1887

Chapter 7 : Fungal Sex: The Basidiomycota

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Fungal Sex: The Basidiomycota, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555819583/9781555819576_Chap07-2.gif

Abstract:

In the phylum Basidiomycota, a wide variety of lifestyles are represented. These range from well-known and conspicuous wood-decaying mushrooms, plant growth-promoting and mutualistic mycorrhizae, and crop-destroying smut and rust fungi, to yeast-like human pathogens. Lifestyle differences have consequences for the mating and breeding systems of these fungi (see “Glossary,” below, for definitions of specialist terms used in this article), which are reflected in the genetic evolution of mating-type determination. For over a century fungi have been recognized as having diverse breeding systems, from homothallism (i.e., universal compatibility among gametes, including among clonemates) to heterothallism (i.e., mating among haploid gametes carrying different mating-type alleles). The study of breeding systems, for example, led to the discovery of the astounding variability in mating-type alleles among mushrooms, with thousands of different mating types in some species ( ), and to the realization that in many fungal pathogens the process of sexual reproduction is closely linked to infection and pathogenicity ( ) ( Fig. 1 ). The importance of basidiomycete fungi and their great research tractability, from ecology to genomics, have brought major insights into the diversification of genetic mechanisms used to achieve sexual reproduction.

Citation: Coelho M, Bakkeren G, Sun S, Hood M, Giraud T. 2017. Fungal Sex: The Basidiomycota, p 147-175. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0046-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

General life cycles of dimorphic and mushroom-forming basidiomycetes. Three basidiomycetes are pictured where sexual reproduction and a dimorphic switch between a yeast cell and a hyphal form are crucial to infection of plant (A, B) or animal (C) hosts. The haploid yeast forms of the maize smut (A) and the anther smut spp. (B) are nonpathogenic and can undergo asexual mitotic vegetative growth. In , the yeast stage is, however, short-lived because mating occurs mostly between cells within the same tetrad. Upon mating with a compatible partner, both fungi switch to an enduring infection hyphal form (dikaryon; n + n) that can invade the host plant. Proliferation and differentiation of in the plant culminates with the production of masses of wind-dispersing diploid spores (teliospores; 2n) in large tumor-like tissues, whereas in , teliospores are formed in the anthers of infected flowers and transmitted by pollinators onto healthy plants. In the case of , the single-celled yeast form may be free-living or mycoparasitic. A similar dimorphic switch occurs upon mating of yeast cells of opposite mating type ( or α), ultimately resulting in the infectious propagules (basidiospores) that potentially infect an animal host after dispersal. These infectious structures may also be generated by haploid selfing (depicted with gray background), where fusion occurs between homothallic cells carrying identical alleles (α/α diploid is depicted) and form monokaryotic hyphae with unfused clamp connections (see text for details). In mushroom-forming fungi such as , germination of haploid spores yields haploid monokaryons capable of independent growth. When two compatible monokaryons meet, a fertile clamped dikaryon is formed which develops into fruiting bodies (mushrooms) triggered upon suitable environmental cues, where basidia arise. In all these and other basidiomycetes, nuclear fusion (karyogamy) is usually delayed until the formation of basidia (or teliospores). Meiosis ensues, generating four haploid nuclei, which give rise to basidiospores to complete the cycle. Adapted from Morrow and Fraser ( ) and Nieuwenhuis et al. ( ) with permission of the publishers.

Citation: Coelho M, Bakkeren G, Sun S, Hood M, Giraud T. 2017. Fungal Sex: The Basidiomycota, p 147-175. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0046-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Phylogeny of the Basidiomycota indicating the breeding system and the number of genes across representative species of the three subphyla. The breeding system and the different taxonomic lineages are color-coded as given in the key and are kept consistent in all figures. Gene numbers shown for each species were obtained either from previous reports ( ) or from newly surveyed genome data (marked with a hash sign after the species name). In the Agaricomycetes, values shown in parentheses are putative non-mating-type pheromone receptors. A question mark indicates cases where information on the breeding system is not available or is uncertain (e.g., because the sexual stage of a species is unknown). A schematic representation of the and loci is given in Fig. 3 for representative species of each lineage marked with numbers enclosed in white circles. Letters in superscript next to the number of pheromone precursor genes indicate that (a) all genes encode the same mature pheromone peptide or that (b) no CAAX motif was detected in one of the putative pheromone precursors. The species phylogenetic tree was constructed in IQ-TREE ( ) using a previously described approach ( ). Branch support values are shown in the tree nodes as given in the key and were assessed with the ultrafast bootstrap approximation (UFBoot) and the approximate likelihood ratio test (SH-aLRT), each with 1,000 replicates. The basidiomycete clade is rooted with sequences from Ascomycete fungi.

Citation: Coelho M, Bakkeren G, Sun S, Hood M, Giraud T. 2017. Fungal Sex: The Basidiomycota, p 147-175. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0046-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Schematic showing the genomic structure and diversity of loci in representative basidiomycete lineages. The genomic organization of the homeodomain () and pheromone/receptor () loci is shown for selected species of the Agaricomycotina and the Ustilaginomycotina and Pucciniomycotina. Arrows indicate genes and their direction of transcription. Putative loci are shaded in light brown, and genes are colored as indicated in the key with different color grades representing different alleles (or paralogs). When known, conserved genes flanking loci (colored light yellow or light blue) are shown within each lineage. Genes that encode components of the pheromone response pathway are shown in pink and are in many cases within the locus. Putative homologs of a protein required for posttranslational modification of pheromone precursors (isoprenyl cysteine methyltransferase [ICMT]) are colored purple and appear near the locus in some species. loci no longer determining mating-type specificity in bipolar Agaricomycetes are depicted with a gray background. In , the two mating-type chromosomes are highly rearranged and enriched in transposable elements, so that only a small number of genes is depicted. Of note, whereas in and genes are far apart on the same chromosome, in and the two sets of genes are closer together. Other genes or genomic features are colored or represented as given in the key. For citations and additional details, see text. Gene names or their associated protein accession numbers are shown as they appear in their respective genome databases, except in species of Ustilaginomycotina and Tremellomycetes, where names were given based on sequence identity to the closest homolog in and , respectively.

