1887

Chapter 12 : Molecular Agents

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Molecular Agents, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819637/9781555816209.ch12-1.gif /docserver/preview/fulltext/10.1128/9781555819637/9781555816209.ch12-2.gif

Abstract:

Molecular agents are some of the most challenging types of agents encountered in biosafety in terms of assessing risk and determining the appropriate containment levels. Molecular agents are often found on the cutting edge of science. As such, there are many unknowns, and they do not fit into discrete risk group categories. This chapter discusses some of the major categories of molecular agents that may be encountered in biological safety. Various types of nucleic acids are described, including recombinant, nonrecombinant, oncogenic, and pathogenic DNA. Synthetic, naked, and free nucleic acids are also discussed. Gene transfer techniques are mentioned, and a review of RNA technologies is provided, including a discussion of different types of RNA interference, such as small interfering RNA (siRNA) and microRNA (miRNA). Innovative molecular tools for genome editing and cancer immunotherapy are described, namely zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, clustered regularly interspersed short palindromic repeats (CRISPRs), chimeric antigen receptors (CARs), and engineered T-cell receptors (TCRs). Nanotechnology and how this new field relates to biosafety are discussed. Finally, a review of biosafety issues related to prion diseases is given. For each of the topics, a general description of the technology is provided and biosafety considerations for risk assessment and containment are presented.

Citation: Wooley D. 2017. Molecular Agents, p 269-283. In Wooley D, Byers K (ed), Biological Safety: Principles and Practices, Fifth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819637.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555819637.ch12
1. National Institutes of Health. 2016. NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules. National Institutes of Health, Bethesda, MD. http://osp.od.nih.gov/sites/default/files/NIH_Guidelines.html#_Toc446948312.
2. Watson JD, Gilman M, Witkowski J, Zoller M. 1998. Recombinant DNA, 2nd ed. Scientific American Books, New York, NY.
3. Avery OT, Macleod CM, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 79:137158.[PubMed]
4. Graham FL, van der Eb AJ. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456467.[PubMed]
5. Kawai S, Nishizawa M. 1984. New procedure for DNA transfection with polycation and dimethyl sulfoxide. Mol Cell Biol 4:11721174.[PubMed]
6. McCutchan JH, Pagano JS. 1968. Enchancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran. J Natl Cancer Inst 41:351357.[PubMed]
7. Laakso MM, Sutton RE. 2006. Replicative fidelity of lentiviral vectors produced by transient transfection. Virology 348:406417.[PubMed]
8. Lee SH, Oshige M, Durant ST, Rasila KK, Williamson EA, Ramsey H, Kwan L, Nickoloff JA, Hromas R. 2005. The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci USA 102:1807518080.[PubMed]
9. Czernilofsky AP, Levinson AD, Varmus HE, Bishop JM, Tischer E, Goodman HM. 1980. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature 287:198203.[PubMed]
10. Parker RC, Varmus HE, Bishop JM. 1981. Cellular homologue (c-src) of the transforming gene of Rous sarcoma virus: isolation, mapping, and transcriptional analysis of c-src and flanking regions. Proc Natl Acad Sci USA 78:58425846.[PubMed]
11. Löwer J. 1990. Risk of tumor induction in vivo by residual cellular DNA: quantitative considerations. J Med Virol 31:5053.[PubMed]
12. Petricciani JC, Regan PJ. 1987. Risk of neoplastic transformation from cellular DNA: calculations using the oncogene model. Dev Biol Stand 68:4349.[PubMed]
13. Burns PA, Jack A, Neilson F, Haddow S, Balmain A. 1991. Transformation of mouse skin endothelial cells in vivo by direct application of plasmid DNA encoding the human T24 H-ras oncogene. Oncogene 6:19731978.[PubMed]
