1887

Chapter 52 : Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap51-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap51-2.gif

Abstract:

Fungi are now widely used in industrial biotechnology, for example, as production hosts for technical and food and feed processing enzymes, as gene donors for such enzymes, as production hosts for organic acids and cholesterol-lowering drugs (the statins), and as starter cultures and probiotics ( ). Around half of the industrial enzymes used globally are of fungal origin; the other half are of bacterial origin. However, this balance is now moving toward the use of more enzymes from a wider spectrum of families of the fungal kingdom. There are several reasons for this. Fungal enzymes are efficient, compatible, and suitable for industrial processing: they have sufficient protein stability to give the enzyme products an acceptable shelf life; they provide customer solutions, meet regulatory approval demands, and fulfill end user needs.

Citation: Lange L. 2017. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products, p 1029-1048. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0007-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

A schematic overview of a biorefinery. The product portfolio from biorefineries is not only fuels and chemicals but also includes higher-value products such as food and feed ingredients, cosmetics, skin care, and new functional biomaterials; it is also expected that many types of biorefineries will be developed for improved resource efficiency: the yellow (straw, stover, and wood chips), the green (fresh grass, clover, leaves), the blue (seaweed and fish bycatch and waste), the gray (agroindustrial side streams), and a biorefinery for upgrade of household waste and sludge (the brown biorefinery). Adapted from reference with permission.

Citation: Lange L. 2017. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products, p 1029-1048. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0007-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Enzymatic breakdown of cellulose polymer includes several glycohydrolases (at least one endoglucanase, at least two cellobiohydrolases, reducing end and non-reducing-end active, and at least one β-glucosidase). Further, the activity of a lytic polysaccharide monooxygenase acts in synergy with the endoglucanase in breaking down the crystallinity of the cellulose polymer. Adapted from reference with permission. Hemicellulose is a very complex, highly branched and substituted polymer. The figure shows seven types of sugar components and lists the seven types of enzymes needed to break the linkages to such sugar moieties. However, enzyme hydrolysis of lignocellulose may not need the presence of all these seven hemicellulases because most of the standard pretreatment procedures will lead to the breakdown of several of the hemicellulose bonds. Adapted from reference with permission.

Citation: Lange L. 2017. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products, p 1029-1048. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0007-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

“Fungal Hall of Fame” illustrating the five most important players in industrial lignocellulose biorefinery processing and in research. , along with and , are the most widely used monocomponent enzyme production organisms. is included due to its exceptional secretion capacity; it is the preferred production host for enzyme blends specifically designed for efficient biomass conversion. is the organism of choice for production of ethanol from the biomass conversion-derived sugar platform. is the expression host most often used for producing laboratory-scale volumes of newly discovered enzymes to facilitate characterization and evaluation of the new enzymes for industrial potentials. , along with another thermophilic fungus, , represents alternatives to production of enzymes by species of . Credits: (A) Courtesy of Reinhard Wilting, Novozymes A/S; (B) from Read ND, (Mendgen K, Lesemann D-E, ed), Springer-Verlag, Berlin, Germany, 1991, with permission; (C) U.S. Department of Energy Office of Science (http://www.jgi.doe.gov/sequencing/why/Treesei.html); (D) Sciencephoto.com; (E) courtesy of Ronald de Vries, CBS-KNAW, Fungal Biodiversity Centre, The Netherlands.

Citation: Lange L. 2017. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products, p 1029-1048. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0007-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819583.chap51
1. Lange L . 2014. The importance of fungi and mycology for addressing major global challenges. IMA Fungus 5 : 463 471.[CrossRef] [PubMed]
2. Food and Agriculture Organization of the United Nations . 2016. FAO Food Loss and Food Waste. http://www.fao.org/food-loss-and-food-waste/en/.