Citation: Coelho M, Bakkeren G, Sun S, Hood M, Giraud T. 2017. Fungal Sex: The Basidiomycota, p 147-175. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0046-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Phylogeny of Basidiomycota pheromone receptor proteins. Amino acid sequences identified by BLAST from publicly available databases or from genome projects were retrieved for representative species of the tree subphyla of the Basidiomycota. A total of 106 sequences were manually inspected, amended where necessary, and aligned with MAFFT ( ), and poorly aligned regions were trimmed with trimAl ( ). The phylogenetic tree and branch support were obtained as in Fig. 2 , and the tree was rooted with Ste3p. GenBank accession numbers (*), Joint Genome Institute protein identifiers (**), and RIKEN/NBRP identifiers (***) are given after the strain name, with letters in superscript indicating (a) genomes assembled from available raw sequencing data and inspected locally, (b) genomic contigs/scaffolds lacking gene annotation, and (c) genes whose annotation was corrected. Species highlighted in boldface are shown in Fig. 3 , with arrows before their names indicating the allelic version (or paralog) of the pheromone receptor as colored in Fig. 3 . Of note, the and alleles in the Microbotryomycetes (Pucciniomycotina) displayed the deepest allelic divergence and trans-specific polymorphism, with the alleles of the different species branching together rather than each of these alleles clustering with the allele from the same species ( ).

Citation: Coelho M, Bakkeren G, Sun S, Hood M, Giraud T. 2017. Fungal Sex: The Basidiomycota, p 147-175. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0046-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Roles of and genes on the formation and maintenance of the dikaryon in . Pheromone signaling is not required to attract mates, and hyphal fusion is mating-type independent (diagram 1). Upon fusion, nuclei enter the mycelium of the other mate and migrate until they reach a hyphal tip cell (diagram 2). During hyphal tip elongation, the two types of haploid nuclei (depicted in white and black, representing different genotypes) pair at the tip cell (diagram 3), and at the place where mitosis will take place, a hook-like structure (called a clamp connection) is formed (diagram 4). The two nuclei divide synchronously: one of the nuclei divides in the direction of the clamp cell that is growing backward toward the main hyphae, while the other divides along the main hyphal axis (diagram 5). Septa are generated between the dividing nuclei. This way one nucleus stays temporarily entrapped in the clamp cell, one nucleus of the other type is enclosed in the newly formed subapical cell, and a nucleus of each type is maintained in the emerging hyphal tip cell (diagram 6). The clamp cell fuses with the subapical cell and releases the entrapped nucleus from the clamp cell, restoring the dikaryotic state of the subapical cell (diagram 7). In , steps controlled by (diagrams 2 and 7) and (diagrams 3 to 6) genes are colored red and green, respectively. See Casselton et al. ( ) and Kües ( ) for details. The micrograph at the bottom was obtained from Stajich et al. ( ), with permission.

Citation: Coelho M, Bakkeren G, Sun S, Hood M, Giraud T. 2017. Fungal Sex: The Basidiomycota, p 147-175. In Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (ed), The Fungal Kingdom. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.FUNK-0046-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819583.chap7
1. Raper JR . 1966. Genetics of Sexuality in Higher Fungi. Roland Press, New York, NY.[PubMed]
2. Morrow CA,, Fraser JA . 2009. Sexual reproduction and dimorphism in the pathogenic basidiomycetes. FEMS Yeast Res 9 : 161177.[CrossRef]
3. Hibbett DS , , et al . 2007. A higher-level phylogenetic classification of the Fungi. Mycol Res 111 : 509547.[CrossRef]
4. Kirk MP,, Cannon PF,, Minter DW,, Stalpers JA . 2008. Dictionary of the Fungi, 10th ed. CABI, Oxon, United Kingdom.
5. Hibbett DS . 2006. A phylogenetic overview of the Agaricomycotina. Mycologia 98 : 917925.[CrossRef]
6. Begerow D,, Bauer R,, Boekhout T . 2000. Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycol Res 104 : 5360.[CrossRef]
7. Begerow D,, Schäfer AM,, Kellner R,, Yurkov A,, Kemler M,, Oberwinkler F,, Bauer R, . 2014. Ustilaginomycotina, p 295329. In McLaughlin DJ,, Spatafora JW (ed), Systematics and Evolution: Part A. Springer, Heidelberg, Germany.[CrossRef]
8. Aime MC,, Toome M,, McLaughlin DJ, . 2014. Pucciniomycotina, p 271294. In McLaughlin DJ,, Spatafora JW (ed), Systematics and Evolution: Part A. Springer. Heidelberg, Germany.[CrossRef]
9. Aime MC,, Matheny PB,, Henk DA,, Frieders EM,, Nilsson RH,, Piepenbring M,, McLaughlin DJ,, Szabo LJ,, Begerow D,, Sampaio JP,, Bauer R,, Weiss M,, Oberwinkler F,, Hibbett D . 2006. An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98 : 896905.[CrossRef]
10. Bary A,, Balfour BI,, Garnser HEF . 1887. Comparative Morphology and Biology of the Fungi, Mycetozoa and Bacteria. Clarendon Press, Oxford, United Kingdom.[CrossRef]
11. Kniep H . 1928. Die Sexualität der Niederen Pflanzen. G. Fischer, Jena, Germany.
12. Buller AHR . 1930. The biological significance of conjugate nuclei in Coprinus lagopus and other hymenomycetes. Nature 126 : 686689.[CrossRef]
13. Whitehouse HLK . 1949. Multiple-allelomorph heterothallism in the fungi. New Phytol 48 : 212244.[CrossRef]
14. Meinhardt F,, Esser K,, Lemke PA . 1990. Sex determination and sexual differentiation in filamentous fungi. Crit Rev Plant Sci 9 : 329341.[CrossRef]
15. Billiard S,, López-Villavicencio M,, Devier B,, Hood ME,, Fairhead C,, Giraud T . 2011. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev Camb Philos Soc 86 : 421442.[CrossRef] [PubMed]
16. James TY . 2015. Why mushrooms have evolved to be so promiscuous: insights from evolutionary and ecological patterns. Fungal Biol Rev 29 : 167178.[CrossRef]
17. Nieuwenhuis BPS,, Billiard S,, Vuilleumier S,, Petit E,, Hood ME,, Giraud T . 2013. Evolution of uni- and bifactorial sexual compatibility systems in fungi. Hered (Edinb) 111 : 445455.[CrossRef]
18. Casselton LA,, Olesnicky NS . 1998. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62 : 5570.[PubMed]
19. Lee SC,, Ni M,, Li W,, Shertz C,, Heitman J . 2010. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74 : 298340.[CrossRef]
20. Kües U . 2015. From two to many: multiple mating types in Basidiomycetes. Fungal Biol Rev 29 : 126166.[CrossRef]
21. Kües U,, Casselton LA . 1992. Fungal mating type genes: regulators of sexual development. Mycol Res 96 : 9931006.[CrossRef]
22. Kothe E . 1996. Tetrapolar fungal mating types: sexes by the thousands. FEMS Microbiol Rev 18 : 6587.[CrossRef]
23. Raper J,, Flexer A, . 1971. Mating systems and evolution of the Basidiomycetes, p 149167. In Petersen RH (ed), Evolution in the Higher Basidiomycetes. University of Tennessee Press, Knoxville, TN.