14. Sheng L, Cai F, Zhu Y, Pal A, Athanasiou M, Orrison B, Blair DG, Hughes SH, Coffin JM, Lewis AM, Peden K. 2008. Oncogenicity of DNA in vivo: tumor induction with expression plasmids for activated H-ras and c-myc. Biologicals 36:184197.[PubMed]
15. Corallini A, Altavilla G, Carra L, Grossi MP, Federspil G, Caputo A, Negrini M, Barbanti-Brodano G. 1982. Oncogenity of BK virus for immunosuppressed hamsters. Arch Virol 73:243253.[PubMed]
16. Corallini A, Pagnani M, Caputo A, Negrini M, Altavilla G, Catozzi L, Barbanti-Brodano G. 1988. Cooperation in oncogenesis between BK virus early region gene and the activated human c-Harvey ras oncogene. J Gen Virol 69:26712679.[PubMed]
17. Corallini A, Pagnani M, Viadana P, Camellin P, Caputo A, Reschiglian P, Rossi S, Altavilla G, Selvatici R, Barbanti-Brodano G. 1987. Induction of malignant subcutaneous sarcomas in hamsters by a recombinant DNA containing BK virus early region and the activated human c-Harvey-ras oncogene. Cancer Res 47:66716677.[PubMed]
18. Fung YK, Crittenden LB, Fadly AM, Kung HJ. 1983. Tumor induction by direct injection of cloned v-src DNA into chickens. Proc Natl Acad Sci USA 80:353357.[PubMed]
19. Halpern MS, Ewert DL, England JM. 1990. Wing web or intravenous inoculation of chickens with v-src DNA induces visceral sarcomas. Virology 175:328331.[PubMed]
20. Krause PR, Lewis AM Jr. 1998. Safety of viral DNA in biological products. Biologicals 26:317320.[PubMed]
21. Letvin NL, Lord CI, King NW, Wyand MS, Myrick KV, Haseltine WA. 1991. Risks of handling HIV. Nature 349:573.[PubMed]
22. Portis JL, McAtee FJ, Kayman SC. 1992. Infectivity of retroviral DNA in vivo. J Acquir Immune Defic Syndr 5:12721273.[PubMed]
23. Israel MA, Chan HW, Hourihan SL, Rowe WP, Martin MA. 1979. Biological activity of polyoma viral DNA in mice and hamsters. J Virol 29:990996.[PubMed]
24. Yang H. 2013. Establishing acceptable limits of residual DNA. PDA J Pharm Sci Technol 67:155163.[PubMed]
25. Meister G, Tuschl T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431:343349.[PubMed]
26. Pélisson A, Sarot E, Payen-Groschêne G, Bucheton A. 2007. A novel repeat-associated small interfering RNA-mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary. J Virol 81:19511960.[PubMed]
27. Kanasty R, Dorkin JR, Vegas A, Anderson D. 2013. Delivery materials for siRNA therapeutics. Nat Mater 12:967977.[PubMed]
28. Wilczynska A, Bushell M. 2015. The complexity of miRNA-mediated repression. Cell Death Differ 22:2233.[PubMed]
29. Chen LL. 2016. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205211.[PubMed]
30. Jeck WR, Sharpless NE. 2014. Detecting and characterizing circular RNAs. Nat Biotechnol 32:453461.[PubMed]
31. Jackson AL, Linsley PS. 2010. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:5767.[PubMed]
32. Reardon S. 2016. First CRISPR clinical trial gets green light from US panel. Nature News, June 22.
33. Carlson DF, Fahrenkrug SC, Hackett PB. 2012. Targeting DNA with fingers and TALENs. Mol Ther Nucleic Acids 1:e3.[PubMed]
34. Bogdanove AJ, Voytas DF. 2011. TAL effectors: customizable proteins for DNA targeting. Science 333:18431846.[PubMed]
35. Li T, Yang B. 2013. TAL effector nuclease (TALEN) engineering. Methods Mol Biol 978:6372.[PubMed]
36. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:15091512.[PubMed]
37. Arnould S, Delenda C, Grizot S, Desseaux C, Pâques F, Silva GH, Smith J. 2011. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel 24:2731.[PubMed]
38. Daboussi F, Zaslavskiy M, Poirot L, Loperfido M, Gouble A, Guyot V, Leduc S, Galetto R, Grizot S, Oficjalska D, Perez C, Delacôte F, Dupuy A, Chion-Sotinel I, Le Clerre D, Lebuhotel C, Danos O, Lemaire F, Oussedik K, Cédrone F, Epinat JC, Smith J, Yáñez-Muñoz RJ, Dickson G, Popplewell L, Koo T, VandenDriessche T, Chuah MK, Duclert A, Duchateau P, Pâques F. 2012. Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases. Nucleic Acids Res 40:63676379.[PubMed]
39. Molina R, Montoya G, Prieto J. 2011. Meganucleases and Their Biomedical Applications. Wiley Online Library.
40. Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ Jr, Stoddard BL, Baker D. 2006. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441:656659.
