1887

Chapter 13 : Antimicrobial Resistance in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Antimicrobial Resistance in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap13-2.gif

Abstract:

is a bacterium with a special place in the microbiological world since it can cause severe infections in humans and animals but also represents a significant part of the autochthonous microbiota of the different hosts. Of major concern is a possible transmission of virulent and/or resistant between animals and humans through numerous pathways, such as direct contact, contact with animal excretions, or via the food chain. also represents a major reservoir of resistance genes that may be responsible for treatment failures in both human and veterinary medicine. An increasing number of resistance genes has been identified in isolates during the last decades, and many of these resistance genes were acquired by horizontal gene transfer. In the enterobacterial gene pool, acts as a donor and as a recipient of resistance genes and thereby can acquire resistance genes from other bacteria but can also pass on its resistance genes to other bacteria. In general, antimicrobial resistance in is considered one of the major challenges in both humans and animals at a worldwide scale and needs to be considered as a real public health concern.

Citation: Poirel L, Madec J, Lupo A, Schink A, Kieffer N, Nordmann P, Schwarz S. 2018. Antimicrobial Resistance in , p 289-316. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0026-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555819804.chap13
1. Kaper JB,, Nataro JP,, Mobley HL . 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2 : 123 140.[CrossRef][PubMed]
2. Köhler CD,, Dobrindt U . 2011. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol 301 : 642 647.[CrossRef][PubMed]
3. Johnson JR,, Russo TA . 2005. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 295 : 383 404.[CrossRef][PubMed]
4. Izzo MM,, Kirkland PD,, Mohler VL,, Perkins NR,, Gunn AA,, House JK . 2011. Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea. Aust Vet J 89 : 167 173.[CrossRef][PubMed]
5. Kolenda R,, Burdukiewicz M,, Schierack P . 2015. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front Cell Infect Microbiol 5 : 23.[CrossRef][PubMed]
6. Bouillon J,, Snead E,, Caswell J,, Feng C,, Hélie P,, Lemetayer J . 2018. Pyelonephritis in dogs: retrospective study of 47 histologically diagnosed cases (2005–2015). J Vet Intern Med 32 : 249 259.[CrossRef][PubMed]
7. Hutton TA,, Innes GK,, Harel J,, Garneau P,, Cucchiara A,, Schifferli DM,, Rankin SC . 2018. Phylogroup and virulence gene association with clinical characteristics of Escherichia coli urinary tract infections from dogs and cats. J Vet Diagn Invest 30 : 64 70.[CrossRef][PubMed]
8. Antão EM,, Glodde S,, Li G,, Sharifi R,, Homeier T,, Laturnus C,, Diehl I,, Bethe A,, Philipp HC,, Preisinger R,, Wieler LH,, Ewers C . 2008. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb Pathog 45 : 361 369.[CrossRef][PubMed]
9. Ruegg PL . 2017. A 100-year review: mastitis detection, management, and prevention. J Dairy Sci 100 : 10381 10397.[CrossRef]
10. Taponen S,, Liski E,, Heikkilä AM,, Pyörälä S . 2017. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J Dairy Sci 100 : 493 503.[CrossRef]
11. Shpigel NY,, Elazar S,, Rosenshine I . 2008. Mammary pathogenic Escherichia coli. Curr Opin Microbiol 11 : 60 65.[CrossRef][PubMed]
12. Suojala L,, Kaartinen L,, Pyörälä S . 2013. Treatment for bovine Escherichia coli mastitis: an evidence-based approach. J Vet Pharmacol Ther 36 : 521 531.[CrossRef][PubMed]
13. Dahmen S,, Métayer V,, Gay E,, Madec JY,, Haenni M . 2013. Characterization of extended-spectrum β-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet Microbiol 162 : 793 799.[CrossRef][PubMed]
14. Freitag C,, Michael GB,, Kadlec K,, Hassel M,, Schwarz S . 2017. Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Vet Microbiol 200 : 151 156.[CrossRef][PubMed]
15. Su Y,, Yu CY,, Tsai Y,, Wang SH,, Lee C,, Chu C . 2016. Fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli from the milk of cows with clinical mastitis in southern Taiwan. J Microbiol Immunol Infect 49 : 892 901.[CrossRef][PubMed]
