1887

Chapter 20 : Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819705/9781555819699_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555819705/9781555819699_Chap20-2.gif

Abstract:

Vertebrates have evolved with dense microbial populations in their gastrointestinal (GI) tract (referred to as the GI microbiome) that contribute to performance and health of the host ( ). Although symbiotic in nature, animal experiments have established that the GI microbiota plays a causative role in the development of chronic noncommunicable diseases (CNCDs) such as obesity, diabetes, cardiovascular disease, colon cancer, autism, autoimmune diseases, allergies, and other atopic diseases including asthma ( Fig. 1 ) ( ). CNCDs are often associated with microbial dysbiosis, which is typically characterized by a reduced diversity, a bloom of facultative taxa (such as enterobacteria), and a lower output of beneficial metabolites ( ). These associations provide a clear rationale for the development of strategies that modulate GI microbiome structure and function for the prevention of CNCDs ( ).

Citation: Deehan E, Duar R, Armet A, Perez-Muñoz M, Jin M, Walter J. 2018. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health, p 453-483. In Britton R, Cani P (ed), Bugs as Drugs. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.BAD-0019-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

CNCDs that are associated with the GI microbiome and diets low in NDC. An industrialized lifestyle is associated with an increased prevalence of multiple CNCDs ( ). Most of these diseases have now clearly been associated with the GI microbiome (pathology in animal models is dramatically different under germfree conditions, and the GI microbiome displays a dysbiosis in humans suffering from the disease). The Venn diagram designates CNCDs that are associated with the GI microbiome ( ) and a diet low in NDCs ( ). NAFLD, nonalcoholic fatty liver disease.

Citation: Deehan E, Duar R, Armet A, Perez-Muñoz M, Jin M, Walter J. 2018. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health, p 453-483. In Britton R, Cani P (ed), Bugs as Drugs. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.BAD-0019-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Categories of NDCs. NDCs are a heterogeneous group of compounds that display diverse chemical structures, which is the basis for their categorization alongside their origin ( ). Nondigestible oligosaccharides are NDCs composed of three to nine monosaccharides and are from either plant or animal origin, as well as chemically synthesized.

Citation: Deehan E, Duar R, Armet A, Perez-Muñoz M, Jin M, Walter J. 2018. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health, p 453-483. In Britton R, Cani P (ed), Bugs as Drugs. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.BAD-0019-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Mechanisms by which the metabolism of NDFCs by the GI microbiota modulates host health. NDFCs are fermented by the GI microbiota to SCFAs, which upon absorption into enterocytes can activate intestinal GNG, leading to improved satiety and glucose homeostasis. SCFAs can further stimulate enteroendocrine L-cells to secrete PYY, GLP-1, and GLP-2. Both PYY and GLP-1 act as satiety hormones, while GLP-1 also promotes glucose tolerance. Meanwhile, the secretion of GLP-2 enhances intestinal barrier function by upregulating the expression of tight junction proteins. SCFAs further enhance the intestinal barrier by stimulating mucin secretion from goblet cells, which aids in reducing the translocation of LPS through the intestinal epithelium, consequently reducing inflammation. Additionally, SCFAs exert immunomodulatory effects by regulating the production of antimicrobial peptides, the expansion of regulatory T-cells, and myeloid cell function to inhibit inflammation. Moreover, SCFAs signal to organs distant from the GI tract, such as white adipose tissue, where they may act on adipocytes promoting the secretion of leptin, another anorectic hormone. Furthermore, the presence of NDFCs inhibits the production of potentially detrimental metabolites from the fermentation of dietary proteins through lowering intestinal pH. AMP, antimicrobial peptides, BCFAs, branched-chain fatty acids; CVD, cardiovascular disease; GLP, glucagon-like peptide; GNG, gluconeogenesis; LPS, lipopolysaccharides; PYY, peptide tyrosine tyrosine; SCFAs, short-chain fatty acids; T2D, type 2 diabetes; Tregs, regulatory T-cells.