41. Zaslavskiy M, Bertonati C, Duchateau P, Duclert A, Silva GH. 2014. Efficient design of meganucleases using a machine learning approach. BMC Bioinformatics 15:191.[PubMed]
42. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816821.[PubMed]
43. Reis A, Hornblower B. 2014. CRISPR/Cas9 and targeted genome editing: a new era in molecular biology. NEB Expressions 1:36. https://www.neb.com/tools-and-resources/feature-articles/crispr-cas9-and-targeted-genome-editing-a-new-era-in-molecular-biology?device=pdf.
44. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Müller-Lerch F, Fu F, Pearlberg J, Göbel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK. 2008. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294301.[PubMed]
45. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK. 2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:6769.[PubMed]
46. Sander JD, Reyon D, Maeder ML, Foley JE, Thibodeau-Beganny S, Li X, Regan MR, Dahlborg EJ, Goodwin MJ, Fu F, Voytas DF, Joung JK, Dobbs D. 2010. Predicting success of oligomerized pool engineering (OPEN) for zinc finger target site sequences. BMC Bioinformatics 11:543.[PubMed]
47. Corrigan-Curay J, O'Reilly M, Kohn DB, Cannon PM, Bao G, Bushman FD, Carroll D, Cathomen T, Joung JK, Roth D, Sadelain M, Scharenberg AM, von Kalle C, Zhang F, Jambou R, Rosenthal E, Hassani M, Singh A, Porteus MH. 2015. Genome editing technologies: defining a path to clinic. Mol Ther 23:796806.[PubMed]
48. Sharpe M, Mount N. 2015. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 8:337350.[PubMed]
49. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M. 2012. scFv antibody: principles and clinical application. Clin Dev Immunol 2012:980250.
50. Maude SL, Teachey DT, Porter DL, Grupp SA. 2015. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125:40174023.[PubMed]
51. Debets R, Donnadieu E, Chouaib S, Coukos G. 2016. TCR-engineered T cells to treat tumors: seeing but not touching? Semin Immunol 28:1021.[PubMed]
52. Sadelain M, Brentjens R, Rivière I. 2013. The basic principles of chimeric antigen receptor design. Cancer Discov 3:388398.[PubMed]
53. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, Grupp SA, Mackall CL. 2014. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124:188195.[PubMed]
54. Della Torre E, Bennett LH, Watson RE. 2005. Extension of the BLOCH T(3/2) law to magnetic nanostructures: Bose-Einstein condensation. Phys Rev Lett 94:147210.[PubMed]
55. Gieseler J, Quidant R, Dellago C, Novotny L. 2014. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat Nanotechnol 9:358364.[PubMed]
56. Pattison JR, Patou G,. 1996. Parvoviruses. In Baron S (ed), Medical Microbiology. University of Texas Medical Branch at Galveston, Galveston, TX.
57. Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie JM, Abergel C. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281286.[PubMed]
58. Hernandez-Garcia A, Kraft DJ, Janssen AF, Bomans PH, Sommerdijk NA, Thies-Weesie DM, Favretto ME, Brock R, de Wolf FA, Werten MW, van der Schoot P, Stuart MC, de Vries R. 2014. Design and self-assembly of simple coat proteins for artificial viruses. Nat Nanotechnol 9:698702.[PubMed]
59. Lu Y, Chan W, Ko BY, VanLang CC, Swartz JR. 2015. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci USA 112:1236012365.[PubMed]
60. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. 2011. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology 9:30.[PubMed]
61. Silvestry-Rodriguez N, Sicairos-Ruelas EE, Gerba CP, Bright KR. 2007. Silver as a disinfectant. Rev Environ Contam Toxicol 191:2345.[PubMed]
62. Honek JF. 2013. Bionanotechnology and bionanomaterials: John Honek explains the good things that can come in very small packages. BMC Biochem 14:29.[PubMed]
63. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. 2013. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:19042074.[PubMed]
64. Bajpai SK, Mohan YM, Bajpai M, Tankhiwale R, Thomas V. 2007. Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol 7:29943010.[PubMed]
65. Barnickel P, Wokun A, Sager M, Eicke E-F. 1992. Size-tailoring of silver colloids by reduction in W/O microemulsions. J Colloid Interface 148:8090.