24. Whitehouse HLK . 1951. A survey of heterothallism in the Ustilaginales. Trans Br Mycol Soc 34 : 340355.[CrossRef]
25. Buller AHR . 1950. Researches on Fungi: the Sexual Process in the Uredinales. University of Toronto Press, Toronto, Canada.
26. Bölker M,, Urban M,, Kahmann R . 1992. The a mating type locus of U. maydis specifies cell signaling components. Cell 68 : 441450.[CrossRef]
27. Manolaridis I,, Kulkarni K,, Dodd RB,, Ogasawara S,, Zhang Z,, Bineva G,, O’Reilly N,, Hanrahan SJ,, Thompson AJ,, Cronin N,, Iwata S,, Barford D . 2013. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504 : 301305.[CrossRef]
28. Raudaskoski M,, Kothe E . 2010. Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 9 : 847859.[CrossRef]
29. Xue C,, Hsueh YP,, Heitman J . 2008. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32 : 10101032.[CrossRef]
30. Kamiya Y,, Sakurai A,, Tamura S,, Takahashi N,, Abe K,, Tsuchiya E,, Fukui S,, Kitada C,, Fujino M . 1978. Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides . Biochem Biophys Res Commun 83 : 10771083.[CrossRef]
31. Kamiya Y,, Sakurai A,, Tamura S,, Takahashi N,, Abe K,, Tsuchiya E,, Fukui S . 1978. Isolation of rhodotorucine A, a peptidyl factor inducing the mating tube formation in Rhodosporidium toruloides . Agric Biol Chem 42 : 12391243.
32. Miyakawa T,, Tabata M,, Tsuchiya E,, Fukui S . 1985. Biosynthesis and secretion of tremerogen A-10, a polyisoprenyl peptide mating pheromone of Tremella mesenterica . Eur J Biochem 147 : 489493.[CrossRef]
33. Spellig T,, Bölker M,, Lottspeich F,, Frank RW,, Kahmann R . 1994. Pheromones trigger filamentous growth in Ustilago maydis . EMBO J 13 : 16201627.[PubMed]
34. Moore TD,, Edman JC . 1993. The α-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13 : 19621970.[CrossRef]
35. Wendland J,, Vaillancourt LJ,, Hegner J,, Lengeler KB,, Laddison KJ,, Specht CA,, Raper CA,, Kothe E . 1995. The mating-type locus B α 1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J 14 : 52715278.[PubMed]
36. O’Shea SF,, Chaure PT,, Halsall JR,, Olesnicky NS,, Leibbrandt A,, Connerton IF,, Casselton LA . 1998. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus . Genetics 148 : 10811090.[PubMed]
37. Caldwell GA,, Naider F,, Becker JM . 1995. Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation. Microbiol Rev 59 : 406422.[PubMed]
38. Michaelis S,, Barrowman J . 2012. Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol Mol Biol Rev 76 : 626651.[CrossRef]
39. Coelho MA,, Rosa A,, Rodrigues N,, Fonseca A,, Gonçalves P . 2008. Identification of mating type genes in the bipolar basidiomycetous yeast Rhodosporidium toruloides: first insight into the MAT locus structure of the Sporidiobolales. Eukaryot Cell 7 : 10531061.[CrossRef]
40. Duplessis S,, Cuomo CA,, Lin YC,, Aerts A,, Tisserant E,, Veneault-Fourrey C,, Joly DL,, Hacquard S,, Amselem J,, Cantarel BL,, Chiu R,, Coutinho PM,, Feau N,, Field M,, Frey P,, Gelhaye E,, Goldberg J,, Grabherr MG,, Kodira CD,, Kohler A,, Kües U,, Lindquist EA,, Lucas SM,, Mago R,, Mauceli E,, Morin E,, Murat C,, Pangilinan JL,, Park R,, Pearson M,, Quesneville H,, Rouhier N,, Sakthikumar S,, Salamov AA,, Schmutz J,, Selles B,, Shapiro H,, Tanguay P,, Tuskan GA,, Henrissat B,, Van de Peer Y,, Rouzé P,, Ellis JG,, Dodds PN,, Schein JE,, Zhong S,, Hamelin RC,, Grigoriev IV,, Szabo LJ,, Martin F . 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 108 : 91669171.[CrossRef]
41. Kües U,, James TY,, Heitman J, . 2011. Mating type in basidiomycetes: unipolar, bipolar, and tetrapolar patterns of sexuality, p 97160. In Pöggeler S,, Wöstemeyer J (ed), Evolution of Fungi and Fungal-Like Organisms, vol 6. Springer, Heidelberg, Germany.[CrossRef]
42. Maia TM,, Lopes ST,, Almeida JM,, Rosa LH,, Sampaio JP,, Gonçalves P,, Coelho MA . 2015. Evolution of mating systems in basidiomycetes and the genetic architecture underlying mating-type determination in the yeast Leucosporidium scottii . Genetics 201 : 7589.[CrossRef]
43. Xu L,, Petit E,, Hood ME . 2016. Variation in mate-recognition pheromones of the fungal genus Microbotryum . Hered (Edinb) 116 : 4451.[CrossRef]
44. Akada R,, Minomi K,, Kai J,, Yamashita I,, Miyakawa T,, Fukui S . 1989. Multiple genes coding for precursors of rhodotorucine A, a farnesyl peptide mating pheromone of the basidiomycetous yeast Rhodosporidium toruloides . Mol Cell Biol 9 : 34913498.[CrossRef]
45. Coelho MA,, Sampaio JP,, Gonçalves P . 2010. A deviation from the bipolar-tetrapolar mating paradigm in an early diverged basidiomycete. PLoS Genet 6 : e1001052.[CrossRef]
46. Abe K,, Kusaka I,, Fukui S . 1975. Morphological change in the early stages of the mating process of Rhodosporidium toruloides . J Bacteriol 122 : 710718.[PubMed]
47. Day AW . 1976. Communication through fimbriae during conjugation in a fungus. Nature 262 : 583584.[CrossRef]
48. Feldbrügge M,, Kämper J,, Steinberg G,, Kahmann R . 2004. Regulation of mating and pathogenic development in Ustilago maydis . Curr Opin Microbiol 7 : 666672.[CrossRef] [PubMed]
49. Zarnack K,, Eichhorn H,, Kahmann R,, Feldbrügge M . 2008. Pheromone-regulated target genes respond differentially to MAPK phosphorylation of transcription factor Prf1. Mol Microbiol 69 : 10411053.