3. Lange L,, Björnsdottir B,, Brandt A,, Hildén K,, Hreggviðsson G,, Jacobsen B,, Jessen A,, Karlsson EN,, Lindedam J,, Mäkelä M,, Smáradóttir S,, Vang J,, Wentzel A . 2016. Development of the Nordic Bioeconomy: NCM Reporting: TEST Centers for Green Energy Solutions - Biorefineries and Business Needs. Nordisk Ministerråd, Copenhagen, Denmark.
4. Schmid O,, Padel S,, Levidow L . 2012. The bio-economy concept and knowledge base in a public goods and farmer perspective. Bio-based Appl Econ 1 : 47 63.
5. Kubicek CP,, Starr TL,, Glass NL . 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52 : 427 451.[CrossRef] [PubMed]
6. Harris SD,, Read ND,, Roberson RW,, Shaw B,, Seiler S,, Plamann M,, Momany M . 2005. Polarisome meets spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4 : 225 229.[CrossRef] [PubMed]
7. CAZy . 2016. The CAZy database. http://www.cazy.org/.
8. Lange L,, Pilgaard B,, Gleason F,, Busk PK,, Gorm-Pedersen A . 2015. The chytrid secretome: a comparative analysis of the secretome of an aerobic, anaerobic and pathogenic Chytrid species. Poster, 28th Fungal Genetics Conference, Pacific Grove, CA.
9. Busk PK,, Lange M,, Pilgaard B,, Lange L . 2014. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature. PLoS One 9 : e114138.[CrossRef] [PubMed]
10. Busk PK,, Lange L . 2013. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs. Appl Environ Microbiol 79 : 3380 3391.[CrossRef] [PubMed]
11. Hansen GH,, Lübeck M,, Frisvad JC,, Lübeck PS,, Andersen B . 2015. Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem 50 : 1327 1341.[CrossRef]
12. Gostinčar C,, Ohm RA,, Kogej T,, Sonjak S,, Turk M,, Zajc J,, Zalar P,, Grube M,, Sun H,, Han J,, Sharma A,, Chiniquy J,, Ngan CY,, Lipzen A,, Barry K,, Grigoriev IV,, Gunde-Cimerman N . 2014. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15 : 549.[CrossRef] [PubMed]
13. Rineau F,, Roth D,, Shah F,, Smits M,, Johansson T,, Canbäck B,, Olsen PB,, Persson P,, Grell MN,, Lindquist E,, Grigoriev IV,, Lange L,, Tunlid A . 2012. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 14 : 1477 1487.[CrossRef] [PubMed]
14. Poidevin L,, Berrin JG,, Bennati-Granier C,, Levasseur A,, Herpoël-Gimbert I,, Chevret D,, Coutinho PM,, Henrissat B,, Heiss-Blanquet S,, Record E . 2014. Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Appl Microbiol Biotechnol 98 : 7457 7469.[CrossRef] [PubMed]
15. Poidevin L,, Feliu J,, Doan A,, Berrin JG,, Bey M,, Coutinho PM,, Henrissat B,, Record E,, Heiss-Blanquet S . 2013. Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina . Appl Environ Microbiol 79 : 4220 4229.[CrossRef] [PubMed]
16. Payne CM,, Knott BC,, Mayes HB,, Hansson H,, Himmel ME,, Sandgren M,, Ståhlberg J,, Beckham GT . 2015. Fungal cellulases. Chem Rev 115 : 1308 1448.[CrossRef] [PubMed]
17. Pollegioni L,, Tonin F,, Rosini E . 2015. Lignin-degrading enzymes. FEBS J 282 : 1190 1213.[CrossRef] [PubMed]
18. Kern M,, McGeehan JE,, Streeter SD,, Martin RNA,, Besser K,, Elias L,, Eborall W,, Malyon GP,, Payne CM,, Himmel ME,, Schnorr K,, Beckham GT,, Cragg SM,, Bruce NC,, McQueen-Mason SJ . 2013. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc Natl Acad Sci USA 110 : 10189 10194.[CrossRef] [PubMed]
19. Cosgrove DJ . 2000. Loosening of plant cell walls by expansins. Nature 407 : 321 326.[CrossRef] [PubMed]
20. Cosgrove DJ,, Li LC,, Cho HT,, Hoffmann-Benning S,, Moore RC,, Blecker D . 2002. The growing world of expansins. Plant Cell Physiol 43 : 1436 1444.[CrossRef] [PubMed]
21. Brotman Y,, Briff E,, Viterbo A,, Chet I . 2008. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147 : 779 789.[CrossRef] [PubMed]