66. Chen S, Carroll DL. 2002. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:10031007.
67. Cushing BL, Kolesnichenko VL, O'Connor CJ. 2004. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:38933946.[PubMed]
68. Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y. 2005. The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:444448.[PubMed]
69. Radziuk D, Skirtach A, Sukhorukov G, Mohwald H. 2007. Stabilization of silver nanoparticles by polyelectrolytes and poly(ethylene glycol). Macromol Rapid Commun 28:848855.
70. Singh P, Kim YJ, Zhang D, Yang DC. 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588599.[PubMed]
71. De M, Ghosh PS, Rotello VM. 2008. Applications of nanoparticles in biology. Adv Mater 20:42254241.
72. National Research Council. 2012. A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials. Committee to Develop a Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials, Washington, DC.
73. Rengasamy S, Eimer BC. 2011. Total inward leakage of nanoparticles through filtering facepiece respirators. Ann Occup Hyg 55:253263.[PubMed]
74. Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K. 2015. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA 112:E5308E5317.[PubMed]
75. Chakrabortee S, Kayatekin C, Newby GA, Mendillo ML, Lancaster A, Lindquist S. 2016. Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc Natl Acad Sci USA 113:60656070.[PubMed]
76. Prusiner SB. 1998. Prions. Proc Natl Acad Sci USA 95:1336313383.[PubMed]
77. Prusiner SB, Scott MR, DeArmond SJ,. 2004. Transmission and replication of prions, p 187242. In Prusiner SB (ed), Prion Biology and Diseases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
78. Weissmann C, Enari M, Klöhn PC, Rossi D, Flechsig E. 2002. Transmission of prions. Proc Natl Acad Sci USA 99(Suppl 4):1637816383.[PubMed]
79. Huang WJ, Chen WW, Zhang X. 2015. Prions mediated neurodegenerative disorders. Eur Rev Med Pharmacol Sci 19:40284034.[PubMed]
80. Bishop MT, Will RG, Manson JC. 2010. Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties. Proc Natl Acad Sci USA 107:1200512010.[PubMed]
81. Pattison IH,. 1965. Experiments with scrapie with special reference to the nature of the agent and the pathology of the disease, p 249257. In Gajdusek DC, Gibbs CJ Jr,, Alpers MP (ed), Slow, Latent and Temperate Virus Infections NINDB Monograph 2. US Government Printing Office, Washington, DC.
82. Scott M, Foster D, Mirenda C, Serban D, Coufal F, Wälchli M, Torchia M, Groth D, Carlson G, DeArmond SJ, Westaway D, Prusiner SB. 1989. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59:847857.[PubMed]
83. Scott MR, Will R, Ironside J, Nguyen HO, Tremblay P, DeArmond SJ, Prusiner SB. 1999. Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans. Proc Natl Acad Sci USA 96:1513715142.[PubMed]
84. Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, Cohen FE, DeArmond SJ, Prusiner SB. 1995. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83:7990.[PubMed]
85. Asante EA, Linehan JM, Desbruslais M, Joiner S, Gowland I, Wood AL, Welch J, Hill AF, Lloyd SE, Wadsworth JD, Collinge J. 2002. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J 21:63586366.[PubMed]
86. Wilesmith JW, Ryan JB, Atkinson MJ. 1991. Bovine spongiform encephalopathy: epidemiological studies on the origin. Vet Rec 128:199203.[PubMed]
87. Pattison J. 1998. The emergence of bovine spongiform encephalopathy and related diseases. Emerg Infect Dis 4:390394.[PubMed]
88. Wyatt JM, Pearson GR, Smerdon TN, Gruffydd-Jones TJ, Wells GA, Wilesmith JW. 1991. Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Vet Rec 129:233236.[PubMed]
89. Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I, Collinge J, Doey LJ, Lantos P. 1997. The same prion strain causes vCJD and BSE. Nature 389:448450, 526.[PubMed]
90. Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG. 1996. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347:921925.[PubMed]