50. Nadal M,, García-Pedrajas MD,, Gold SE . 2008. Dimorphism in fungal plant pathogens. FEMS Microbiol Lett 284 : 127134.[CrossRef]
51. Hartmann HA,, Kahmann R,, Bölker M . 1996. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis . EMBO J 15 : 16321641.[PubMed]
52. Urban M,, Kahmann R,, Bölker M . 1996. Identification of the pheromone response element in Ustilago maydis . Mol Gen Genet 251 : 3137.[PubMed]
53. Banham AH,, Asante-Owusu RN,, Göttgens B,, Thompson S,, Kingsnorth CS,, Mellor E,, Casselton LA . 1995. An N-terminal dimerization domain permits homeodomain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus . Plant Cell 7 : 773783.[CrossRef]
54. Kämper J,, Reichmann M,, Romeis T,, Bölker M,, Kahmann R . 1995. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis . Cell 81 : 7383.[CrossRef]
55. Kahmann R,, Bölker M . 1996. Self/nonself recognition in fungi: old mysteries and simple solutions. Cell 85 : 145148.[CrossRef]
56. Badrane H,, May G . 1999. The divergence-homogenization duality in the evolution of the b1 mating type gene of Coprinus cinereus . Mol Biol Evol 16 : 975986.[CrossRef]
57. Yee AR,, Kronstad JW . 1993. Construction of chimeric alleles with altered specificity at the b incompatibility locus of Ustilago maydis . Proc Natl Acad Sci USA 90 : 664668.[CrossRef]
58. Yee AR,, Kronstad JW . 1998. Dual sets of chimeric alleles identify specificity sequences for the bE and bW mating and pathogenicity genes of Ustilago maydis . Mol Cell Biol 18 : 221232.[CrossRef]
59. Schulz B,, Banuett F,, Dahl M,, Schlesinger R,, Schäfer W,, Martin T,, Herskowitz I,, Kahmann R . 1990. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60 : 295306.[CrossRef]
60. Wahl R,, Zahiri A,, Kämper J . 2010. The Ustilago maydis b mating type locus controls hyphal proliferation and expression of secreted virulence factors in planta. Mol Microbiol 75 : 208220.[CrossRef]
61. Giraud T,, Yockteng R,, López-Villavicencio M,, Refrégier G,, Hood ME . 2008. Mating system of the anther smut fungus Microbotryum violaceum: selfing under heterothallism. Eukaryot Cell 7 : 765775.[CrossRef]
62. Kahmann R,, Kämper J . 2004. Ustilago maydis: how its biology relates to pathogenic development. New Phytol 164 : 3142.[CrossRef]
63. Fedler M,, Luh KS,, Stelter K,, Nieto-Jacobo F,, Basse CW . 2009. The a2 mating-type locus genes lga2 and rga2 direct uniparental mitochondrial DNA (mtDNA) inheritance and constrain mtDNA recombination during sexual development of Ustilago maydis . Genetics 181 : 847860.[CrossRef]
64. Schirawski J,, Heinze B,, Wagenknecht M,, Kahmann R . 2005. Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot Cell 4 : 13171327.[CrossRef]
65. Kellner R,, Vollmeister E,, Feldbrügge M,, Begerow D . 2011. Interspecific sex in grass smuts and the genetic diversity of their pheromone-receptor system. PLoS Genet 7 : e1002436. (Erratum, doi:10.1371/annotation/5febc52b-339c-4f47-82c0-03d417516446.)[CrossRef]
66. Riess K,, Schön ME,, Lutz M,, Butin H,, Oberwinkler F,, Garnica S . 2016. On the evolutionary history of Uleiella chilensis, a smut fungus parasite of Araucaria araucana in South America: uleiellales ord. nov. in Ustilaginomycetes. PLoS One 11 : e0147107.[CrossRef]
67. Gillissen B,, Bergemann J,, Sandmann C,, Schroeer B,, Bölker M,, Kahmann R . 1992. A two-component regulatory system for self/non-self recognition in Ustilago maydis . Cell 68 : 647657.[CrossRef]
68. Puhalla JE . 1970. Genetic studies of the b incompatability locus of Ustilago maydis . Genet Res 16 : 229232.[CrossRef]
69. Wong GJ,, Wells K . 1985. Modified bifactorial incompatibility in Tremella mesenterica . Trans Br Mycol Soc 84 : 95109.[CrossRef]
70. Metin B,, Findley K,, Heitman J . 2010. The mating type locus (MAT) and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi. PLoS Genet 6 : e1000961.[CrossRef]
71. Findley K,, Sun S,, Fraser JA,, Hsueh Y-P,, Averette AF,, Li W,, Dietrich FS,, Heitman J . 2012. Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex. PLoS Genet 8 : e1002528.[CrossRef]
72. Guerreiro MA,, Springer DJ,, Rodrigues JA,, Rusche LN,, Findley K,, Heitman J,, Fonseca A . 2013. Molecular and genetic evidence for a tetrapolar mating system in the basidiomycetous yeast Kwoniella mangrovensis and two novel sibling species. Eukaryot Cell 12 : 746760.[CrossRef]
73. Hood ME,, Scott M,, Hwang M . 2015. Breaking linkage between mating compatibility factors: tetrapolarity in Microbotryum . Evolution 69 : 25612572.[CrossRef]
74. Yurkov A,, Guerreiro MA,, Sharma L,, Carvalho C,, Fonseca Á . 2015. Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales). PLoS One 10 : e0120400. (Erratum, 10.1371/journal.pone.0126996.)[CrossRef]
75. Koh CM,, Liu Y,, Moehninsi,, Du M,, Ji L . 2014. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides . BMC Microbiol 14 : 50.[CrossRef]
76. Nichols CB,, Fraser JA,, Heitman J . 2004. PAK kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans . Mol Biol Cell 15 : 44764489.[CrossRef]
77. Smith DG,, Garcia-Pedrajas MD,, Hong W,, Yu Z,, Gold SE,, Perlin MH . 2004. An ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity. Eukaryot Cell 3 : 180189.[CrossRef]
78. Coelho MA,, Gonçalves P,, Sampaio JP . 2011. Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes. BMC Evol Biol 11 : 249.[CrossRef] [PubMed]
79. Billiard S,, López-Villavicencio M,, Hood ME,, Giraud T . 2012. Sex, outcrossing and mating types: unsolved questions in fungi and beyond. J Evol Biol 25 : 10201038.[CrossRef]
80. Riquelme M,, Challen MP,, Casselton LA,, Brown AJ . 2005. The origin of multiple B mating specificities in Coprinus cinereus . Genetics 170 : 11051119.[CrossRef]
81. Day PR . 1960. The structure of the A mating type locus in Coprinus lagopus . Genetics 45 : 641650.[PubMed]
82. Lukens L,, Yicun H,, May G . 1996. Correlation of genetic and physical maps at the A mating-type locus of Coprinus cinereus . Genetics 144 : 14711477.[PubMed]