22. Lange M,, Hora FB . 1963. Collins’ Guide to Mushrooms and Toadstools. Collins, London, United Kingdom.
23. Berka RM,, Grigoriev IV,, Otillar R,, Salamov A,, Grimwood J,, Reid I,, Ishmael N,, John T,, Darmond C,, Moisan M-C,, Henrissat B,, Coutinho PM,, Lombard V,, Natvig DO,, Lindquist E,, Schmutz J,, Lucas S,, Harris P,, Powlowski J,, Bellemare A,, Taylor D,, Butler G,, de Vries RP,, Allijn IE,, van den Brink J,, Ushinsky S,, Storms R,, Powell AJ,, Paulsen IT,, Elbourne LDH,, Baker SE,, Magnuson J,, Laboissiere S,, Clutterbuck AJ,, Martinez D,, Wogulis M,, de Leon AL,, Rey MW,, Tsang A . 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris . Nat Biotechnol 29 : 922 927.[CrossRef] [PubMed]
24. Cragg SM,, Beckham GT,, Bruce NC,, Bugg TDH,, Distel DL,, Dupree P,, Etxabe AG,, Goodell BS,, Jellison J,, McGeehan JE,, McQueen-Mason SJ,, Schnorr K,, Walton PH,, Watts JEM,, Zimmer M . 2015. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29 : 108 119.[CrossRef] [PubMed]
25. Brune A . 2014. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12 : 168 180.[CrossRef] [PubMed]
26. Ni J,, Tokuda G . 2013. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31 : 838 850.[CrossRef] [PubMed]
27. Watanabe H,, Tokuda G . 2010. Cellulolytic systems in insects. Annu Rev Entomol 55 : 609 632.[CrossRef] [PubMed]
28. Lange L,, Grell MN . 2014. The prominent role of fungi and fungal enzymes in the ant-fungus biomass conversion symbiosis. Appl Microbiol Biotechnol 98 : 4839 4851.[CrossRef] [PubMed]
29. Huang Y,, Busk PK,, Grell MN,, Zhao H,, Lange L . 2014. Identification of a β-glucosidase from the Mucor circinelloides genome by peptide pattern recognition. Enzyme Microb Technol 67 : 47 52.[CrossRef] [PubMed]
30. Taylor CB,, Talib MF,, McCabe C,, Bu L,, Adney WS,, Himmel ME,, Crowley MF,, Beckham GT . 2012. Computational investigation of glycosylation effects on a family 1 carbohydrate-binding module. J Biol Chem 287 : 3147 3155.[CrossRef] [PubMed]
31. Lombard V,, Golaconda Ramulu H,, Drula E,, Coutinho PM,, Henrissat B . 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42( D1) : D490 D495.[CrossRef] [PubMed]
32. Bech L,, Busk PK,, Lange L . 2014. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fungal Genomics Biol 4 : 116.[CrossRef]
33. Dotsenko G,, Tong X,, Pilgaard B,, Busk PK,, Lange L . 2016. Acidic–alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris . Biocatal Agric Biotechnol 5 : 48 55.