16. Timofte D,, Maciuca IE,, Evans NJ,, Williams H,, Wattret A,, Fick JC,, Williams NJ . 2014. Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob Agents Chemother 58 : 789 794.[CrossRef][PubMed]
17. Pempek JA,, Holder E,, Proudfoot KL,, Masterson M,, Habing G . 2018. Short communication: investigation of antibiotic alternatives to improve health and growth of veal calves. J Dairy Sci 101 : 4473 4478.[CrossRef][PubMed]
18. Meganck V,, Hoflack G,, Opsomer G . 2014. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Vet Scand 56 : 75.[CrossRef][PubMed]
19. Dierikx CM,, van der Goot JA,, Smith HE,, Kant A,, Mevius DJ . 2013. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study. PLoS One 8 : e79005.[CrossRef][PubMed]
20. Haenni M,, Châtre P,, Métayer V,, Bour M,, Signol E,, Madec JY,, Gay E . 2014. Comparative prevalence and characterization of ESBL-producing Enterobacteriaceae in dominant versus subdominant enteric flora in veal calves at slaughterhouse, France. Vet Microbiol 171 : 321 327.[CrossRef]
21. Hordijk J,, Mevius DJ,, Kant A,, Bos ME,, Graveland H,, Bosman AB,, Hartskeerl CM,, Heederik DJ,, Wagenaar JA . 2013. Within-farm dynamics of ESBL/AmpC-producing Escherichia coli in veal calves: a longitudinal approach. J Antimicrob Chemother 68 : 2468 2476.[CrossRef][PubMed]
22. Ambler RP . 1980. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289 : 321 331.[CrossRef][PubMed]
23. Bush K,, Jacoby GA . 2010. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54 : 969 976.[CrossRef][PubMed]
24. Ewers C,, Bethe A,, Semmler T,, Guenther S,, Wieler LH . 2012. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 18 : 646 655.[CrossRef][PubMed]
25. Madec JY,, Haenni M,, Nordmann P,, Poirel L . 2017. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect 23 : 826 833.[CrossRef][PubMed]
26. Hordijk J,, Schoormans A,, Kwakernaak M,, Duim B,, Broens E,, Dierikx C,, Mevius D,, Wagenaar JA . 2013. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front Microbiol 4 : 242 247.[CrossRef][PubMed]
27. Lalak A,, Wasyl D,, Zając M,, Skarżyńska M,, Hoszowski A,, Samcik I,, Woźniakowski G,, Szulowski K . 2016. Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Vet Microbiol 194 : 69 73.[CrossRef][PubMed]
28. Schaufler K,, Bethe A,, Lübke-Becker A,, Ewers C,, Kohn B,, Wieler LH,, Guenther S . 2015. Putative connection between zoonotic multiresistant extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates from dogs. Infect Ecol Epidemiol 5 : 25334 25339.[CrossRef][PubMed]
29. Tian GB,, Wang HN,, Zhang AY,, Zhang Y,, Fan WQ,, Xu CW,, Zeng B,, Guan ZB,, Zou LK . 2012. Detection of clinically important β-lactamases in commensal Escherichia coli of human and swine origin in western China. J Med Microbiol 61 : 233 238.[CrossRef][PubMed]
30. Guenther S,, Ewers C,, Wieler LH . 2011. Extended-spectrum β-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2 : 246 259.[CrossRef][PubMed]
31. Karim A,, Poirel L,, Nagarajan S,, Nordmann P . 2001. Plasmid-mediated extended-spectrum β-lactamase (CTX-M-3 like) from India and gene association with insertion sequence IS Ecp1. FEMS Microbiol Lett 201 : 237 241.[CrossRef][PubMed]
32. Pitout JD,, Nordmann P,, Laupland KB,, Poirel L . 2005. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemother 56 : 52 59.[CrossRef][PubMed]
33. Michael GB,, Freitag C,, Wendlandt S,, Eidam C,, Feßler AT,, Lopes GV,, Kadlec K,, Schwarz S . 2015. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol 10 : 427 443.[CrossRef][PubMed]
34. EFSA . 2011. Panel on Biological Hazards (BIOHAZ); scientific opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J 9 : 23222417.[CrossRef]
35. Michael GB,, Kaspar H,, Siqueira AK,, de Freitas Costa E,, Corbellini LG,, Kadlec K,, Schwarz S . 2017. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GE RM-Vet monitoring program 2008–2014. Vet Microbiol 200 : 142 150.[CrossRef][PubMed]
36. Day MJ,, Rodríguez I,, van Essen-Zandbergen A,, Dierikx C,, Kadlec K,, Schink AK,, Wu G,, Chattaway MA,, DoNascimento V,, Wain J,, Helmuth R,, Guerra B,, Schwarz S,, Threlfall J,, Woodward MJ,, Coldham N,, Mevius D,, Woodford N . 2016. Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J Antimicrob Chemother 71 : 1178 1182.[CrossRef][PubMed]