83. Kües U,, Casselton LA . 1993. The origin of multiple mating types in mushrooms. J Cell Sci 104 : 227230.
84. Kües U,, Richardson WV,, Tymon AM,, Mutasa ES,, Göttgens B,, Gaubatz S,, Gregoriades A,, Casselton LA . 1992. The combination of dissimilar alleles of the A α and A β gene complexes, whose proteins contain homeo domain motifs, determines sexual development in the mushroom Coprinus cinereus . Genes Dev 6 : 568577.[CrossRef]
85. Pardo EH,, O’Shea SF,, Casselton LA . 1996. Multiple versions of the A mating type locus of Coprinus cinereus are generated by three paralogous pairs of multiallelic homeobox genes. Genetics 144 : 8794.[PubMed]
86. Stajich JE,, Wilke SK,, Ahrén D,, Au CH,, Birren BW,, Borodovsky M,, Burns C,, Canbäck B,, Casselton LA,, Cheng CK,, Deng J,, Dietrich FS,, Fargo DC,, Farman ML,, Gathman AC,, Goldberg J,, Guigó R,, Hoegger PJ,, Hooker JB,, Huggins A,, James TY,, Kamada T,, Kilaru S,, Kodira C,, Kües U,, Kupfer D,, Kwan HS,, Lomsadze A,, Li W,, Lilly WW,, Ma LJ,, Mackey AJ,, Manning G,, Martin F,, Muraguchi H,, Natvig DO,, Palmerini H,, Ramesh MA,, Rehmeyer CJ,, Roe BA,, Shenoy N,, Stanke M,, Ter-Hovhannisyan V,, Tunlid A,, Velagapudi R,, Vision TJ,, Zeng Q,, Zolan ME,, Pukkila PJ . 2010. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci USA 107 : 1188911894.[CrossRef]
87. Fowler TJ,, Mitton MF,, Rees EI,, Raper CA . 2004. Crossing the boundary between the Bα and Bβ mating-type loci in Schizophyllum commune . Fungal Genet Biol 41 : 89101.[CrossRef]
88. Kües U,, Nelson DR,, Liu C,, Yu G-J,, Zhang J,, Li J,, Wang X-C,, Sun H . 2015. Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles. Phytochemistry 114 : 1837.[CrossRef]
89. Kamada T . 2002. Molecular genetics of sexual development in the mushroom Coprinus cinereus . BioEssays 24 : 449459.[CrossRef]
90. Kües U . 2000. Life history and developmental processes in the basidiomycete Coprinus cinereus . Microbiol Mol Biol Rev 64 : 316353.[CrossRef]
91. Casselton LA,, Kües U, . 2007. The origin of multiple mating types in the model mushrooms Coprinopsis cinerea and Schizophyllum commune , p 283300. In Heitman J,, Kronstad JW,, Taylor JW,, Casselton LA (ed), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.[CrossRef]
92. Tymon AM,, Kües U,, Richardson WV,, Casselton LA . 1992. A fungal mating type protein that regulates sexual and asexual development contains a POU-related domain. EMBO J 11 : 18051813.[PubMed]
93. Swiezynski KM,, Day PR . 1960. Heterokaryon formation in Coprinus lagopus . Genet Res 1 : 114128.[CrossRef]
94. James TY,, Lee M,, van Diepen LT . 2011. A single mating-type locus composed of homeodomain genes promotes nuclear migration and heterokaryosis in the white-rot fungus Phanerochaete chrysosporium . Eukaryot Cell 10 : 249261.[CrossRef]
95. van Peer AF,, Park S-Y,, Shin P-G,, Jang K-Y,, Yoo Y-B,, Park Y-J,, Lee B-M,, Sung G-H,, James TY,, Kong W-S . 2011. Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions. PLoS One 6 : e22249.[CrossRef]
96. Freihorst D,, Fowler TJ,, Bartholomew K,, Raudaskoski M,, Horton JS,, Kothe E, . 2016. The mating-type genes of the basidiomycetes, p 329349. In Wendland J (ed), Growth, Differentiation and Sexuality, 3rd ed, vol 13. Springer International Publishing, Cham, Switzerland.[CrossRef]
97. Martinez D,, Larrondo LF,, Putnam N,, Gelpke MD,, Huang K,, Chapman J,, Helfenbein KG,, Ramaiya P,, Detter JC,, Larimer F,, Coutinho PM,, Henrissat B,, Berka R,, Cullen D,, Rokhsar D . 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22 : 695700.[CrossRef]
98. Niculita-Hirzel H,, Labbé J,, Kohler A,, le Tacon F,, Martin F,, Sanders IR,, Kües U . 2008. Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. New Phytol 180 : 329342.[CrossRef]
99. Martinez D , , et al . 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106 : 19541959.[CrossRef]
100. James TY,, Sun S,, Li W,, Heitman J,, Kuo H-C,, Lee Y-H,, Asiegbu FO,, Olson A . 2013. Polyporales genomes reveal the genetic architecture underlying tetrapolar and bipolar mating systems. Mycologia 105 : 13741390.[CrossRef]
101. Hsueh YP,, Xue C,, Heitman J . 2009. A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans . EMBO J 28 : 12201233.[CrossRef]
102. James TY, . 2007. Analysis of mating-type locus organization and synteny in mushroom fungi: beyond model species, p 317331. In Heitman J,, Kronstad JW,, Taylor JW,, Casselton LA (ed), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.[CrossRef]
103. Ohm RA,, de Jong JF,, Lugones LG,, Aerts A,, Kothe E,, Stajich JE,, de Vries RP,, Record E,, Levasseur A,, Baker SE,, Bartholomew KA,, Coutinho PM,, Erdmann S,, Fowler TJ,, Gathman AC,, Lombard V,, Henrissat B,, Knabe N,, Kües U,, Lilly WW,, Lindquist E,, Lucas S,, Magnuson JK,, Piumi F,, Raudaskoski M,, Salamov A,, Schmutz J,, Schwarze FW,, vanKuyk PA,, Horton JS,, Grigoriev IV,, Wösten HA . 2010. Genome sequence of the model mushroom Schizophyllum commune . Nat Biotechnol 28 : 957963.[CrossRef]