34. Huang Y,, Busk PK,, Lange L . 2015. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases. Enzyme Microb Technol 73–74 : 9 19.[CrossRef] [PubMed]
35. Tong X,, Lange L,, Grell MN,, Busk PK . 2015. Hydrolysis of wheat arabinoxylan by two acetyl xylan esterases from Chaetomium thermophilum . Appl Biochem Biotechnol 175 : 1139 1152.[CrossRef] [PubMed]
36. Várnai A,, Huikko L,, Pere J,, Siika-Aho M,, Viikari L . 2011. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 102 : 9096 9104.[CrossRef] [PubMed]
37. Dutta S,, Wu KC . 2014. Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem 16 : 4615 4626.[CrossRef]
38. Riley R,, Salamov AA,, Brown DW,, Nagy LG,, Floudas D,, Held BW,, Levasseur A,, Lombard V,, Morin E,, Otillar R,, Lindquist EA,, Sun H,, LaButti KM,, Schmutz J,, Jabbour D,, Luo H,, Baker SE,, Pisabarro AG,, Walton JD,, Blanchette RA,, Henrissat B,, Martin F,, Cullen D,, Hibbett DS,, Grigoriev IV . 2014. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA 111 : 9923 9928. (Erratum, 111:14959.)[CrossRef]
39. Fernandez-Fueyo E , , et al . 2012. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci USA 109 : 5458 5463.[CrossRef] [PubMed]
40. Ruiz-Dueñas FJ,, Lundell T,, Floudas D,, Nagy LG,, Barrasa JM,, Hibbett DS,, Martínez AT . 2013. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105 : 1428 1444.[CrossRef] [PubMed]
41. Kudanga T,, Le Roes-Hill M . 2014. Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 98 : 6525 6542.[CrossRef] [PubMed]
42. Becker F,, Schnorr K,, Wilting R,, Tolstrup N,, Bendtsen JD,, Olsen PB . 2004. Development of in vitro transposon assisted signal sequence trapping and its use in screening Bacillus halodurans C125 and Sulfolobus solfataricus P2 gene libraries. J Microbiol Methods 57 : 123 133.[CrossRef] [PubMed]
43. Schnorr KM,, Landvik S,, Spendler T,, Christensen LLH . April 2004. Family gh 61 polypeptides. European patent WO2004031378A2.
44. Harris PV,, Welner D,, McFarland KC,, Re E,, Navarro Poulsen JC,, Brown K,, Salbo R,, Ding H,, Vlasenko E,, Merino S,, Xu F,, Cherry J,, Larsen S,, Lo Leggio L . 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49 : 3305 3316.[CrossRef] [PubMed]
45. Vaaje-Kolstad G . 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330 : 219 222.[PubMed]
46. Horn SJ,, Vaaje-Kolstad G,, Westereng B,, Eijsink VG . 2012. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5 : 45.[CrossRef] [PubMed]
47. Beeson WT,, Vu VV,, Span EA,, Phillips CM,, Marletta MA . 2015. Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84 : 923 946.[CrossRef] [PubMed]
48. Kjaergaard CH,, Qayyum MF,, Wong SD,, Xu F,, Hemsworth GR,, Walton DJ,, Young NA,, Davies GJ,, Walton PH,, Johansen KS,, Hodgson KO,, Hedman B,, Solomon EI . 2014. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Proc Natl Acad Sci USA 111 : 8797 8802.[CrossRef] [PubMed]
49. Westereng B,, Cannella D,, Wittrup Agger J,, Jørgensen H,, Larsen Andersen M,, Eijsink VGH,, Felby C . 2015. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 5 : 18561.[CrossRef] [PubMed]
50. Eijsink VGH,, Vaaje-Kolstad G,, Vårum KM,, Horn SJ . 2008. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 26 : 228 235.[CrossRef] [PubMed]
51. Busk PK,, Lange L . 2015. Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genomics 16 : 368.[CrossRef] [PubMed]
52. Hemsworth GR,, Henrissat B,, Davies GJ,, Walton PH . 2014. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10 : 122 126.[CrossRef] [PubMed]
53. Lo Leggio L,, Simmons TJ,, Poulsen J-CN,, Frandsen KEH,, Hemsworth GR,, Stringer MA,, von Freiesleben P,, Tovborg M,, Johansen KS,, De Maria L,, Harris PV,, Soong C-L,, Dupree P,, Tryfona T,, Lenfant N,, Henrissat B,, Davies GJ,, Walton PH . 2015. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6 : 5961.[CrossRef] [PubMed]
54. Agger JW,, Isaksen T,, Várnai A,, Vidal-Melgosa S,, Willats WGT,, Ludwig R,, Horn SJ,, Eijsink VGH,, Westereng B . 2014. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111 : 6287 6292.[CrossRef] [PubMed]
55. Lange L,, Huang Y,, Busk PK . 2016. Microbial decomposition of keratin in nature: a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100 : 2083 2096.[CrossRef] [PubMed]
56. Busk PK,, Lange L . August 2012. A novel method of providing a library of n-mers or biopolymers. US patent 2012/101151.