91. Jaunmuktane Z, Mead S, Ellis M, Wadsworth JD, Nicoll AJ, Kenny J, Launchbury F, Linehan J, Richard-Loendt A, Walker AS, Rudge P, Collinge J, Brandner S. 2015. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525:247250.[PubMed]
92. Bellinger-Kawahara CG, Kempner E, Groth D, Gabizon R, Prusiner SB. 1988. Scrapie prion liposomes and rods exhibit target sizes of 55,000 Da. Virology 164:537541.[PubMed]
93. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B. 2005. The most infectious prion protein particles. Nature 437:257261.[PubMed]
94. Gabizon R, Prusiner SB. 1990. Prion liposomes. Biochem J 266:114.[PubMed]
95. Safar J, Ceroni M, Piccardo P, Liberski PP, Miyazaki M, Gajdusek DC, Gibbs CJ Jr. 1990. Subcellular distribution and physicochemical properties of scrapie-associated precursor protein and relationship with scrapie agent. Neurology 40:503508.[PubMed]
96. Bellinger-Kawahara C, Diener TO, McKinley MP, Groth DF, Smith DR, Prusiner SB. 1987. Purified scrapie prions resist inactivation by procedures that hydrolyze, modify, or shear nucleic acids. Virology 160:271274.[PubMed]
97. Alpers M,. 1987. Epidemiology and clinical aspects of kuru, p 451465. In Prusiner SB, McKinley MP (ed), Prions—Novel Infectious Pathogens Causing Scrapie and Creutzfeldt-Jakob Disease. Academic Press, Orlando, FL.
98. Bellinger-Kawahara C, Cleaver JE, Diener TO, Prusiner SB. 1987. Purified scrapie prions resist inactivation by UV irradiation. J Virol 61:159166.[PubMed]
99. McKinley MP, Masiarz FR, Isaacs ST, Hearst JE, Prusiner SB. 1983. Resistance of the scrapie agent to inactivation by psoralens. Photochem Photobiol 37:539545.[PubMed]
100. Brown P, Wolff A, Gajdusek DC. 1990. A simple and effective method for inactivating virus infectivity in formalin-fixed tissue samples from patients with Creutzfeldt-Jakob disease. Neurology 40:887890.[PubMed]
101. Prusiner SB. 1982. Novel proteinaceous infectious particles cause scrapie. Science 216:136144.[PubMed]
102. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institutes of Health. 2009. Biosafety in Microbiological and Biomedical Laboratories, 5th ed. HHS Publication no. (CDC) 21-112. http://www.cdc.gov/biosafety/publications/bmbl5/BMBL.pdf.
103. Will RG,. 1996. Incidence of Creutzfeldt-Jakob disease in the European Community, p 364374. In Gibbs CJ Jr (ed), Bovine Spongiform Encephalopathy: the BSE Dilemma. Springer-Verlag, New York, NY.
104. Bruce ME, McConnell I, Will RG, Ironside JW. 2001. Detection of variant Creutzfeldt-Jakob disease infectivity in extraneural tissues. Lancet 358:208209.[PubMed]
105. Hill AF, Zeidler M, Ironside J, Collinge J. 1997. Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 349:99100.[PubMed]
106. Hilton DA, Ghani AC, Conyers L, Edwards P, McCardle L, Ritchie D, Penney M, Hegazy D, Ironside JW. 2004. Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol 203:733739.[PubMed]
107. Wadsworth JD, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, Collinge J. 2001. Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet 358:171180.[PubMed]
108. Bosque PJ, Ryou C, Telling G, Peretz D, Legname G, DeArmond SJ, Prusiner SB. 2002. Prions in skeletal muscle. Proc Natl Acad Sci USA 99:38123817.[PubMed]
109. Glatzel M, Abela E, Maissen M, Aguzzi A. 2003. Extraneural pathologic prion protein in sporadic Creutzfeldt-Jakob disease. N Engl J Med 349:18121820.[PubMed]
110. Ridley RM, Baker HF. 1993. Occupational risk of Creutzfeldt-Jakob disease. Lancet 341:641642.[PubMed]
111. Centers for Disease Control and Prevention. 1985. Fatal degenerative neurologic disease in patients who received pituitary-derived human growth hormone. MMWR Morb Mortal Wkly Rep 34:359360, 365356.
112. Centers for Disease Control and Prevention. 1997. Creutzfeldt-Jakob disease associated with cadaveric dura mater grafts—Japan, January 1979-May 1996. MMWR Morb Mortal Wkly Rep 46:10661069.[PubMed]
113. Public Health Service Interagency Coordinating Committee. 1997. Report on human growth hormone and Creutzfeldt-Jakob disease. U.S. Department of Health and Human Services, Washington, DC.