104. Raper JR,, Baxter MG,, Ellingboe AH . 1960. The genetic structure of the incompatibility factors of Schizophyllum commune: the A-factor. Proc Natl Acad Sci USA 46 : 833842.[CrossRef]
105. Díaz-Valderrama JR,, Aime MC . 2016. The cacao pathogen Moniliophthora roreri (Marasmiaceae) possesses biallelic A and B mating loci but reproduces clonally. Hered (Edinb) 116 : 491501.[CrossRef]
106. Au CH,, Wong MC,, Bao D,, Zhang M,, Song C,, Song W,, Law PTW,, Kües U,, Kwan HS . 2014. The genetic structure of the A mating-type locus of Lentinula edodes . Gene 535 : 184190.[CrossRef]
107. Hsueh YP,, Fraser JA,, Heitman J . 2008. Transitions in sexuality: recapitulation of an ancestral tri- and tetrapolar mating system in Cryptococcus neoformans . Eukaryot Cell 7 : 18471855.[CrossRef]
108. Heitman J,, Sun S,, James TY . 2013. Evolution of fungal sexual reproduction. Mycologia 105 : 127.[CrossRef]
109. Hibbett DS,, Donoghue MJ . 2001. Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst Biol 50 : 215242.[CrossRef]
110. Wang QM,, Begerow D,, Groenewald M,, Liu XZ,, Theelen B,, Bai FY,, Boekhout T . 2015. Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81 : 5583.[CrossRef]
111. Froeliger EH,, Leong SA . 1991. The a mating-type alleles of Ustilago maydis are idiomorphs. Gene 100 : 113122.[CrossRef]
112. Kronstad JW,, Leong SA . 1989. Isolation of two alleles of the b locus of Ustilago maydis . Proc Natl Acad Sci USA 86 : 978982.[CrossRef] [PubMed]
113. Bakkeren G,, Kronstad JW . 1994. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. Proc Natl Acad Sci USA 91 : 70857089.[CrossRef]
114. Bakkeren G,, Kronstad JW . 1996. The pheromone cell signaling components of the Ustilago a mating-type loci determine intercompatibility between species. Genetics 143 : 16011613.[PubMed]
115. Lee N,, Bakkeren G,, Wong K,, Sherwood JE,, Kronstad JW . 1999. The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Proc Natl Acad Sci USA 96 : 1502615031.[CrossRef]
116. Kämper J , , et al . 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis . Nature 444 : 97101.[CrossRef]
117. Schirawski J,, Mannhaupt G,, Münch K,, Brefort T,, Schipper K,, Doehlemann G,, Di Stasio M,, Rössel N,, Mendoza-Mendoza A,, Pester D,, Müller O,, Winterberg B,, Meyer E,, Ghareeb H,, Wollenberg T,, Münsterkötter M,, Wong P,, Walter M,, Stukenbrock E,, Güldener U,, Kahmann R . 2010. Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330 : 15461548.[CrossRef]
118. Laurie JD,, Ali S,, Linning R,, Mannhaupt G,, Wong P,, Güldener U,, Münsterkötter M,, Moore R,, Kahmann R,, Bakkeren G,, Schirawski J . 2012. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24 : 17331745.[CrossRef]
119. Que Y,, Xu L,, Wu Q,, Liu Y,, Ling H,, Liu Y,, Zhang Y,, Guo J,, Su Y,, Chen J,, Wang S,, Zhang C . 2014. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. BMC Genomics 15 : 996. (Erratum, 16:244, doi:10.1186/s12864-015-1336-4.)[CrossRef]
120. Taniguti LM,, Schaker PDC,, Benevenuto J,, Peters LP,, Carvalho G,, Palhares A,, Quecine MC,, Nunes FRS,, Kmit MCP,, Wai A,, Hausner G,, Aitken KS,, Berkman PJ,, Fraser JA,, Moolhuijzen PM,, Coutinho LL,, Creste S,, Vieira MLC,, Kitajima JP,, Monteiro-Vitorello CB . 2015. Complete genome sequence of Sporisorium scitamineum and biotrophic interaction transcriptome with sugarcane. PLoS One 10 : e0129318.[CrossRef]
121. Rabe F,, Bosch J,, Stirnberg A,, Guse T,, Bauer L,, Seitner D,, Rabanal FA,, Czedik-Eysenberg A,, Uhse S,, Bindics J,, Genenncher B,, Navarrete F,, Kellner R,, Ekker H,, Kumlehn J,, Vogel JP,, Gordon SP,, Marcel TC,, Münsterkötter M,, Walter MC,, Sieber CMK,, Mannhaupt G,, Güldener U,, Kahmann R,, Djamei A . 2016. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. eLife 5 : e20522.[CrossRef]
122. Gray YH . 2000. It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet 16 : 461468.[CrossRef]
123. Gioti A,, Nystedt B,, Li W,, Xu J,, Andersson A,, Averette AF,, Münch K,, Wang X,, Kappauf C,, Kingsbury JM,, Kraak B,, Walker LA,, Johansson HJ,, Holm T,, Lehtiö J,, Stajich JE,, Mieczkowski P,, Kahmann R,, Kennell JC,, Cardenas ME,, Lundeberg J,, Saunders CW,, Boekhout T,, Dawson TL,, Munro CA,, de Groot PW,, Butler G,, Heitman J,, Scheynius A . 2013. Genomic insights into the atopic eczema-associated skin commensal yeast Malassezia sympodialis . MBio 4 : e00572-12.[CrossRef]
124. Wu G,, Zhao H,, Li C,, Rajapakse MP,, Wong WC,, Xu J,, Saunders CW,, Reeder NL,, Reilman RA,, Scheynius A,, Sun S,, Billmyre BR,, Li W,, Averette AF,, Mieczkowski P,, Heitman J,, Theelen B,, Schröder MS,, De Sessions PF,, Butler G,, Maurer-Stroh S,, Boekhout T,, Nagarajan N,, Dawson TL Jr . 2015. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet 11 : e1005614.[CrossRef]
125. Xu J,, Saunders CW,, Hu P,, Grant RA,, Boekhout T,, Kuramae EE,, Kronstad JW,, Deangelis YM,, Reeder NL,, Johnstone KR,, Leland M,, Fieno AM,, Begley WM,, Sun Y,, Lacey MP,, Chaudhary T,, Keough T,, Chu L,, Sears R,, Yuan B,, Dawson TL Jr . 2007. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA 104 : 1873018735.[CrossRef]