37. Schmiedel J,, Falgenhauer L,, Domann E,, Bauerfeind R,, Prenger-Berninghoff E,, Imirzalioglu C,, Chakraborty T . 2014. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol 14 : 187 200.[CrossRef]
38. Shaheen BW,, Nayak R,, Foley SL,, Kweon O,, Deck J,, Park M,, Rafii F,, Boothe DM . 2011. Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob Agents Chemother 55 : 5666 5675.[CrossRef][PubMed]
39. Alonso CA,, Michael GB,, Li J,, Somalo S,, Simón C,, Wang Y,, Kaspar H,, Kadlec K,, Torres C,, Schwarz S . 2017. Analysis of bla SHV-12-carrying Escherichia coli clones and plasmids from human, animal and food sources. J Antimicrob Chemother 72 : 1589 1596.[CrossRef][PubMed]
40. Peirano G,, Pitout JD . 2010. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents 35 : 316 321.[CrossRef][PubMed]
41. Albrechtova K,, Dolejska M,, Cizek A,, Tausova D,, Klimes J,, Bebora L,, Literak I . 2012. Dogs of nomadic pastoralists in northern Kenya are reservoirs of plasmid-mediated cephalosporin- and quinolone-resistant Escherichia coli, including pandemic clone B2-O25-ST131. Antimicrob Agents Chemother 56 : 4013 4017.[CrossRef][PubMed]
42. Marques C,, Belas A,, Franco A,, Aboim C,, Gama LT,, Pomba C . 2018. Increase in antimicrobial resistance and emergence of major international high-risk clonal lineages in dogs and cats with urinary tract infection: 16 year retrospective study. J Antimicrob Chemother 73 : 377 384.[CrossRef][PubMed]
43. Schink AK,, Kadlec K,, Kaspar H,, Mankertz J,, Schwarz S . 2013. Analysis of extended-spectrum-β-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. J Antimicrob Chemother 68 : 1741 1749.[CrossRef][PubMed]
44. Wieler LH,, Ewers C,, Guenther S,, Walther B,, Lübke-Becker A . 2011. Methicillin-resistant staphylococci (MRS) and extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int J Med Microbiol 301 : 635 641.[CrossRef][PubMed]
45. Cantón R,, González-Alba JM,, Galán JC . 2012. CTX-M enzymes: origin and diffusion. Front Microbiol 3 : 110 129.[CrossRef][PubMed]
46. Poirel L,, Naas T,, Nordmann P . 2008. Genetic support of extended-spectrum β-lactamases. Clin Microbiol Infect 14( Suppl 1) : 75 81.[CrossRef][PubMed]
47. Carattoli A . 2013. Plasmids and the spread of resistance. Int J Med Microbiol 303 : 298 304.[CrossRef][PubMed]
48. Ferreira JC,, Penha Filho RA,, Andrade LN,, Berchieri A Jr,, Darini AL . 2014. Detection of chromosomal bla( CTX-M-2) in diverse Escherichia coli isolates from healthy broiler chickens. Clin Microbiol Infect 20 : O623 O626.[CrossRef][PubMed]
49. Guenther S,, Semmler T,, Stubbe A,, Stubbe M,, Wieler LH,, Schaufler K . 2017. Chromosomally encoded ESBL genes in Escherichia coli of ST38 from Mongolian wild birds. J Antimicrob Chemother 72 : 1310 1313.[CrossRef][PubMed]
50. Valentin L,, Sharp H,, Hille K,, Seibt U,, Fischer J,, Pfeifer Y,, Michael GB,, Nickel S,, Schmiedel J,, Falgenhauer L,, Friese A,, Bauerfeind R,, Roesler U,, Imirzalioglu C,, Chakraborty T,, Helmuth R,, Valenza G,, Werner G,, Schwarz S,, Guerra B,, Appel B,, Kreienbrock L,, Käsbohrer A . 2014. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: an approach to quantify the distribution of ESBL types between different reservoirs. Int J Med Microbiol 304 : 805 816.[CrossRef][PubMed]
51. Wu G,, Day MJ,, Mafura MT,, Nunez-Garcia J,, Fenner JJ,, Sharma M,, van Essen-Zandbergen A,, Rodríguez I,, Dierikx C,, Kadlec K,, Schink AK,, Chattaway M,, Wain J,, Helmuth R,, Guerra B,, Schwarz S,, Threlfall J,, Woodward MJ,, Woodford N,, Coldham N,, Mevius D . 2013. Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, The Netherlands and Germany. PLoS One 8 : e75392 e75402.[CrossRef][PubMed]
52. Leverstein-van Hall MA,, Dierikx CM,, Cohen Stuart J,, Voets GM,, van den Munckhof MP,, van Essen-Zandbergen A,, Platteel T,, Fluit AC,, van de Sande-Bruinsma N,, Scharinga J,, Bonten MJ,, Mevius DJ, National ESBL Surveillance Group . 2011. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 17 : 873 880.[CrossRef][PubMed]
53. Casella T,, Nogueira MCL,, Saras E,, Haenni M,, Madec JY . 2017. High prevalence of ESBLs in retail chicken meat despite reduced use of antimicrobials in chicken production, France. Int J Food Microbiol 257 : 271 275.[CrossRef]