57. Busk PK,, Lange L . 2013. Cellulolytic potential of thermophilic species from four fungal orders. AMB Express 3 : 47.[CrossRef] [PubMed]
58. Bayer EA,, Chanzy H,, Lamed R,, Shoham Y . 1998. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8 : 548 557.[CrossRef] [PubMed]
59. Brunecky R,, Alahuhta M,, Xu Q,, Donohoe BS,, Crowley MF,, Kataeva IA,, Yang S-J,, Resch MG,, Adams MWW,, Lunin VV,, Himmel ME,, Bomble YJ . 2013. Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342 : 1513 1516.[PubMed]
60. Martinez D,, Berka RM,, Henrissat B,, Saloheimo M,, Arvas M,, Baker SE,, Chapman J,, Chertkov O,, Coutinho PM,, Cullen D,, Danchin EGJ,, Grigoriev IV,, Harris P,, Jackson M,, Kubicek CP,, Han CS,, Ho I,, Larrondo LF,, de Leon AL,, Magnuson JK,, Merino S,, Misra M,, Nelson B,, Putnam N,, Robbertse B,, Salamov AA,, Schmoll M,, Terry A,, Thayer N,, Westerholm-Parvinen A,, Schoch CL,, Yao J,, Barabote R,, Nelson MA,, Detter C,, Bruce D,, Kuske CR,, Xie G,, Richardson P,, Rokhsar DS,, Lucas SM,, Rubin EM,, Dunn-Coleman N,, Ward M,, Brettin TS . 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26 : 553 560.[CrossRef] [PubMed]
61. Naas AE,, Mackenzie AK,, Mravec J,, Schückel J,, Willats WGT,, Eijsink VGH,, Pope PB . 2014. Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? MBio 5 : e01401-14.[CrossRef] [PubMed]
62. Ekborg NA,, Morrill W,, Burgoyne AM,, Li L,, Distel DL . 2007. CelAB, a multifunctional cellulase encoded by Teredinibacter turnerae T7902T, a culturable symbiont isolated from the wood-boring marine bivalve Lyrodus pedicellatus . Appl Environ Microbiol 73 : 7785 7788.[CrossRef] [PubMed]
63. Rothberg JM,, Leamon JH . 2008. The development and impact of 454 sequencing. Nat Biotechnol 26 : 1117 1124.[CrossRef] [PubMed]
64. Huang Y,, Busk PK,, Lange L . 2015. Production and characterization of keratinolytic proteases produced by Onygena corvina . Fungal Genom Biol 4 : 119.
65. Huang Y,, Busk PK,, Herbst FA,, Lange L . 2015. Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina . Appl Microbiol Biotechnol 99 : 9635 9649.[CrossRef] [PubMed]
66. Alaswad A,, Dassisti M,, Prescott T,, Olabi AG . 2015. Technologies and developments of third generation biofuel production. Renew Sustain Energy Rev 51 : 1446 1460.[CrossRef]
67. Hotchkiss AT,, Olano-Martin E,, Grace WE,, Gibson GR,, Rastall RA, . 2003. Pectic oligosaccharides as prebiotics, p 5 54. In Eggleston G,, Côté GL (ed), Oligosaccharides in Food and Agriculture. ACS Publications, American Chemical Society, Washington, DC.