126. Hagen F,, Khayhan K,, Theelen B,, Kolecka A,, Polacheck I,, Sionov E,, Falk R,, Parnmen S,, Lumbsch HT,, Boekhout T . 2015. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78 : 1648.[CrossRef]
127. Hull CM,, Boily MJ,, Heitman J . 2005. Sex-specific homeodomain proteins Sxi1α and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans . Eukaryot Cell 4 : 526535.[CrossRef]
128. Hsueh YP,, Idnurm A,, Heitman J . 2006. Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PLoS Genet 2 : e184.[CrossRef]
129. Sun S,, Billmyre RB,, Mieczkowski PA,, Heitman J . 2014. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans . PLoS Genet 10 : e1004849.[CrossRef]
130. Janbon G , et al . 2014. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet 10 : e1004261.[CrossRef]
131. Sun S,, Xu J . 2009. Chromosomal rearrangements between serotype A and D strains in Cryptococcus neoformans . PLoS One 4 : e5524.[CrossRef]
132. Kourist R,, Bracharz F,, Lorenzen J,, Kracht ON,, Chovatia M,, Daum C,, Deshpande S,, Lipzen A,, Nolan M,, Ohm RA,, Grigoriev IV,, Sun S,, Heitman J,, Brück T,, Nowrousian M . 2015. Genomics and transcriptomics analyses of the oil-accumulating basidiomycete yeast Trichosporon oleaginosus: insights into substrate utilization and alternative evolutionary trajectories of fungal mating systems. MBio 6 : e00918-15.[CrossRef]
133. Idnurm A,, Hood ME,, Johannesson H,, Giraud T . 2015. Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination. Fungal Biol Rev 29 : 220229.[CrossRef]
134. Le Gac M,, Hood ME,, Fournier E,, Giraud T . 2007. Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 61 : 1526.[CrossRef]
135. Le Gac M,, Hood ME,, Giraud T . 2007. Evolution of reproductive isolation within a parasitic fungal species complex. Evolution 61 : 17811787.[CrossRef]
136. Bernasconi G,, Antonovics J,, Biere A,, Charlesworth D,, Delph LF,, Filatov D,, Giraud T,, Hood ME,, Marais GA,, McCauley D,, Pannell JR,, Shykoff JA,, Vyskot B,, Wolfe LM,, Widmer A . 2009. Silene as a model system in ecology and evolution. Hered (Edinb) 103 : 514.[CrossRef]
137. Devier B,, Aguileta G,, Hood ME,, Giraud T . 2009. Ancient trans-specific polymorphism at pheromone receptor genes in basidiomycetes. Genetics 181 : 209223.[CrossRef]
138. Kniep H . 1919. Untersuchungen über den Antherenbrand (Ustilago violacea Pers.). Ein Beitrag zum Sexualitätsproblem. Ztschr Bot 11 : 257284.
139. Hood ME . 2002. Dimorphic mating-type chromosomes in the fungus Microbotryum violaceum . Genetics 160 : 457461.[PubMed]
140. Giraud T,, Jonot O,, Shykoff JA . 2005. Selfing propensity under choice conditions in a parasitic fungus, Microbotryum violaceum, and parameters influencing infection success in artificial inoculations. Int J Plant Sci 166 : 649657.[CrossRef]
141. Hood ME,, Antonovics J . 2000. Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in Microbotryum violaceum (=Ustilago violacea). Hered (Edinb) 85 : 231241.[CrossRef]
142. Hood ME,, Antonovics J,, Koskella B . 2004. Shared forces of sex chromosome evolution in haploid-mating and diploid-mating organisms: Microbotryum violaceum and other model organisms. Genetics 168 : 141146.[CrossRef]
143. Giraud T . 2004. Patterns of within population dispersal and mating of the fungus Microbotryum violaceum parasitising the plant Silene latifolia . Hered (Edinb) 93 : 559565.[CrossRef]
144. Gladieux P,, Vercken E,, Fontaine MC,, Hood ME,, Jonot O,, Couloux A,, Giraud T . 2011. Maintenance of fungal pathogen species that are specialized to different hosts: allopatric divergence and introgression through secondary contact. Mol Biol Evol 28 : 459471.[CrossRef]
145. Badouin H,, Hood ME,, Gouzy J,, Aguileta G,, Siguenza S,, Perlin MH,, Cuomo CA,, Fairhead C,, Branca A,, Giraud T . 2015. Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus Microbotryum lychnidis-dioicae . Genetics 200 : 12751284.[CrossRef]
146. Hood ME,, Petit E,, Giraud T . 2013. Extensive divergence between mating-type chromosomes of the anther-smut fungus. Genetics 193 : 309315.[CrossRef]
147. Bachtrog D . 2013. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14 : 113124.[CrossRef]
148. Fontanillas E,, Hood ME,, Badouin H,, Petit E,, Barbe V,, Gouzy J,, de Vienne DM,, Aguileta G,, Poulain J,, Wincker P,, Chen Z,, Toh SS,, Cuomo CA,, Perlin MH,, Gladieux P,, Giraud T . 2015. Degeneration of the nonrecombining regions in the mating-type chromosomes of the anther-smut fungi. Mol Biol Evol 32 : 928943.[CrossRef]
149. Kües U,, Göttgens B,, Stratmann R,, Richardson WV,, O’Shea SF,, Casselton LA . 1994. A chimeric homeodomain protein causes self-compatibility and constitutive sexual development in the mushroom Coprinus cinereus . EMBO J 13 : 40544059.[PubMed]
150. Haylock RW,, Economou A,, Casselton LA . 1980. Dikaryon formation in Coprinus cinereus: selection and identification of B factor mutants. J Gen Microbiol 121 : 1726.