Citation: Deehan E, Duar R, Armet A, Perez-Muñoz M, Jin M, Walter J. 2018. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health, p 453-483. In Britton R, Cani P (ed), Bugs as Drugs. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.BAD-0019-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819705.chap20
1. Walter J,, Ley R . 2011. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol 65 : 411429.[CrossRef] [PubMed]
2. Schroeder BO,, Bäckhed F . 2016. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22 : 10791089.[CrossRef] [PubMed]
3. Walker AW,, Lawley TD . 2013. Therapeutic modulation of intestinal dysbiosis. Pharmacol Res 69 : 7586.[CrossRef] [PubMed]
4. Brahe LK,, Astrup A,, Larsen LH . 2016. Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota? Adv Nutr 7 : 90101.[CrossRef] [PubMed]
5. Olle B . 2013. Medicines from microbiota. Nat Biotechnol 31 : 309315.[CrossRef] [PubMed]
6. David LA,, Maurice CF,, Carmody RN,, Gootenberg DB,, Button JE,, Wolfe BE,, Ling AV,, Devlin AS,, Varma Y,, Fischbach MA,, Biddinger SB,, Dutton RJ,, Turnbaugh PJ . 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 : 559563.[CrossRef] [PubMed]
7. Wu GD,, Chen J,, Hoffmann C,, Bittinger K,, Chen Y-Y,, Keilbaugh SA,, Bewtra M,, Knights D,, Walters WA,, Knight R,, Sinha R,, Gilroy E,, Gupta K,, Baldassano R,, Nessel L,, Li H,, Bushman FD,, Lewis JD . 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334 : 105108.[CrossRef] [PubMed]
8. Wu GD,, Compher C,, Chen EZ,, Smith SA,, Shah RD,, Bittinger K,, Chehoud C,, Albenberg LG,, Nessel L,, Gilroy E,, Star J,, Weljie AM,, Flint HJ,, Metz DC,, Bennett MJ,, Li H,, Bushman FD,, Lewis JD . 2016. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65 : 6372.[CrossRef] [PubMed]
9. Gibson GR,, Roberfroid MB . 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125 : 14011412.[PubMed]
10. Bach J-F . 2002. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347 : 911920.[CrossRef] [PubMed]
11. Bickler SW,, DeMaio A . 2008. Western diseases: current concepts and implications for pediatric surgery research and practice. Pediatr Surg Int 24 : 251255.[CrossRef] [PubMed]
12. Deehan EC,, Walter J . 2016. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol Metab 27 : 239242.[CrossRef] [PubMed]
13. Burkitt DP,, Walker ARP,, Painter NS . 1974. Dietary fiber and disease. JAMA 229 : 10681074.[CrossRef] [PubMed]
14. Eaton SB,, Eaton SB III,, Konner MJ . 1997. Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr 51 : 207216.[CrossRef] [PubMed]
15. Burkitt DP . 1973. Some diseases characteristic of modern Western civilization. BMJ 1 : 274278.[CrossRef] [PubMed]
16. Sonnenburg ED,, Sonnenburg JL . 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 20 : 779786.[CrossRef] [PubMed]
17. Koh A,, De Vadder F,, Kovatcheva-Datchary P,, Bäckhed F . 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165 : 13321345.[CrossRef] [PubMed]
18. Martínez I,, Stegen JC,, Maldonado-Gómez MX,, Eren AM,, Siba PM,, Greenhill AR,, Walter J . 2015. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Reports 11 : 527538.[CrossRef] [PubMed]
19. Schnorr SL,, Candela M,, Rampelli S,, Centanni M,, Consolandi C,, Basaglia G,, Turroni S,, Biagi E,, Peano C,, Severgnini M,, Fiori J,, Gotti R,, De Bellis G,, Luiselli D,, Brigidi P,, Mabulla A,, Marlowe F,, Henry AG,, Crittenden AN . 2014. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5 : 3654.[CrossRef] [PubMed]
20. Clemente JC,, Pehrsson EC,, Blaser MJ,, Sandhu K,, Gao Z,, Wang B,, Magris M,, Hidalgo G,, Contreras M,, Noya-Alarcón Ó,, Lander O,, McDonald J,, Cox M,, Walter J,, Oh PL,, Ruiz JF,, Rodriguez S,, Shen N,, Song SJ,, Metcalf J,, Knight R,, Dantas G,, Dominguez-Bello MG . 2015. The microbiome of uncontacted Amerindians. Sci Adv 1 : e1500183.[CrossRef] [PubMed]
21. Yatsunenko T,, Rey FE,, Manary MJ,, Trehan I,, Dominguez-Bello MG,, Contreras M,, Magris M,, Hidalgo G,, Baldassano RN,, Anokhin AP,, Heath AC,, Warner B,, Reeder J,, Kuczynski J,, Caporaso JG,, Lozupone CA,, Lauber C,, Clemente JC,, Knights D,, Knight R,, Gordon JI . 2012. Human gut microbiome viewed across age and geography. Nature 486 : 222227.