54. Jacoby GA . 2009. AmpC β-lactamases. Clin Microbiol Rev 22 : 161 182.[CrossRef][PubMed]
55. Philippon A,, Arlet G,, Jacoby GA . 2002. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother 46 : 1 11.[CrossRef][PubMed]
56. Liebana E,, Carattoli A,, Coque TM,, Hasman H,, Magiorakos AP,, Mevius D,, Peixe L,, Poirel L,, Schuepbach-Regula G,, Torneke K,, Torren-Edo J,, Torres C,, Threlfall J . 2013. Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56 : 1030 1037.[CrossRef]
57. Hansen KH,, Bortolaia V,, Nielsen CA,, Nielsen JB,, Schønning K,, Agersø Y,, Guardabassi L . 2016. Host-specific patterns of genetic diversity among IncI1-Igamma and IncK plasmids encoding CMY-2 β-lactamase in Escherichia coli isolates from humans, poultry meat, poultry, and dogs in Denmark. Appl Environ Microbiol 82 : 4705 4714.[CrossRef][PubMed]
58. Börjesson S,, Ny S,, Egervärn M,, Bergström J,, Rosengren Å,, Englund S,, Löfmark S,, Byfors S . 2016. Limited dissemination of extended-spectrum β-lactamase- and plasmid-encoded AmpC-producing Escherichia coli from food and farm animals, Sweden. Emerg Infect Dis 22 : 634 640.[CrossRef][PubMed]
59. Nilsson O,, Börjesson S,, Landén A,, Bengtsson B . 2014. Vertical transmission of Escherichia coli carrying plasmid-mediated AmpC (pAmpC) through the broiler production pyramid. J Antimicrob Chemother 69 : 1497 1500.[CrossRef][PubMed]
60. Loncaric I,, Stalder GL,, Mehinagic K,, Rosengarten R,, Hoelzl F,, Knauer F,, Walzer C . 2013. Comparison of ESBL--and AmpC producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus (MRSA) isolated from migratory and resident population of rooks ( Corvus frugilegus) in Austria. PLoS One 8 : e84048.[CrossRef][PubMed]
61. Poirel L,, Potron A,, De La Cuesta C,, Cleary T,, Nordmann P,, Munoz-Price LS . 2012. Wild coastline birds as reservoirs of broad-spectrum-β-lactamase-producing Enterobacteriaceae in Miami Beach, Florida. Antimicrob Agents Chemother 56 : 2756 2758.[CrossRef][PubMed]
62. Báez J,, Hernández-García M,, Guamparito C,, Díaz S,, Olave A,, Guerrero K,, Cantón R,, Baquero F,, Gahona J,, Valenzuela N,, Del Campo R,, Silva J . 2015. Molecular characterization and genetic diversity of ESBL-producing Escherichia coli colonizing the migratory Franklin’s gulls ( Leucophaeus pipixcan) in Antofagasta, North of Chile. Microb Drug Resist 21 : 111 116.[CrossRef][PubMed]
63. Simões RR,, Poirel L,, Da Costa PM,, Nordmann P . 2010. Seagulls and beaches as reservoirs for multidrug-resistant Escherichia coli. Emerg Infect Dis 16 : 110 112.[CrossRef][PubMed]
64. Köck R,, Daniels-Haardt I,, Becker K,, Mellmann A,, Friedrich AW,, Mevius D,, Schwarz S,, Jurke A . 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. Epub ahead of print.[CrossRef][PubMed]
65. Poirel L,, Stephan R,, Perreten V,, Nordmann P . 2014. The carbapenemase threat in the animal world: the wrong culprit. J Antimicrob Chemother 69 : 2007 2008.[CrossRef][PubMed]
66. Woodford N,, Wareham DW,, Guerra B,, Teale C . 2014. Carbapenemase-producing Enterobacteriaceae and non- Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J Antimicrob Chemother 69 : 287 291.[CrossRef][PubMed]
67. Fischer J,, San José M,, Roschanski N,, Schmoger S,, Baumann B,, Irrgang A,, Friese A,, Roesler U,, Helmuth R,, Guerra B . 2017. Spread and persistence of VIM-1 carbapenemase-producing Enterobacteriaceae in three German swine farms in 2011 and 2012. Vet Microbiol 200 : 118 123.[CrossRef][PubMed]
68. Fischer J,, Rodríguez I,, Schmoger S,, Friese A,, Roesler U,, Helmuth R,, Guerra B . 2012. Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm. J Antimicrob Chemother 67 : 1793 1795.[CrossRef][PubMed]
69. Guerra B,, Fischer J,, Helmuth R . 2014. An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol 171 : 290 297.[CrossRef][PubMed]
70. Shaheen BW,, Nayak R,, Boothe DM . 2013. Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States. Antimicrob Agents Chemother 57 : 2902 2903.[CrossRef][PubMed]
71. Wang Y,, Zhang R,, Li J,, Wu Z,, Yin W,, Schwarz S,, Tyrrell JM,, Zheng Y,, Wang S,, Shen Z,, Liu Z,, Liu J,, Lei L,, Li M,, Zhang Q,, Wu C,, Zhang Q,, Wu Y,, Walsh TR,, Shen J . 2017. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2 : 16260.[CrossRef][PubMed]