151. Olesnicky NS,, Brown AJ,, Honda Y,, Dyos SL,, Dowell SJ,, Casselton LA . 2000. Self-compatible B mutants in coprinus with altered pheromone-receptor specificities. Genetics 156 : 10251033.[PubMed]
152. James TY,, Srivilai P,, Kües U,, Vilgalys R . 2006. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172 : 18771891.[CrossRef] [PubMed]
153. Aimi T,, Yoshida R,, Ishikawa M,, Bao D,, Kitamoto Y . 2005. Identification and linkage mapping of the genes for the putative homeodomain protein (hox1) and the putative pheromone receptor protein homologue (rcb1) in a bipolar basidiomycete, Pholiota nameko . Curr Genet 48 : 184194.[CrossRef]
154. Yi R,, Tachikawa T,, Ishikawa M,, Mukaiyama H,, Bao D,, Aimi T . 2009. Genomic structure of the A mating-type locus in a bipolar basidiomycete, Pholiota nameko . Mycol Res 113 : 240248.[CrossRef]
155. Olson A , , et al . 2012. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol 194 : 10011013.[CrossRef]
156. Perrin N . 2012. What uses are mating types? The “developmental switch” model. Evolution 66 : 947956.[CrossRef]
157. Wilson AM,, Wilken PM,, van der Nest MA,, Steenkamp ET,, Wingfield MJ,, Wingfield BD . 2015. Homothallism: an umbrella term for describing diverse sexual behaviours. IMA Fungus 6 : 207214.[CrossRef]
158. Roach KC,, Feretzaki M,, Sun S,, Heitman J, . 2014. Unisexual Reproduction, p 255305. In Friedmann T,, Dunlap JC,, Goodwin SF (ed), Advances in Genetics, vol 85. Academic Press, San Diego, CA.
159. Raju NB,, Perkins DD . 1994. Diverse programs of ascus development in pseudohomothallic species of Neurospora, Gelasinospora, and Podospora . Dev Genet 15 : 104118.[CrossRef]
160. Merino ST,, Nelson MA,, Jacobson DJ,, Natvig DO . 1996. Pseudohomothallism and evolution of the mating-type chromosome in Neurospora tetrasperma . Genetics 143 : 789799.[PubMed]
161. Callac P,, Spataro C,, Caille A,, Imbernon M . 2006. Evidence for outcrossing via the Buller phenomenon in a substrate simultaneously inoculated with spores and mycelium of Agaricus bisporus . Appl Environ Microbiol 72 : 23662372.[CrossRef]
162. Lin X,, Heitman J, . 2007. Mechanisms of homothallism in fungi and transitions between heterothallism and homothallism, p 3557. In Heitman J,, Kronstad JW,, Taylor JW,, Casselton LA (ed), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.[CrossRef]
163. Ullrich RC,, Raper JR . 1975. Primary homothallism-relation to heterothallism in the regulation of sexual morphogenesis in Sistotrema . Genetics 80 : 311321.[PubMed]
164. Griffith GW,, Hedger JN . 1994. The breeding biology of biotypes of the witches’ broom pathogen of cocoa, Crinipellis perniciosa . Heredity 72 : 278289.[CrossRef]
165. Kües U,, Navarro-González M . 2010. Mating-type orthologous genes in the primarily homothallic Moniliophthora perniciosa, the causal agent of witches’ broom disease in cacao. J Basic Microbiol 50 : 442451.[CrossRef]
166. David-Palma M,, Libkind D,, Sampaio JP . 2014. Global distribution, diversity hot spots and niche transitions of an astaxanthin-producing eukaryotic microbe. Mol Ecol 23 : 921932.[CrossRef]
167. Bellora N,, Moline M,, David-Palma M,, Coelho MA,, Hittinger CT,, Sampaio JP,, Goncalves P,, Libkind D . 2016. Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma . BMC Genomics 17 : 901.[CrossRef]
168. David-Palma M,, Sampaio JP,, Gonçalves P . 2016. Genetic dissection of sexual reproduction in a primary homothallic basidiomycete. PLoS Genet 12 : e1006110.[CrossRef]
169. Lin X,, Hull CM,, Heitman J . 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans . Nature 434 : 10171021.[CrossRef]
170. Ni M,, Feretzaki M,, Li W,, Floyd-Averette A,, Mieczkowski P,, Dietrich FS,, Heitman J . 2013. Unisexual and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity de novo in the yeast Cryptococcus neoformans . PLoS Biol 11 : e1001653.[CrossRef]
171. Heitman J,, Kozel TR,, Kwon-Chung KJ,, Perfect JR,, Casadevall A . 2011. Cryptococcus: from Human Pathogen to Model Yeast. ASM Press, Washington, DC.
172. Alby K,, Bennett RJ . 2011. Interspecies pheromone signaling promotes biofilm formation and same-sex mating in Candida albicans . Proc Natl Acad Sci USA 108 : 25102515.[CrossRef]
173. Alby K,, Schaefer D,, Bennett RJ . 2009. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans . Nature 460 : 890893.[CrossRef]
174. Wilson AM,, Godlonton T,, van der Nest MA,, Wilken PM,, Wingfield MJ,, Wingfield BD . 2015. Unisexual reproduction in Huntiella moniliformis . Fungal Genet Biol 80 : 19.[CrossRef]
175. Whitehouse HLK . 1949. Heterothallism and sex in the fungi. Biol Rev Camb Philos Soc 24 : 411447.[CrossRef]
176. Aanen DK,, Hoekstra RF, . 2007. Why sex is good: on fungi and beyond, p 527534. In Heitman J,, Kronstad JW,, Taylor JW,, Casselton LA (ed), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.[CrossRef]
177. Roach KC,, Heitman J . 2014. Unisexual reproduction reverses Muller’s ratchet. Genetics 198 : 10591069.[CrossRef]
178. Attanayake RN,, Tennekoon V,, Johnson DA,, Porter LD,, del Río-Mendoza L,, Jiang D,, Chen W . 2014. Inferring outcrossing in the homothallic fungus Sclerotinia sclerotiorum using linkage disequilibrium decay. Hered (Edinb) 113 : 353363.[CrossRef]
179. Talas F,, McDonald BA . 2015. Genome-wide analysis of Fusarium graminearum field populations reveals hotspots of recombination. BMC Genomics 16 : 996.[CrossRef]
180. López-Villavicencio M,, Debets AJ,, Slakhorst M,, Giraud T,, Schoustra SE . 2013. Deleterious effects of recombination and possible nonrecombinatorial advantages of sex in a fungal model. J Evol Biol 26 : 19681978.[CrossRef]
181. Otto SP . 2009. The evolutionary enigma of sex. Am Nat 174(Suppl 1): S1S14.[CrossRef]
182. Selker EU, . 1991. Repeat-induced point mutation and DNA methylation, p 258265. In Bennett JW,, Lasure LL (ed), More Gene Manipulations in Fungi. Academic Press, San Diego, CA.[CrossRef]