22. De Filippo C,, Cavalieri D,, Di Paola M,, Ramazzotti M,, Poullet JB,, Massart S,, Collini S,, Pieraccini G,, Lionetti P . 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107 : 1469114696.[CrossRef] [PubMed]
23. Sonnenburg ED,, Smits SA,, Tikhonov M,, Higginbottom SK,, Wingreen NS,, Sonnenburg JL . 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529 : 212215.[CrossRef] [PubMed]
24. Hamaker BR,, Tuncil YE . 2014. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 426 : 38383850.[CrossRef] [PubMed]
25. King DE,, Mainous AG III,, Lambourne CA . 2012. Trends in dietary fiber intake in the United States, 1999–2008. J Acad Nutr Diet 112 : 642648.[CrossRef] [PubMed]
26. Jones JM . 2014. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr J 13 : 34.[CrossRef] [PubMed]
27. Hill DR,, Newburg DS . 2015. Clinical applications of bioactive milk components. Nutr Rev 73 : 463476.[CrossRef] [PubMed]
28. Bindels LB,, Delzenne NM,, Cani PD,, Walter J . 2015. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12 : 303310.[CrossRef] [PubMed]
29. Gibson GR,, Hutkins R,, Sanders ME,, Prescott SL,, Reimer RA,, Salminen SJ,, Scott K,, Stanton C,, Swanson KS,, Cani PD,, Verbeke K,, Reid G . 2017. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14 : 491502.[CrossRef] [PubMed]
30. Gibson GR,, Scott KP,, Rastall RA,, Tuohy KM,, Hotchkiss A,, Dubert-Ferrandon A,, Gareau M,, Murphy EF,, Saulnier D,, Loh G,, Macfarlane S,, Delzenne N,, Ringel Y,, Kozianowski G,, Dickmann R,, Lenoir-Wijnkoop I,, Walker C,, Buddington R . 2010. Dietary prebiotics: current status and new definition. Food Sci Tech Bull Funct Foods 7 : 119.[CrossRef]
31. Roberfroid M . 2007. Prebiotics: the concept revisited. J Nutr 137(Suppl 2): 830S837S.[PubMed]
32. Katsnelson A . 2016. Core concept: prebiotics gain prominence but remain poorly defined. Proc Natl Acad Sci USA 113 : 1416814169.[CrossRef] [PubMed]
33. Verspreet J,, Damen B,, Broekaert WF,, Verbeke K,, Delcour JA,, Courtin CM . 2016. A critical look at prebiotics within the dietary fiber concept. Annu Rev Food Sci Technol 7 : 167190.[CrossRef] [PubMed]
34. Suez J,, Elinav E . 2017. The path towards microbiome-based metabolite treatment. Nat Microbiol 2 : 17075.[CrossRef] [PubMed]
35. Shanahan F . 2015. Fiber man meets microbial man. Am J Clin Nutr 101 : 12.[CrossRef] [PubMed]
36. Louis P,, Flint HJ,, Michel C . 2016. How to manipulate the microbiota: prebiotics. Adv Exp Med Biol 902 : 119142.[CrossRef] [PubMed]
37. Martínez I,, Lattimer JM,, Hubach KL,, Case JA,, Yang J,, Weber CG,, Louk JA,, Rose DJ,, Kyureghian G,, Peterson DA,, Haub MD,, Walter J . 2013. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 7 : 269280.[CrossRef] [PubMed]
38. Quévrain E,, Maubert M-A,, Michon C,, Chain F,, Marquant R,, Tailhades J,, Miquel S,, Carlier L,, Bermúdez-Humarán LG,, Pigneur B,, Lequin O,, Kharrat P,, Thomas G,, Rainteau D,, Aubry C,, Breyner N,, Afonso C,, Lavielle S,, Grill JP,, Chassaing G,, Chatel J-M,, Trugnan G,, Xavier R,, Langella P,, Sokol H,, Seksik P . 2016. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65 : 415425.[CrossRef] [PubMed]
39. Zeevi D,, Korem T,, Zmora N,, Israeli D,, Rothschild D,, Weinberger A,, Ben-Yacov O,, Lador D,, Avnit-Sagi T,, Lotan-Pompan M,, Suez J,, Mahdi JA,, Matot E,, Malka G,, Kosower N,, Rein M,, Zilberman-Schapira G,, Dohnalová L,, Pevsner-Fischer M,, Bikovsky R,, Halpern Z,, Elinav E,, Segal E . 2015. Personalized nutrition by prediction of glycemic responses. Cell 163 : 10791094.[CrossRef] [PubMed]
40. Everard A,, Belzer C,, Geurts L,, Ouwerkerk JP,, Druart C,, Bindels LB,, Guiot Y,, Derrien M,, Muccioli GG,, Delzenne NM,, de Vos WM,, Cani PD . 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110 : 90669071.[CrossRef] [PubMed]
41. Atarashi K,, Tanoue T,, Oshima K,, Suda W,, Nagano Y,, Nishikawa H,, Fukuda S,, Saito T,, Narushima S,, Hase K,, Kim S,, Fritz JV,, Wilmes P,, Ueha S,, Matsushima K,, Ohno H,, Olle B,, Sakaguchi S,, Taniguchi T,, Morita H,, Hattori M,, Honda K . 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500 : 232236.[CrossRef] [PubMed]
42. Round JL,, Lee SM,, Li J,, Tran G,, Jabri B,, Chatila TA,, Mazmanian SK . 2011. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332 : 974977.[CrossRef] [PubMed]
43. Le Chatelier E , , et al, MetaHIT Consortium . 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500 : 541546.[CrossRef] [PubMed]