72. Liu Z,, Wang Y,, Walsh TR,, Liu D,, Shen Z,, Zhang R,, Yin W,, Yao H,, Li J,, Shen J . 2017. Plasmid-mediated novel bla NDM-17 gene encoding a carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain. Antimicrob Agents Chemother 61 : e02233-16.[PubMed]
73. Singh AS,, Lekshmi M,, Nayak BB,, Kumar SH . 2016. Isolation of Escherichia coli harboring bla NDM-5 from fresh fish in India. J Microbiol Immunol Infect 49 : 822 823.[CrossRef][PubMed]
74. Yang RS,, Feng Y,, Lv XY,, Duan JH,, Chen J,, Fang LX,, Xia J,, Liao XP,, Sun J,, Liu YH . 2016. Emergence of NDM-5- and MCR-1-producing Escherichia coli clones ST648 and ST156 from a single Muscovy duck ( Cairina moschata). Antimicrob Agents Chemother 60 : 6899 6902.[CrossRef][PubMed]
75. Yousfi M,, Touati A,, Mairi A,, Brasme L,, Gharout-Sait A,, Guillard T,, De Champs C . 2016. Emergence of carbapenemase-producing Escherichia coli isolated from companion animals in Algeria. Microb Drug Resist 22 : 342 346.[CrossRef][PubMed]
76. Dolejska M,, Masarikova M,, Dobiasova H,, Jamborova I,, Karpiskova R,, Havlicek M,, Carlile N,, Priddel D,, Cizek A,, Literak I . 2016. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J Antimicrob Chemother 71 : 63 70.[CrossRef][PubMed]
77. Al Bayssari C,, Olaitan AO,, Dabboussi F,, Hamze M,, Rolain JM . 2015. Emergence of OXA-48-producing Escherichia coli clone ST38 in fowl. Antimicrob Agents Chemother 59 : 745 746.[CrossRef][PubMed]
78. Melo LC,, Boisson MN,, Saras E,, Médaille C,, Boulouis HJ,, Madec JY,, Haenni M . 2017. OXA-48-producing ST372 Escherichia coli in a French dog. J Antimicrob Chemother 72 : 1256 1258.[PubMed]
79. Stolle I,, Prenger-Berninghoff E,, Stamm I,, Scheufen S,, Hassdenteufel E,, Guenther S,, Bethe A,, Pfeifer Y,, Ewers C . 2013. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother 68 : 2802 2808.[CrossRef][PubMed]
80. Pulss S,, Semmler T,, Prenger-Berninghoff E,, Bauerfeind R,, Ewers C . 2017. First report of an Escherichia coli strain from swine carrying an OXA-181 carbapenemase and the colistin resistance determinant MCR-1. Int J Antimicrob Agents 50 : 232 236.[CrossRef][PubMed]
81. Mollenkopf DF,, Stull JW,, Mathys DA,, Bowman AS,, Feicht SM,, Grooters SV,, Daniels JB,, Wittum TE . 2017. Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob Agents Chemother 61 : e01298-16.[CrossRef][PubMed]
82. Munoz-Price LS,, Poirel L,, Bonomo RA,, Schwaber MJ,, Daikos GL,, Cormican M,, Cornaglia G,, Garau J,, Gniadkowski M,, Hayden MK,, Kumarasamy K,, Livermore DM,, Maya JJ,, Nordmann P,, Patel JB,, Paterson DL,, Pitout J,, Villegas MV,, Wang H,, Woodford N,, Quinn JP . 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13 : 785 796.[CrossRef]
83. Hopkins KL,, Davies RH,, Threlfall EJ . 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 25 : 358 373.[CrossRef][PubMed]
84. de Jong A,, Muggeo A,, El Garch F,, Moyaert H,, de Champs C,, Guillard T . 2018. Characterization of quinolone resistance mechanisms in Enterobacteriaceae isolated from companion animals in Europe (ComPath II study). Vet Microbiol 216 : 159 167.[CrossRef][PubMed]
85. Schink AK,, Kadlec K,, Hauschild T,, Brenner Michael G,, Dörner JC,, Ludwig C,, Werckenthin C,, Hehnen HR,, Stephan B,, Schwarz S . 2013. Susceptibility of canine and feline bacterial pathogens to pradofloxacin and comparison with other fluoroquinolones approved for companion animals. Vet Microbiol 162 : 119 126.[CrossRef][PubMed]
86. Liu BT,, Liao XP,, Yang SS,, Wang XM,, Li LL,, Sun J,, Yang YR,, Fang LX,, Li L,, Zhao DH,, Liu YH . 2012. Detection of mutations in the gyrA and parC genes in Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from diseased food-producing animals. J Med Microbiol 61 : 1591 1599.[CrossRef][PubMed]
87. Redgrave LS,, Sutton SB,, Webber MA,, Piddock LJ . 2014. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22 : 438 445.[CrossRef][PubMed]
88. Cattoir V,, Nordmann P . 2009. Plasmid-mediated quinolone resistance in Gram-negative bacterial species: an update. Curr Med Chem 16 : 1028 1046.[CrossRef][PubMed]
89. Rodríguez-Martínez JM,, Machuca J,, Cano ME,, Calvo J,, Martínez-Martínez L,, Pascual A . 2016. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Updat 29 : 13 29.[CrossRef][PubMed]