114. Dietz K, Raddatz G, Wallis J, Müller N, Zerr I, Duerr HP, Lefèvre H, Seifried E, Löwer J. 2007. Blood transfusion and spread of variant Creutzfeldt-Jakob disease. Emerg Infect Dis 13:8996.[PubMed]
115. Gajdusek DC. 1977. Unconventional viruses and the origin and disappearance of kuru. Science 197:943960.[PubMed]
116. Brown P, Preece MA, Will RG. 1992. “Friendly fire” in medicine: hormones, homografts, and Creutzfeldt-Jakob disease. Lancet 340:2427.[PubMed]
117. World Health Organization. 1999. WHO infection control guidelines for transmissible spongiform encephalopathies. Report of a WHO consultation, Geneva, Switzerland, March 23–26, 1999. Geneva, Switzerland.
118. Anderson RM, Donnelly CA, Ferguson NM, Woolhouse ME, Watt CJ, Udy HJ, MaWhinney S, Dunstan SP, Southwood TR, Wilesmith JW, Ryan JB, Hoinville LJ, Hillerton JE, Austin AR, Wells GA. 1996. Transmission dynamics and epidemiology of BSE in British cattle. Nature 382:779788.[PubMed]
119. Prusiner SB. 1997. Prion diseases and the BSE crisis. Science 278:245251.[PubMed]
120. Kirkwood JK, Wells GA, Wilesmith JW, Cunningham AA, Jackson SI. 1990. Spongiform encephalopathy in an arabian oryx (Oryx leucoryx) and a greater kudu (Tragelaphus strepsiceros). Vet Rec 127:418420.[PubMed]
121. Willoughby K, Kelly DF, Lyon DG, Wells GA. 1992. Spongiform encephalopathy in a captive puma (Felis concolor). Vet Rec 131:431434.[PubMed]
122. Baker HF, Ridley RM, Wells GA. 1993. Experimental transmission of BSE and scrapie to the common marmoset. Vet Rec 132:403406.[PubMed]
123. Barlow RM, Middleton DJ. 1990. Dietary transmission of bovine spongiform encephalopathy to mice. Vet Rec 126:111112.[PubMed]
124. Dawson M, Wells GA, Parker BN, Scott AC. 1990. Primary parenteral transmission of bovine spongiform encephalopathy to the pig. Vet Rec 127:338.[PubMed]
125. Foster JD, Bruce M, McConnell I, Chree A, Fraser H. 1996. Detection of BSE infectivity in brain and spleen of experimentally infected sheep. Vet Rec 138:546548.[PubMed]
126. Fraser H, Bruce ME, Chree A, McConnell I, Wells GA. 1992. Transmission of bovine spongiform encephalopathy and scrapie to mice. J Gen Virol 73:18911897.[PubMed]
127. Hunter N, Foster J, Chong A, McCutcheon S, Parnham D, Eaton S, MacKenzie C, Houston F. 2002. Transmission of prion diseases by blood transfusion. J Gen Virol 83:28972905.[PubMed]
128. Lasmézas CI, Deslys JP, Demaimay R, Adjou KT, Lamoury F, Dormont D, Robain O, Ironside J, Hauw JJ. 1996. BSE transmission to macaques. Nature 381:743744.[PubMed]
129. Lasmézas CI, Fournier JG, Nouvel V, Boe H, Marcé D, Lamoury F, Kopp N, Hauw JJ, Ironside J, Bruce M, Dormont D, Deslys JP. 2001. Adaptation of the bovine spongiform encephalopathy agent to primates and comparison with Creutzfeldt-Jakob disease: implications for human health. Proc Natl Acad Sci USA 98:41424147.[PubMed]
130. Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock CJ. 1997. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389:498501.[PubMed]
131. Collinge J, Sidle KC, Meads J, Ironside J, Hill AF. 1996. Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383:685690.[PubMed]
132. Zeidler M, Stewart GE, Barraclough CR, Bateman DE, Bates D, Burn DJ, Colchester AC, Durward W, Fletcher NA, Hawkins SA, Mackenzie JM, Will RG. 1997. New variant Creutzfeldt-Jakob disease: neurological features and diagnostic tests. Lancet 350:903907.[PubMed]
133. Centers for Disease Control and Prevention (CDC). 2004. Bovine spongiform encephalopathy in a dairy cow—Washington state, 2003. MMWR Morb Mortal Wkly Rep 52:12801285.[PubMed]
134. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services. 2012. Summary Report. California bovine spongiform encephalopathy case investigation. https://www.aphis.usda.gov/animal_health/animal_diseases/bse/downloads/BSE_Summary_Report.pdf.