44. Cotillard A,, Kennedy SP,, Kong LC,, Prifti E,, Pons N,, Le Chatelier E,, Almeida M,, Quinquis B,, Levenez F,, Galleron N,, Gougis S,, Rizkalla S,, Batto J-M,, Renault P,, Doré J,, Zucker JD,, Clément K,, Ehrlich SD , ANR MicroObes Consortium . 2013. Dietary intervention impact on gut microbial gene richness. Nature 500 : 585588.[CrossRef] [PubMed]
45. Lozupone CA,, Stombaugh JI,, Gordon JI,, Jansson JK,, Knight R . 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489 : 220230.[CrossRef] [PubMed]
46. LeBlanc JG,, Chain F,, Martín R,, Bermúdez-Humarán LG,, Courau S,, Langella P . 2017. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 16 : 79.[CrossRef] [PubMed]
47. Canfora EE,, Jocken JW,, Blaak EE . 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11 : 577591.[CrossRef] [PubMed]
48. Zheng J,, Ruan L,, Sun M,, Gänzle M . 2015. A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Appl Environ Microbiol 81 : 72337243.[CrossRef] [PubMed]
49. Makras L,, Falony G,, Van der Meulen R,, De Vuyst L . 2006. Letter to the editor. J Appl Microbiol 100 : 13881389.[CrossRef] [PubMed]
50. Klijn A,, Mercenier A,, Arigoni F . 2005. Lessons from the genomes of bifidobacteria. FEMS Microbiol Rev 29 : 491509.[CrossRef] [PubMed]
51. Flint HJ,, Duncan SH,, Scott KP,, Louis P . 2015. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74 : 1322.[CrossRef] [PubMed]
52. Dewulf EM,, Cani PD,, Claus SP,, Fuentes S,, Puylaert PGB,, Neyrinck AM,, Bindels LB,, de Vos WM,, Gibson GR,, Thissen J-P,, Delzenne NM . 2013. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62 : 11121121.[CrossRef] [PubMed]
53. Venkataraman A,, Sieber JR,, Schmidt AW,, Waldron C,, Theis KR,, Schmidt TM . 2016. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome 4 : 33.[CrossRef] [PubMed]
54. Walker AW,, Ince J,, Duncan SH,, Webster LM,, Holtrop G,, Ze X,, Brown D,, Stares MD,, Scott P,, Bergerat A,, Louis P,, McIntosh F,, Johnstone AM,, Lobley GE,, Parkhill J,, Flint HJ . 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5 : 220230.[CrossRef] [PubMed]
55. Martínez I,, Kim J,, Duffy PR,, Schlegel VL,, Walter J . 2010. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 5 : e15046.[CrossRef] [PubMed]
56. El Kaoutari A,, Armougom F,, Gordon JI,, Raoult D,, Henrissat B . 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11 : 497504.[CrossRef] [PubMed]
57. Flint HJ,, Bayer EA,, Rincon MT,, Lamed R,, White BA . 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6 : 121131.[CrossRef] [PubMed]
58. Chung WSF,, Walker AW,, Louis P,, Parkhill J,, Vermeiren J,, Bosscher D,, Duncan SH,, Flint HJ . 2016. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol 14 : 3.[CrossRef] [PubMed]
59. Sawicki CM,, Livingston KA,, Obin M,, Roberts SB,, Chung M,, McKeown NM . 2017. Dietary fiber and the human gut microbiota: application of evidence mapping methodology. Nutrients 9 : 125.[CrossRef] [PubMed]
60. Davis LMG,, Martínez I,, Walter J,, Goin C,, Hutkins RW . 2011. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One 6 : e25200.[CrossRef] [PubMed]
61. Walker AW,, Duncan SH,, McWilliam Leitch EC,, Child MW,, Flint HJ . 2005. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71 : 36923700.[CrossRef] [PubMed]
62. Duncan SH,, Louis P,, Thomson JM,, Flint HJ . 2009. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11 : 21122122.[CrossRef] [PubMed]
63. Tannock GW,, Lawley B,, Munro K,, Sims IM,, Lee J,, Butts CA,, Roy N . 2014. RNA-stable-isotope probing shows utilization of carbon from inulin by specific bacterial populations in the rat large bowel. Appl Environ Microbiol 80 : 22402247.[CrossRef] [PubMed]
64. Holscher HD . 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8 : 172184.[CrossRef] [PubMed]
65. Slavin J . 2013. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5 : 14171435.[CrossRef] [PubMed]
66. Hipsley EH . 1953. Dietary “fibre” and pregnancy toxaemia. BMJ 2 : 420422.[CrossRef] [PubMed]
67. Trowell HC . 1974. Editorial: definitions of dietary fibre. Lancet 1 : 503.[CrossRef]
68. Joint FAO/WHO Food Standards Programme . 2010. Secretariat of the CODEX Alimentarius Commission: CODEX Alimentarius (CODEX) guidelines on nutrition labeling CAC/GL 2-1985 as last amended 2010. FAO, Rome, Italy.
69. Food and Drug Administration . 2016. Food Labeling: Revision of the Nutrition and Supplement Facts Labels. Report no. RIN 0910-AF22. FDA, College Park, MD.