68. Broekaert WF,, Courtin CM,, Verbeke K,, Van de Wiele T,, Verstraete W,, Delcour JA . 2011. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51 : 178 194.[CrossRef] [PubMed]
69. Yao S,, Mikkelsen MJ . 2010. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii . Appl Microbiol Biotechnol 88 : 199 208.[CrossRef] [PubMed]
70. Larsen L,, Nielsen P,, Ahring BK . 1997. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168 : 114 119.[CrossRef] [PubMed]
71. Grauslund M,, Lopes JM,, Rønnow B . 1999. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion. Nucleic Acids Res 27 : 4391 4398.[CrossRef] [PubMed]
72. Pavlik P,, Simon M,, Schuster T,, Ruis H . 1993. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr Genet 24 : 21 25.[CrossRef] [PubMed]
73. Rønnow B,, Kielland-Brandt MC . 1993. GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae . Yeast 9 : 1121 1130.[CrossRef] [PubMed]
74. Andersen AS,, Sandvang D,, Schnorr KM,, Kruse T,, Neve S,, Joergensen B,, Karlsmark T,, Krogfelt KA . 2010. A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother 65 : 1646 1654.[CrossRef] [PubMed]
75. Ragauskas AJ,, Williams CK,, Davison BH,, Britovsek G,, Cairney J,, Eckert CA,, Frederick WJ Jr,, Hallett JP,, Leak DJ,, Liotta CL,, Mielenz JR,, Murphy R,, Templer R,, Tschaplinski T . 2006. The path forward for biofuels and biomaterials. Science 311 : 484 489.[CrossRef] [PubMed]
76. Ragauskas AJ,, Beckham GT,, Biddy MJ,, Chandra R,, Chen F,, Davis MF,, Davison BH,, Dixon RA,, Gilna P,, Keller M,, Langan P,, Naskar AK,, Saddler JN,, Tschaplinski TJ,, Tuskan GA,, Wyman CE . 2014. Lignin valorization: improving lignin processing in the biorefinery. Science 344 : 1246843.[CrossRef] [PubMed]
77. Bech L,, Herbst F,, Grell M,, Hai Z,, Lange L . 2015. On-site enzyme production by Trichoderma asperellum for the degradation of duckweed. Fungal Genom Biol 5 : 126.[CrossRef]
78. Penttilä M,, Nevalainen H,, Rättö M,, Salminen E,, Knowles J . 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei . Gene 61 : 155 164.[CrossRef]
79. Berka RM,, Schneider P,, Golightly EJ,, Brown SH,, Madden M,, Brown KM,, Halkier T,, Mondorf K,, Xu F . 1997. Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae . Appl Environ Microbiol 63 : 3151 3157.[PubMed]
80. Skjøt M,, Kauppinen S,, Kofod LV,, Fuglsang C,, Pauly M,, Dalbøge H,, Andersen LN . 2001. Functional cloning of an endo-arabinanase from Aspergillus aculeatus and its heterologous expression in A. oryzae and tobacco. Mol Genet Genomics 265 : 913 921.[CrossRef] [PubMed]
81. Dean RA,, Timberlake WE . 1989. Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants. Plant Cell 1 : 265 273.[CrossRef] [PubMed]
82. Pel HJ , , et al . 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25 : 221 231.[CrossRef] [PubMed]
83. Schuster E,, Dunn-Coleman N,, Frisvad JC,, Van Dijck PW . 2002. On the safety of Aspergillus niger: a review. Appl Microbiol Biotechnol 59 : 426 435.[CrossRef] [PubMed]
84. Berka RM,, Rey MW,, Brown KM,, Byun T,, Klotz AV . 1998. Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus . Appl Environ Microbiol 64 : 4423 4427.[PubMed]
85. Jain KK,, Bhanja Dey T,, Kumar S,, Kuhad RC . 2015. Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Bioprocess Biosyst Eng 38 : 787 796.[CrossRef] [PubMed]