135. Dexter G, Tongue SC, Heasman L, Bellworthy SJ, Davis A, Moore SJ, Simmons MM, Sayers AR, Simmons HA, Matthews D. 2009. The evaluation of exposure risks for natural transmission of scrapie within an infected flock. BMC Vet Res 5:38.[PubMed]
136. Chatelain J, Cathala F, Brown P, Raharison S, Court L, Gajdusek DC. 1981. Epidemiologic comparisons between Creutzfeldt-Jakob disease and scrapie in France during the 12-year period 1968–1979. J Neurol Sci 51:329337.[PubMed]
137. Cassard H, Torres JM, Lacroux C, Douet JY, Benestad SL, Lantier F, Lugan S, Lantier I, Costes P, Aron N, Reine F, Herzog L, Espinosa JC, Beringue V, Andréoletti O. 2014. Evidence for zoonotic potential of ovine scrapie prions. Nat Commun 5:5821.[PubMed]
138. Barria MA, Balachandran A, Morita M, Kitamoto T, Barron R, Manson J, Knight R, Ironside JW, Head MW. 2014. Molecular barriers to zoonotic transmission of prions. Emerg Infect Dis 20:8897.[PubMed]
139. Béringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A, Vilotte JL, Laude H. 2012. Facilitated cross-species transmission of prions in extraneural tissue. Science 335:472475.[PubMed]
140. Collinge J. 2012. Cell biology. The risk of prion zoonoses. Science 335:411413.[PubMed]
141. Sandberg MK, Al-Doujaily H, Sigurdson CJ, Glatzel M, O'Malley C, Powell C, Asante EA, Linehan JM, Brandner S, Wadsworth JD, Collinge J. 2010. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein. J Gen Virol 91:26512657.[PubMed]
142. Prusiner SB, Groth D, Serban A, Stahl N, Gabizon R. 1993. Attempts to restore scrapie prion infectivity after exposure to protein denaturants. Proc Natl Acad Sci USA 90:27932797.[PubMed]
143. Prusiner SB, McKinley MP, Bolton DC, Bowman KA, Groth DF, Cochran SP, Hennessey EM, Braunfeld MB, Baringer JR, Chatigny MA,. 1984. Prions: methods for assay, purification and characterization, p 294345. In Maramorosch K, Koprowski H (ed), Methods in Virology. Academic Press, New York, NY.
144. Taylor DM, Woodgate SL, Atkinson MJ. 1995. Inactivation of the bovine spongiform encephalopathy agent by rendering procedures. Vet Rec 137:605610.[PubMed]
145. Taylor DM, Woodgate SL, Fleetwood AJ, Cawthorne RJ. 1997. Effect of rendering procedures on the scrapie agent. Vet Rec 141:643649.[PubMed]
146. Fichet G, Comoy E, Duval C, Antloga K, Dehen C, Charbonnier A, McDonnell G, Brown P, Lasmézas CI, Deslys JP. 2004. Novel methods for disinfection of prion-contaminated medical devices. Lancet 364:521526.[PubMed]
147. Race RE, Raymond GJ. 2004. Inactivation of transmissible spongiform encephalopathy (prion) agents by environ LpH. J Virol 78:21642165.[PubMed]
148. Peretz D, Supattapone S, Giles K, Vergara J, Freyman Y, Lessard P, Safar JG, Glidden DV, McCulloch C, Nguyen HO, Scott M, Dearmond SJ, Prusiner SB. 2006. Inactivation of prions by acidic sodium dodecyl sulfate. J Virol 80:322331.[PubMed]

Tables

Generic image for table
Table 1.

Citation: Wooley D. 2017. Molecular Agents, p 269-283. In Wooley D, Byers K (ed), Biological Safety: Principles and Practices, Fifth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555819637.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error