70. Fuller S,, Beck E,, Salman H,, Tapsell L . 2016. New horizons for the study of dietary fiber and health: a review. Plant Foods Hum Nutr 71 : 112.[CrossRef] [PubMed]
71. Tungland BC,, Meyer D . 2002. Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr Rev Food Sci Food Saf 1 : 90109.[CrossRef]
72. Raigond P,, Ezekiel R,, Raigond B . 2015. Resistant starch in food: a review. J Sci Food Agric 95 : 19681978.[CrossRef] [PubMed]
73. Mudgil D,, Barak S . 2013. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol 61 : 16.[CrossRef] [PubMed]
74. Guillona F,, Champ M . 2000. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res Int 33 : 233245.[CrossRef]
75. Ze X,, Duncan SH,, Louis P,, Flint HJ . 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6 : 15351543.[CrossRef] [PubMed]
76. Hehemann J-H,, Correc G,, Barbeyron T,, Helbert W,, Czjzek M,, Michel G . 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464 : 908912.[CrossRef] [PubMed]
77. Chassard C,, Delmas E,, Robert C,, Bernalier-Donadille A . 2010. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol Ecol 74 : 205213.[CrossRef] [PubMed]
78. Walter J . 2015. Murine gut microbiota-diet trumps genes. Cell Host Microbe 17 : 35.[CrossRef] [PubMed]
79. Kovatcheva-Datchary P,, Egert M,, Maathuis A,, Rajilić-Stojanović M,, de Graaf AA,, Smidt H,, de Vos WM,, Venema K . 2009. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ Microbiol 11 : 914926.[CrossRef] [PubMed]
80. Leitch ECM,, Walker AW,, Duncan SH,, Holtrop G,, Flint HJ . 2007. Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9 : 667679.[CrossRef] [PubMed]
81. Rakoff-Nahoum S,, Coyne MJ,, Comstock LE . 2014. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol 24 : 4049.[CrossRef] [PubMed]
82. Flint HJ,, Scott KP,, Duncan SH,, Louis P,, Forano E . 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3 : 289306.[CrossRef] [PubMed]
83. Belenguer A,, Duncan SH,, Calder AG,, Holtrop G,, Louis P,, Lobley GE,, Flint HJ . 2006. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72 : 35933599.[CrossRef] [PubMed]
84. Coyte KZ,, Schluter J,, Foster KR . 2015. The ecology of the microbiome: networks, competition, and stability. Science 350 : 663666.[CrossRef] [PubMed]
85. Koropatkin NM,, Cameron EA,, Martens EC . 2012. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10 : 323335.[PubMed]
86. Rey FE,, Faith JJ,, Bain J,, Muehlbauer MJ,, Stevens RD,, Newgard CB,, Gordon JI . 2010. Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285 : 2208222090.[CrossRef] [PubMed]
87. Fischbach MA,, Sonnenburg JL . 2011. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10 : 336347.[CrossRef] [PubMed]
88. Barcenilla A,, Pryde SE,, Martin JC,, Duncan SH,, Stewart CS,, Henderson C,, Flint HJ . 2000. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66 : 16541661.[CrossRef] [PubMed]
89. Chassard C,, Bernalier-Donadille A . 2006. H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. FEMS Microbiol Lett 254 : 116122.[CrossRef] [PubMed]
90. Duncan SH,, Louis P,, Flint HJ . 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70 : 58105817.[CrossRef] [PubMed]
91. Lozupone CA,, Hamady M,, Cantarel BL,, Coutinho PM,, Henrissat B,, Gordon JI,, Knight R . 2008. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci USA 105 : 1507615081.[CrossRef] [PubMed]
92. Vandeputte D,, Falony G,, Vieira-Silva S,, Wang J,, Sailer M,, Theis S,, Verbeke K,, Raes J . 2017. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. [Epub ahead of print.][CrossRef]
93. Tap J,, Furet J-P,, Bensaada M,, Philippe C,, Roth H,, Rabot S,, Lakhdari O,, Lombard V,, Henrissat B,, Corthier G,, Fontaine E,, Doré J,, Leclerc M . 2015. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol 17 : 49544964.[CrossRef] [PubMed]
94. Segata N . 2015. Gut microbiome: westernization and the disappearance of intestinal diversity. Curr Biol 25 : R611R613.[CrossRef] [PubMed]
95. Heiman ML,, Greenway FL . 2016. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab 5 : 317320.[CrossRef] [PubMed]
96. Clayton JB,, Vangay P,, Huang H,, Ward T,, Hillmann BM,, Al-Ghalith GA,, Travis DA,, Long HT,, Tuan BV,, Minh VV,, Cabana F,, Nadler T,, Toddes B,, Murphy T,, Glander KE,, Johnson TJ,, Knights D . 2016. Captivity humanizes the primate microbiome. Proc Natl Acad Sci USA 113 : 1037610381.[CrossRef] [PubMed]