90. Ma J,, Zeng Z,, Chen Z,, Xu X,, Wang X,, Deng Y,, D,, Huang L,, Zhang Y,, Liu J,, Wang M . 2009. High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6′)-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob Agents Chemother 53 : 519 524.[CrossRef][PubMed]
91. Huang SY,, Dai L,, Xia LN,, Du XD,, Qi YH,, Liu HB,, Wu CM,, Shen JZ . 2009. Increased prevalence of plasmid-mediated quinolone resistance determinants in chicken Escherichia coli isolates from 2001 to 2007. Foodborne Pathog Dis 6 : 1203 1209.[CrossRef][PubMed]
92. Veldman K,, Cavaco LM,, Mevius D,, Battisti A,, Franco A,, Botteldoorn N,, Bruneau M,, Perrin-Guyomard A,, Cerny T,, De Frutos Escobar C,, Guerra B,, Schroeter A,, Gutierrez M,, Hopkins K,, Myllyniemi AL,, Sunde M,, Wasyl D,, Aarestrup FM . 2011. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J Antimicrob Chemother 66 : 1278 1286.[CrossRef][PubMed]
93. Dolejska M,, Duskova E,, Rybarikova J,, Janoszowska D,, Roubalova E,, Dibdakova K,, Maceckova G,, Kohoutova L,, Literak I,, Smola J,, Cizek A . 2011. Plasmids carrying bla CTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J Antimicrob Chemother 66 : 757 764.[CrossRef][PubMed]
94. Schink AK,, Kadlec K,, Schwarz S . 2012. Detection of qnr genes among Escherichia coli isolates of animal origin and complete sequence of the conjugative qnrB19-carrying plasmid pQNR2078. J Antimicrob Chemother 67 : 1099 1102.[CrossRef][PubMed]
95. Hordijk J,, Bosman AB,, van Essen-Zandbergen A,, Veldman K,, Dierikx C,, Wagenaar JA,, Mevius D . 2011. qnrB19 gene bracketed by IS 26 on a 40-kilobase IncR plasmid from an Escherichia coli isolate from a veal calf. Antimicrob Agents Chemother 55 : 453 454.[CrossRef][PubMed]
96. Ewers C,, Bethe A,, Stamm I,, Grobbel M,, Kopp PA,, Guerra B,, Stubbe M,, Doi Y,, Zong Z,, Kola A,, Schaufler K,, Semmler T,, Fruth A,, Wieler LH,, Guenther S . 2014. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence? J Antimicrob Chemother 69 : 1224 1230.[CrossRef][PubMed]
97. Liu X,, Liu H,, Li Y,, Hao C . 2016. High prevalence of β-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front Microbiol 7 : 1843 1852.[CrossRef]
98. Pomba C,, da Fonseca JD,, Baptista BC,, Correia JD,, Martínez-Martínez L . 2009. Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6′)-Ib-cr genes in a dog. Antimicrob Agents Chemother 53 : 327 328.[CrossRef][PubMed]
99. Timofte D,, Maciuca IE,, Williams NJ,, Wattret A,, Schmidt V . 2016. Veterinary hospital dissemination of CTX-M-15 extended-spectrum β-lactamase-producing Escherichia coli ST410 in the United Kingdom. Microb Drug Resist 22 : 609 615.[CrossRef][PubMed]
100. Madec JY,, Poirel L,, Saras E,, Gourguechon A,, Girlich D,, Nordmann P,, Haenni M . 2012. Non-ST131 Escherichia coli from cattle harbouring human-like bla( CTX-M-15)-carrying plasmids. J Antimicrob Chemother 67 : 578 581.[CrossRef][PubMed]
101. Chen X,, He L,, Li Y,, Zeng Z,, Deng Y,, Liu Y,, Liu JH . 2014. Complete sequence of a F2:A-:B- plasmid pHN3A11 carrying rmtB and qepA, and its dissemination in China. Vet Microbiol 174 : 267 271.[CrossRef][PubMed]
102. Liu BT,, Yang QE,, Li L,, Sun J,, Liao XP,, Fang LX,, Yang SS,, Deng H,, Liu YH . 2013. Dissemination and characterization of plasmids carrying oqxAB- bla CTX-M genes in Escherichia coli isolates from food-producing animals. PLoS One 8 : e73947.[CrossRef][PubMed]
103. Hansen LH,, Jensen LB,, Sørensen HI,, Sørensen SJ . 2007. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 60 : 145 147.[CrossRef][PubMed]
104. Davies J,, Wright GD . 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5 : 234 240.[CrossRef]
105. Doi Y,, Wachino JI,, Arakawa Y . 2016. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin North Am 30 : 523 537.[CrossRef][PubMed]
106. Anonymous . 2014. Concept paper on the of aminoglycosides in animals in the European Union: development of resistance and impact on human and animal health. EMA/CVMP/AWP/158821/2014 1-4.
107. Fourmy D,, Yoshizawa S,, Puglisi JD . 1998. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J Mol Biol 277 : 333 345.[CrossRef][PubMed]
108. Bowers DR SAN,, Tam VH, . 2016. Aminoglycoside pharmacodynamics, p 199 220. In Rotschafer J,, Andes D,, Rodvold K (ed), Antibiotic Pharmacodynamics. Methods in Pharmacology and Toxicology. Humana Press, New York, NY.