86. van Zyl WH,, Lynd LR,, den Haan R,, McBride JE . 2007. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae . Adv Biochem Eng Biotechnol 108 : 205 235.[CrossRef] [PubMed]
87. Macauley-Patrick S,, Fazenda ML,, McNeil B,, Harvey LM . 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22 : 249 270.[CrossRef] [PubMed]
88. Visser H,, Joosten V,, Punt PJ,, Gusakov AV,, Olson PT,, Joosten R,, Bartels J,, Visser J,, Sinitsyn AP,, Emalfarb MA,, Verdoes JC,, Wery J . 2011. Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Ind Biotechnol (New Rochelle NY) 7 : 214 223.[CrossRef]
89. Taylor JW,, Berbee ML . 2006. Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98 : 838 849.[CrossRef] [PubMed]
90. Joshi C . 2014. Du Pont: producing cellulosic ethanol. http://biofueluptodate.com/du-pont/.
91. Kawai T,, Nakazawa H,, Ida N,, Okada H,, Tani S,, Sumitani J,, Kawaguchi T,, Ogasawara W,, Morikawa Y,, Kobayashi Y . 2012. Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol 39 : 1741 1749.[CrossRef] [PubMed]
92. Gusakov AV . 2011. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29 : 419 425.[CrossRef] [PubMed]
93. Gurramkonda C,, Adnan A,, Gäbel T,, Lünsdorf H,, Ross A,, Nemani SK,, Swaminathan S,, Khanna N,, Rinas U . 2009. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen. Microb Cell Fact 8 : 13.[CrossRef] [PubMed]
94. Rytioja J,, Hildén K,, Yuzon J,, Hatakka A,, de Vries RP,, Mäkelä MR . 2014. Plant-polysaccharide-degrading enzymes from Basidiomycetes . Microbiol Mol Biol Rev 78 : 614 649.[CrossRef] [PubMed]
95. Yoder WT,, Lehmbeck J, . 2004. Heterologous expression and protein secretion in filamentous fungi, p 201 219. In Tkacz JS,, Lange L (ed), Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Kluwer Academic/Plenum Publishers, New York, NY.[CrossRef]
96. Gouka RJ,, Punt PJ,, van den Hondel CAMJJ . 1997. Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47 : 1 11.[CrossRef] [PubMed]
97. Hamann T,, Lange L . 2006. Discovery, cloning and heterologous expression of secreted potato proteins reveal erroneous pre-mRNA splicing in Aspergillus oryzae . J Biotechnol 126 : 265 276.[CrossRef] [PubMed]
98. FDA . 2016. Generally recognized as safe (GRAS). http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/.
99. Mhuantong W,, Charoensawan V,, Kanokratana P,, Tangphatsornruang S,, Champreda V . 2015. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels 8 : 16.[CrossRef] [PubMed]
100. Dalbøge H,, Lange L . 1998. Using molecular techniques to identify new microbial biocatalysts. Trends Biotechnol 16 : 265 272.[CrossRef] [PubMed]
101. Araújo R,, Casal M,, Cavaco-Paulo A . 2008. Application of enzymes for textile fibres processing. Biocatalysis Biotransform 26 : 332 349.[CrossRef]
102. Kirk O,, Borchert TV,, Fuglsang CC . 2002. Industrial enzyme applications. Curr Opin Biotechnol 13 : 345 351.[CrossRef] [PubMed]
103. Landbo AK,, Kaack K,, Meyer AS . 2007. Statistically designed two step response surface optimization of enzymatic prepress treatment to increase juice yield and lower turbidity of elderberry juice. Innov Food Sci Emerg Technol 8 : 135 142.[CrossRef]
104. Sarkar J,, Khalil E,, Solaiman M . 2014. Effect of enzyme washing combined with pumice stone on the physical, mechanical and color properties of denim garments. Int J Res Advent Technol 2 : 65 68.