97. Kong LC,, Holmes BA,, Cotillard A,, Habi-Rachedi F,, Brazeilles R,, Gougis S,, Gausserès N,, Cani PD,, Fellahi S,, Bastard J-P,, Kennedy SP,, Doré J,, Ehrlich SD,, Zucker J-D,, Rizkalla SW,, Clément K . 2014. Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS One 9 : e109434.[CrossRef] [PubMed]
98. Upadhyaya B,, McCormack L,, Fardin-Kia AR,, Juenemann R,, Nichenametla S,, Clapper J,, Specker B,, Dey M . 2016. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep 6 : 28797.[CrossRef] [PubMed]
99. West NP,, Christophersen CT,, Pyne DB,, Cripps AW,, Conlon MA,, Topping DL,, Kang S,, McSweeney CS,, Fricker PA,, Aguirre D,, Clarke JM . 2013. Butyrylated starch increases colonic butyrate concentration but has limited effects on immunity in healthy physically active individuals. Exerc Immunol Rev 19 : 102119.[PubMed]
100. Hooda S,, Boler BMV,, Serao MCR,, Brulc JM,, Staeger MA,, Boileau TW,, Dowd SE,, Fahey GCJ Jr,, Swanson KS . 2012. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr 142 : 12591265.[CrossRef] [PubMed]
101. Wong JM,, de Souza R,, Kendall CW,, Emam A,, Jenkins DJ . 2006. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40 : 235243.[CrossRef] [PubMed]
102. Cummings JH,, Pomare EW,, Branch WJ,, Naylor CP,, Macfarlane GT . 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28 : 12211227.[CrossRef] [PubMed]
103. Boets E,, Gomand SV,, Deroover L,, Preston T,, Vermeulen K,, De Preter V,, Hamer HM,, Van den Mooter G,, De Vuyst L,, Courtin CM,, Annaert P,, Delcour JA,, Verbeke KA . 2017. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J Physiol 595 : 541555.[CrossRef] [PubMed]
104. Yang J,, Martínez I,, Walter J,, Keshavarzian A,, Rose DJ . 2013. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe 23 : 7481.[CrossRef] [PubMed]
105. Yang J,, Rose DJ . 2014. Long-term dietary pattern of fecal donor correlates with butyrate production and markers of protein fermentation during in vitro fecal fermentation. Nutr Res 34 : 749759.[CrossRef] [PubMed]
106. Roediger WE . 1980. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21 : 793798.[CrossRef] [PubMed]
107. Dahl WJ,, Stewart ML . 2015. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J Acad Nutr Diet 115 : 18611870.[CrossRef] [PubMed]
108. Cummings JH,, Macfarlane GT . 1991. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70 : 443459.[CrossRef] [PubMed]
109. Duncan SH,, Belenguer A,, Holtrop G,, Johnstone AM,, Flint HJ,, Lobley GE . 2007. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73 : 10731078.[CrossRef] [PubMed]
110. Russell WR,, Gratz SW,, Duncan SH,, Holtrop G,, Ince J,, Scobbie L,, Duncan G,, Johnstone AM,, Lobley GE,, Wallace RJ,, Duthie GG,, Flint HJ . 2011. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 93 : 10621072.[CrossRef] [PubMed]
111. Windey K,, De Preter V,, Verbeke K . 2012. Relevance of protein fermentation to gut health. Mol Nutr Food Res 56 : 184196.[CrossRef] [PubMed]
112. Sonnenburg JL,, Xu J,, Leip DD,, Chen C-H,, Westover BP,, Weatherford J,, Buhler JD,, Gordon JI . 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307 : 19551959.[CrossRef] [PubMed]
113. Earle KA,, Billings G,, Sigal M,, Lichtman JS,, Hansson GC,, Elias JE,, Amieva MR,, Huang KC,, Sonnenburg JL . 2015. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18 : 478488.[CrossRef] [PubMed]
114. Desai MS,, Seekatz AM,, Koropatkin NM,, Kamada N,, Hickey CA,, Wolter M,, Pudlo NA,, Kitamoto S,, Terrapon N,, Muller A,, Young VB,, Henrissat B,, Wilmes P,, Stappenbeck TS,, Núñez G,, Martens EC . 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167 : 13391353.e21.[CrossRef] [PubMed]
115. Lambeau KV,, McRorie JWJ Jr . 2017. Fiber supplements and clinically proven health benefits: how to recognize and recommend an effective fiber therapy. J Am Assoc Nurse Pract 29 : 216223.[PubMed]
116. Schwiertz A,, Taras D,, Schäfer K,, Beijer S,, Bos NA,, Donus C,, Hardt PD . 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18 : 190195.[CrossRef] [PubMed]
117. Belcheva A,, Irrazabal T,, Robertson SJ,, Streutker C,, Maughan H,, Rubino S,, Moriyama EH,, Copeland JK,, Kumar S,, Green B,, Geddes K,, Pezo RC,, Navarre WW,, Milosevic M,, Wilson BC,, Girardin SE,, Wolever TMS,, Edelmann W,, Guttman DS,, Philpott DJ,, Martin A . 2014. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158 : 288299.[CrossRef] [PubMed]