109. Griffey RH,, Hofstadler SA,, Sannes-Lowery KA,, Ecker DJ,, Crooke ST . 1999. Determinants of aminoglycoside-binding specificity for rRNA by using mass spectrometry. Proc Natl Acad Sci USA 96 : 10129 10133.[CrossRef][PubMed]
110. Llano-Sotelo B,, Hickerson RP,, Lancaster L,, Noller HF,, Mankin AS . 2009. Fluorescently labeled ribosomes as a tool for analyzing antibiotic binding. RNA 15 : 1597 1604.[CrossRef][PubMed]
111. Galimand M,, Courvalin P,, Lambert T . 2003. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother 47 : 2565 2571.[CrossRef][PubMed]
112. Batah R,, Loucif L,, Olaitan AO,, Boutefnouchet N,, Allag H,, Rolain JM . 2015. Outbreak of Serratia marcescens coproducing ArmA and CTX-M-15 mediated high levels of resistance to aminoglycoside and extended-spectrum β-lactamases, Algeria. Microb Drug Resist 21 : 470 476.[CrossRef][PubMed]
113. Dolejska M,, Villa L,, Poirel L,, Nordmann P,, Carattoli A . 2013. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother 68 : 34 39.[CrossRef][PubMed]
114. Gurung M,, Moon DC,, Tamang MD,, Kim J,, Lee YC,, Seol SY,, Cho DT,, Lee JC . 2010. Emergence of 16S rRNA methylase gene armA and cocarriage of bla( IMP-1) in Pseudomonas aeruginosa isolates from South Korea. Diagn Microbiol Infect Dis 68 : 468 470.[CrossRef][PubMed]
115. Wachino J,, Yamane K,, Shibayama K,, Kurokawa H,, Shibata N,, Suzuki S,, Doi Y,, Kimura K,, Ike Y,, Arakawa Y . 2006. Novel plasmid-mediated 16S rRNA methylase, RmtC, found in a Proteus mirabilis isolate demonstrating extraordinary high-level resistance against various aminoglycosides. Antimicrob Agents Chemother 50 : 178 184.[CrossRef][PubMed]
116. Yu YS,, Zhou H,, Yang Q,, Chen YG,, Li LJ . 2007. Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. J Antimicrob Chemother 60 : 454 455.[CrossRef][PubMed]
117. Galimand M,, Sabtcheva S,, Courvalin P,, Lambert T . 2005. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn 1548. Antimicrob Agents Chemother 49 : 2949 2953.[CrossRef][PubMed]
118. González-Zorn B,, Teshager T,, Casas M,, Porrero MC,, Moreno MA,, Courvalin P,, Domínguez L . 2005. armA and aminoglycoside resistance in Escherichia coli. Emerg Infect Dis 11 : 954 956.[CrossRef][PubMed]
119. Chen L,, Chen ZL,, Liu JH,, Zeng ZL,, Ma JY,, Jiang HX . 2007. Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J Antimicrob Chemother 59 : 880 885.[CrossRef][PubMed]
120. Du XD,, Wu CM,, Liu HB,, Li XS,, Beier RC,, Xiao F,, Qin SS,, Huang SY,, Shen JZ . 2009. Plasmid-mediated ArmA and RmtB 16S rRNA methylases in Escherichia coli isolated from chickens. J Antimicrob Chemother 64 : 1328 1330.[CrossRef][PubMed]
121. Liu BT,, Liao XP,, Yue L,, Chen XY,, Li L,, Yang SS,, Sun J,, Zhang S,, Liao SD,, Liu YH . 2013. Prevalence of β-lactamase and 16S rRNA methylase genes among clinical Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from animals. Microb Drug Resist 19 : 237 245.[CrossRef][PubMed]
122. Yu T,, He T,, Yao H,, Zhang JB,, Li XN,, Zhang RM,, Wang GQ . 2015. Prevalence of 16S rRNA methylase gene rmtB among Escherichia coli isolated from bovine mastitis in Ningxia, China. Foodborne Pathog Dis 12 : 770 777.[CrossRef][PubMed]
123. Yang Y,, Zhang A,, Lei C,, Wang H,, Guan Z,, Xu C,, Liu B,, Zhang D,, Li Q,, Jiang W,, Pan Y,, Yang C . 2015. Characteristics of plasmids coharboring 16S rRNA methylases, CTX-M, and virulence factors in Escherichia coli and Klebsiella pneumoniae isolates from chickens in China. Foodborne Pathog Dis 12 : 873 880.[CrossRef][PubMed]
124. Lupo A,, Saras E,, Madec JY,, Haenni M . 2018. Emergence of bla CTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France. J Antimicrob Chemother 73 : 867 872.[CrossRef][PubMed]
125. Leigue L,, Warth JF,, Melo LC,, Silva KC,, Moura RA,, Barbato L,, Silva LC,, Santos AC,, Silva RM,, Lincopan N . 2015. MDR ST2179-CTX-M-15 Escherichia coli co-producing RmtD and AAC(6′)-Ib-cr in a horse with extraintestinal infection, Brazil. J Antimicrob Chemother 70 : 1263 1265.[PubMed]
126. Lee CS,, Hu F,, Rivera JI,, Doi Y . 2014. Escherichia coli sequence type 354 coproducing CMY-2 cephalosporinase and RmtE 16S rRNA methyltransferase. Antimicrob Agents Chemother 58 : 4246 4247.[CrossRef][PubMed]
127. Xia J,, Sun J,, Li L,, Fang LX,, Deng H,, Yang RS,, Li XP,, Liao XP,, Liu YH . 2015. First report of the IncI1/ST898 conjugative plasmid carrying rmtE2 16S rRNA methyltransferase gene in Escherichia coli. Antimicrob Agents Chemother 59 : 7921 7922.[CrossRef][PubMed]