105. Forth P,, Merz T . June 2010. Laundry compositions and methods of use. European patent WO2010064086A1.
106. Schülein M . 1997. Enzymatic properties of cellulases from Humicola insolens . J Biotechnol 57 : 71 81.[CrossRef] [PubMed]
107. Punt PJ,, van Biezen N,, Conesa A,, Albers A,, Mangnus J,, van den Hondel C . 2002. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20 : 200 206.[CrossRef]
108. Gasser CS,, Fraley RT . 1989. Genetically engineering plants for crop improvement. Science 244 : 1293 1299.[CrossRef] [PubMed]
109. Tiedje JM,, Colwell RK,, Grossman YL,, Hodson RE,, Lenski RE,, Mack RN,, Regal PJ . 1989. The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70 : 298 315.[CrossRef]
110. Khosla C,, Bailey JE . 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli . Nature 331 : 633 635.[CrossRef] [PubMed]
111. Ito S,, Kobayashi T,, Hatada Y,, Horikoshi K, . 2005. Enzymes in modern detergents, p 151 161. In Barredo JL (ed), Microbial Enzymes and Biotransformations. Humana Press, Totowa, NJ.[CrossRef]
112. Ministry of Environment and Food of Denmark . Regulering af transport af GMO. http://mst.dk/virksomhed-myndighed/genteknologi/transport-af-gmo/regulering/.
113. Chang Y,, Wang S,, Sekimoto S,, Aerts AL,, Choi C,, Clum A,, LaButti KM,, Lindquist EA,, Yee Ngan C,, Ohm RA,, Salamov AA,, Grigoriev IV,, Spatafora JW,, Berbee ML . 2015. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol 7 : 1590 1601.[CrossRef] [PubMed]
114. Wahleithner JA,, Xu F,, Brown KM,, Brown SH,, Golightly EJ,, Halkier T,, Kauppinen S,, Pederson A,, Schneider P . 1996. The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani . Curr Genet 29 : 395 403.[CrossRef] [PubMed]
115. Jacobsen J,, Lydolph M,, Lange L . 2005. Culture independent PCR: an alternative enzyme discovery strategy. J Microbiol Methods 60 : 63 71.[CrossRef] [PubMed]
116. Schulein M,, Henriksen T,, Andersen LN,, Lassen SF,, Kauppinen MS,, Lange L,, Nielsen RI,, Takagi S,, Ihara M . May 2010. Endoglucanases. US Patent 20100107342.
117. Eijsink VGH,, Gåseidnes S,, Borchert TV,, van den Burg B . 2005. Directed evolution of enzyme stability. Biomol Eng 22 : 21 30.[CrossRef] [PubMed]
118. Ness JE,, Kim S,, Gottman A,, Pak R,, Krebber A,, Borchert TV,, Govindarajan S,, Mundorff EC,, Minshull J . 2002. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat Biotechnol 20 : 1251 1255.[CrossRef] [PubMed]
119. Cherry JR,, Fidantsef AL . 2003. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14 : 438 443.[CrossRef] [PubMed]
120. Crameri A,, Raillard SA,, Bermudez E,, Stemmer WP . 1998. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391 : 288 291.[CrossRef] [PubMed]
121. Stemmer WP . 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370 : 389 391.[CrossRef] [PubMed]
122. Schuster SC . 2008. Next-generation sequencing transforms today’s biology. Nat Methods 5 : 16 18.[CrossRef] [PubMed]

Tables

Generic image for table
Table 1

A selection of well-studied lignocellulose degraders across the fungal kingdom

Citation: Lange L. 2017. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products, p 1029-1048. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0007-2016

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error