118. Lupton JR . 2004. Microbial degradation products influence colon cancer risk: the butyrate controversy. J Nutr 134 : 479482.[PubMed]
119. Du H,, van der A DL,, Boshuizen HC,, Forouhi NG,, Wareham NJ,, Halkjaer J,, Tjønneland A,, Overvad K,, Jakobsen MU,, Boeing H,, Buijsse B,, Masala G,, Palli D,, Sørensen TI,, Saris WH,, Feskens EJ . 2010. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr 91 : 329336.[CrossRef] [PubMed]
120. Ben Q,, Sun Y,, Chai R,, Qian A,, Xu B,, Yuan Y . 2014. Dietary fiber intake reduces risk for colorectal adenoma: a meta-analysis. Gastroenterology 146 : 689699.e6.[PubMed]
121. Kunzmann AT,, Coleman HG,, Huang W-Y,, Kitahara CM,, Cantwell MM,, Berndt SI . 2015. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Clin Nutr 102 : 881890.[CrossRef] [PubMed]
122. Tan J,, McKenzie C,, Potamitis M,, Thorburn AN,, Mackay CR,, Macia L . 2014. The role of short-chain fatty acids in health and disease. Adv Immunol 121 : 91119.[CrossRef] [PubMed]
123. Thangaraju M,, Cresci GA,, Liu K,, Ananth S,, Gnanaprakasam JP,, Browning DD,, Mellinger JD,, Smith SB,, Digby GJ,, Lambert NA,, Prasad PD,, Ganapathy V . 2009. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 69 : 28262832.[CrossRef] [PubMed]
124. Wanders D,, Graff EC,, Judd RL . 2012. Effects of high fat diet on GPR109A and GPR81 gene expression. Biochem Biophys Res Commun 425 : 278283.[CrossRef] [PubMed]
125. Cresci GA,, Thangaraju M,, Mellinger JD,, Liu K,, Ganapathy V . 2010. Colonic gene expression in conventional and germfree mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. J Gastrointest Surg 14 : 449461.[CrossRef] [PubMed]
126. Le Poul E,, Loison C,, Struyf S,, Springael J-Y,, Lannoy V,, Decobecq M-E,, Brezillon S,, Dupriez V,, Vassart G,, Van Damme J,, Parmentier M,, Detheux M . 2003. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278 : 2548125489.[CrossRef] [PubMed]
127. Brown AJ,, Goldsworthy SM,, Barnes AA,, Eilert MM,, Tcheang L,, Daniels D,, Muir AI,, Wigglesworth MJ,, Kinghorn I,, Fraser NJ,, Pike NB,, Strum JC,, Steplewski KM,, Murdock PR,, Holder JC,, Marshall FH,, Szekeres PG,, Wilson S,, Ignar DM,, Foord SM,, Wise A,, Dowell SJ . 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278 : 1131211319.[CrossRef] [PubMed]
128. Blundell J,, de Graaf C,, Hulshof T,, Jebb S,, Livingstone B,, Lluch A,, Mela D,, Salah S,, Schuring E,, van der Knaap H,, Westerterp M . 2010. Appetite control: methodological aspects of the evaluation of foods. Obes Rev 11 : 251270.[CrossRef] [PubMed]
129. Samuel BS,, Shaito A,, Motoike T,, Rey FE,, Bäckhed F,, Manchester JK,, Hammer RE,, Williams SC,, Crowley J,, Yanagisawa M,, Gordon JI . 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105 : 1676716772.[CrossRef] [PubMed]
130. Tolhurst G,, Heffron H,, Lam YS,, Parker HE,, Habib AM,, Diakogiannaki E,, Cameron J,, Grosse J,, Reimann F,, Gribble FM . 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61 : 364371.[CrossRef] [PubMed]
131. Savage AP,, Adrian TE,, Carolan G,, Chatterjee VK,, Bloom SR . 1987. Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying in healthy volunteers. Gut 28 : 166170.[CrossRef] [PubMed]
132. Batterham RL,, Cowley MA,, Small CJ,, Herzog H,, Cohen MA,, Dakin CL,, Wren AM,, Brynes AE,, Low MJ,, Ghatei MA,, Cone RD,, Bloom SR . 2002. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418 : 650654.[CrossRef] [PubMed]
133. Wei Y,, Mojsov S . 1995. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett 358 : 219224.[CrossRef]
134. Merchenthaler I,, Lane M,, Shughrue P . 1999. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403 : 261280.[CrossRef] [PubMed]
135. Schjoldager BT,, Mortensen PE,, Christiansen J,, Ørskov C,, Holst JJ . 1989. GLP-1 (glucagon-like peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in humans. Dig Dis Sci 34 : 703708.[CrossRef] [PubMed]
136. Näslund E,, Bogefors J,, Skogar S,, Grybäck P,, Jacobsson H,, Holst JJ,, Hellström PM . 1999. GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am J Physiol 277 : R910R916.[PubMed]
137. Xiong Y,, Miyamoto N,, Shibata K,, Valasek MA,, Motoike T,, Kedzierski RM,, Yanagisawa M . 2004. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 101 : 10451050.[CrossRef] [PubMed]
138. Zaibi MS,, Stocker CJ,, O’Dowd J,, Davies A,, Bellahcene M,, Cawthorne MA,, Brown AJH,, Smith DM,, Arch JRS . 2010. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584 : 23812386.[CrossRef] [PubMed]
