ATCC PRA-372). Genome Announc 2 : e00905-14.[CrossRef] [PubMed]
14. Selman M,, Sak B,, Kvac M,, Farinelli L,, Weiss LM,, Corradi N . 2013. Extremely reduced levels of heterozygosity in the vertebrate pathogen Encephalitozoon cuniculi. Eukaryot Cell 12 : 496502. PubMed PMID: 23376943; PubMed Central PMCID: PMCPMC3623448.[CrossRef] [PubMed]
15. Ni M,, Feretzaki M,, Sun S,, Wang X,, Heitman J . 2011. Sex in fungi. Annu Rev Genet 45 : 405430.[PubMed] [CrossRef]
16. Tsaousis AD,, Kunji ER,, Goldberg AV,, Lucocq JM,, Hirt RP,, Embley TM . 2008. A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi . Nature 453 : 553556.[PubMed] [CrossRef]
17. Katinka MD,, Duprat S,, Cornillot E,, Méténier G,, Thomarat F,, Prensier G,, Barbe V,, Peyretaillade E,, Brottier P,, Wincker P,, Delbac F,, El Alaoui H,, Peyret P,, Saurin W,, Gouy M,, Weissenbach J,, Vivarès CP . 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi . Nature 414 : 450453.[PubMed] [CrossRef]
18. McGhee JD . 2007. The C. elegans intestine. WormBook, ed. The C. elegans Research Community, WormBook.[CrossRef]
19. Balla KM,, Troemel ER . 2013. Caenorhabditis elegans as a model for intracellular pathogen infection. Cell Microbiol 15 : 13131322.[PubMed] [CrossRef]
20. Bossinger O,, Fukushige T,, Claeys M,, Borgonie G,, McGhee JD . 2004. The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Dev Biol 268 : 448456.[PubMed] [CrossRef]
21. Szumowski SC,, Estes KA,, Troemel ER . 2012. Preparing a discreet escape: microsporidia reorganize host cytoskeleton prior to non-lytic exit from C. elegans intestinal cells. Worm 1 : 207211.[CrossRef]
22. Estes KA,, Szumowski SC,, Troemel ER . 2011. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells. PLoS Pathog 7 : e1002227. PPATHOGENS-D-11-00634 [pii]. PubMed PMID: 21949650; PubMed Central PMCID: PMC3174248.[PubMed] [CrossRef]
23. Szumowski SC,, Botts MR,, Popovich JJ,, Smelkinson MG,, Troemel ER . 2014. The small GTPase RAB-11 directs polarized exocytosis of the intracellular pathogen N. parisii for fecal-oral transmission from C. elegans . Proc Natl Acad Sci USA 111 : 82158220.[CrossRef]
24. Szumowski SC,, Estes KA,, Popovich JJ,, Botts MR,, Sek G,, Troemel ER . 2015. Small GTPases promote actin coat formation on microsporidian pathogens traversing the apical membrane of Caenorhabditis elegans intestinal cells. Cell Microbiol 18 : 3045.[CrossRef]
25. Bakowski MA,, Desjardins CA,, Smelkinson MG,, Dunbar TL,, Lopez-Moyado IF,, Rifkin SA,, Cuomo CA,, Troemel ER . 2014. Ubiquitin-mediated response to microsporidia and virus infection in C. elegans . PLoS Pathog 10 : e1004200 (Erratum 10:e1004371).[CrossRef] [PubMed]
26. Sarkies P,, Ashe A,, Le Pen J,, McKie MA,, Miska EA . 2013. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans . Genome Res 23 : 12581270.[CrossRef]
27. Balla KM,, Andersen EC,, Kruglyak L,, Troemel ER . 2015. A wild C. elegans strain has enhanced epithelial immunity to a natural microsporidian parasite. PLoS Pathog 11 : e1004583.[CrossRef]
28. Thomas JH . 2006. Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. Genome Res 16 : 10171030.[PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error