139. Frost G,, Sleeth ML,, Sahuri-Arisoylu M,, Lizarbe B,, Cerdan S,, Brody L,, Anastasovska J,, Ghourab S,, Hankir M,, Zhang S,, Carling D,, Swann JR,, Gibson G,, Viardot A,, Morrison D,, Louise Thomas E,, Bell JD . 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5 : 3611.[CrossRef] [PubMed]
140. De Vadder F,, Kovatcheva-Datchary P,, Goncalves D,, Vinera J,, Zitoun C,, Duchampt A,, Bäckhed F,, Mithieux G . 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156 : 8496.[CrossRef] [PubMed]
141. Delaere F,, Duchampt A,, Mounien L,, Seyer P,, Duraffourd C,, Zitoun C,, Thorens B,, Mithieux G . 2013. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab 2 : 4753.[CrossRef] [PubMed]
142. Kimura I,, Inoue D,, Maeda T,, Hara T,, Ichimura A,, Miyauchi S,, Kobayashi M,, Hirasawa A,, Tsujimoto G . 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 108 : 80308035.[CrossRef] [PubMed]
143. Gao Z,, Yin J,, Zhang J,, Ward RE,, Martin RJ,, Lefevre M,, Cefalu WT,, Ye J . 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58 : 15091517.[CrossRef] [PubMed]
144. Freitag J,, Berod L,, Kamradt T,, Sparwasser T . 2016. Immunometabolism and autoimmunity. Immunol Cell Biol 94 : 925934.[CrossRef] [PubMed]
145. Hajer GR,, van Haeften TW,, Visseren FLJ . 2008. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29 : 29592971.[CrossRef] [PubMed]
146. Kellow NJ,, Coughlan MT,, Reid CM . 2014. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr 111 : 11471161.[CrossRef] [PubMed]
147. Whitehead A,, Beck EJ,, Tosh S,, Wolever TMS . 2014. Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr 100 : 14131421.[CrossRef] [PubMed]
148. Beserra BTS,, Fernandes R,, do Rosario VA,, Mocellin MC,, Kuntz MGF,, Trindade EBSM . 2014. A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin Nutr 34 : 845858.[PubMed]
149. Ning H,, Van Horn L,, Shay CM,, Lloyd-Jones DM . 2014. Associations of dietary fiber intake with long-term predicted cardiovascular disease risk and C-reactive protein levels (from the National Health and Nutrition Examination Survey Data [2005–2010]). Am J Cardiol 113 : 287291.[CrossRef] [PubMed]
150. Yao B,, Fang H,, Xu W,, Yan Y,, Xu H,, Liu Y,, Mo M,, Zhang H,, Zhao Y . 2014. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol 29 : 7988.[CrossRef] [PubMed]
151. Kreymann B,, Williams G,, Ghatei MA,, Bloom SR . 1987. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2 : 13001304.[CrossRef] [PubMed]
152. Komatsu R,, Matsuyama T,, Namba M,, Watanabe N,, Itoh H,, Kono N,, Tarui S . 1989. Glucagonostatic and insulinotropic action of glucagonlike peptide I-(7-36)-amide. Diabetes 38 : 902905.[CrossRef] [PubMed]
153. Farilla L,, Bulotta A,, Hirshberg B,, Li Calzi S,, Khoury N,, Noushmehr H,, Bertolotto C,, Di Mario U,, Harlan DM,, Perfetti R . 2003. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144 : 51495158.[CrossRef] [PubMed]
154. Holz GGI IV,, Kühtreiber WM,, Habener JF . 1993. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 361 : 362365.[CrossRef] [PubMed]
155. Pingitore A,, Chambers ES,, Hill T,, Maldonado IR,, Liu B,, Bewick G,, Morrison DJ,, Preston T,, Wallis GA,, Tedford C,, Castañera González R,, Huang GC,, Choudhary P,, Frost G,, Persaud SJ . 2017. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro . Diabetes Obes Metab 19 : 257265.[CrossRef] [PubMed]
156. Röder PV,, Wu B,, Liu Y,, Han W . 2016. Pancreatic regulation of glucose homeostasis. Exp Mol Med 48 : e219.[CrossRef] [PubMed]
157. Clore JN,, Stillman J,, Sugerman H . 2000. Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes 49 : 969974.[CrossRef] [PubMed]
158. Magnusson I,, Rothman DL,, Katz LD,, Shulman RG,, Shulman GI . 1992. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 90 : 13231327.[CrossRef] [PubMed]
159. den Besten G,, Bleeker A,, Gerding A,, van Eunen K,, Havinga R,, van Dijk TH,, Oosterveer MH,, Jonker JW,, Groen AK,, Reijngoud D-J,, Bakker BM . 2015. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64 : 23982408.[CrossRef] [PubMed]
160. Wolever TM,, Spadafora P,, Eshuis H . 1991. Interaction between colonic acetate and propionate in humans. Am J Clin Nutr 53 : 681687.[PubMed]
161. Ge H,, Li X,, Weiszmann J,, Wang P,, Baribault H,, Chen J-L,, Tian H,, Li Y . 2008. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149 : 45194526.[CrossRef] [PubMed]