128. Zou W,, Li C,, Yang X,, Wang Y,, Cheng G,, Zeng J,, Zhang X,, Chen Y,, Cai R,, Huang Q,, Feng L,, Wang H,, Li D,, Zhang G,, Chen Y,, Zhang Z,, Zhang H . 2018. Frequency of antimicrobial resistance and integron gene cassettes in Escherichia coli isolated from giant pandas ( Ailuropoda melanoleuca) in China. Microb Pathog 116 : 173 179.[CrossRef][PubMed]
129. Gutierrez B,, Escudero JA,, San Millan A,, Hidalgo L,, Carrilero L,, Ovejero CM,, Santos-Lopez A,, Thomas-Lopez D,, Gonzalez-Zorn B . 2012. Fitness cost and interference of Arm/Rmt aminoglycoside resistance with the RsmF housekeeping methyltransferases. Antimicrob Agents Chemother 56 : 2335 2341.[CrossRef][PubMed]
130. Lioy VS,, Goussard S,, Guerineau V,, Yoon EJ,, Courvalin P,, Galimand M,, Grillot-Courvalin C . 2014. Aminoglycoside resistance 16S rRNA methyltransferases block endogenous methylation, affect translation efficiency and fitness of the host. RNA 20 : 382 391.[CrossRef][PubMed]
131. Ramirez MS,, Tolmasky ME . 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13 : 151 171.[CrossRef][PubMed]
132. Choi MJ,, Lim SK,, Nam HM,, Kim AR,, Jung SC,, Kim MN . 2011. Apramycin and gentamicin resistances in indicator and clinical Escherichia coli isolates from farm animals in Korea. Foodborne Pathog Dis 8 : 119 123.[CrossRef][PubMed]
133. Costa D,, Poeta P,, Sáenz Y,, Vinué L,, Coelho AC,, Matos M,, Rojo-Bezares B,, Rodrigues J,, Torres C . 2008. Mechanisms of antibiotic resistance in Escherichia coli isolates recovered from wild animals. Microb Drug Resist 14 : 71 77.[CrossRef][PubMed]
134. Haldorsen BC,, Simonsen GS,, Sundsfjord A,, Samuelsen O, Norwegian Study Group on Aminoglycoside Resistance . 2014. Increased prevalence of aminoglycoside resistance in clinical isolates of Escherichia coli and Klebsiella spp. in Norway is associated with the acquisition of AAC(3)-II and AAC(6′)-Ib. Diagn Microbiol Infect Dis 78 : 66 69.[CrossRef][PubMed]
135. Medina A,, Horcajo P,, Jurado S,, De la Fuente R,, Ruiz-Santa-Quiteria JA,, Domínguez-Bernal G,, Orden JA . 2011. Phenotypic and genotypic characterization of antimicrobial resistance in enterohemorrhagic Escherichia coli and atypical enteropathogenic E. coli strains from ruminants. J Vet Diagn Invest 23 : 91 95.[CrossRef][PubMed]
136. Radhouani H,, Poeta P,, Gonçalves A,, Pacheco R,, Sargo R,, Igrejas G . 2012. Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards ( Buteo buteo). J Med Microbiol 61 : 837 843.[CrossRef][PubMed]
137. Radhouani H,, Poeta P,, Igrejas G,, Gonçalves A,, Vinué L,, Torres C . 2009. Antimicrobial resistance and phylogenetic groups in isolates of Escherichia coli from seagulls at the Berlengas nature reserve. Vet Rec 165 : 138 142.[CrossRef][PubMed]
138. Rocha-Gracia RC,, Cortés-Cortés G,, Lozano-Zarain P,, Bello F,, Martínez-Laguna Y,, Torres C . 2015. Faecal Escherichia coli isolates from healthy dogs harbour CTX-M-15 and CMY-2 β-lactamases. Vet J 203 : 315 319.[CrossRef][PubMed]
139. Silva N,, Igrejas G,, Figueiredo N,, Gonçalves A,, Radhouani H,, Rodrigues J,, Poeta P . 2010. Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit ( Oryctolagus cuniculus). Sci Total Environ 408 : 4871 4876.[CrossRef][PubMed]
140. Xiao Y,, Hu Y . 2012. The major aminoglycoside-modifying enzyme AAC(3)-II found in Escherichia coli determines a significant disparity in its resistance to gentamicin and amikacin in China. Microb Drug Resist 18 : 42 46.[CrossRef][PubMed]
141. Allen SE,, Boerlin P,, Janecko N,, Lumsden JS,, Barker IK,, Pearl DL,, Reid-Smith RJ,, Jardine C . 2011. Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Appl Environ Microbiol 77 : 882 888.[CrossRef][PubMed]
142. Gonçalves A,, Igrejas G,, Radhouani H,, Correia S,, Pacheco R,, Santos T,, Monteiro R,, Guerra A,, Petrucci-Fonseca F,, Brito F,, Torres C,, Poeta P . 2013. Antimicrobial resistance in faecal enterococci and Escherichia coli isolates recovered from Iberian wolf. Lett Appl Microbiol 56 : 268 274.[CrossRef][PubMed]
143. Gonçalves A,, Igrejas G,, Radhouani H,, Santos T,, Monteiro R,, Pacheco R,, Alcaide E,, Zorrilla I,, Serra R,, Torres C,, Poeta P . 2013. Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx ( Lynx pardinus). Sci Total Environ 456-457 : 115 119.[CrossRef][PubMed]
144. Marchant M,, Vinué L,, Torres C,, Moreno MA . 2013. Change of integrons over time in Escherichia coli isolates recovered from healthy pigs and chickens. Vet Microbiol 163 : 124 132.[CrossRef][PubMed]
145. Marinho C,, Igrejas G,, Gonçalves A,, Silva N,, Santos T,, Monteiro R,, Gonçalves D,, Rodrigues T,, Poeta P . 2014. Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli. Anaerobe 30 : 116 119.[CrossRef][PubMed]
146. Radhouani H,, Igrejas G,, Gonçalves A,, Pacheco R,, Monteiro R,, Sargo R,, Brito F,, Torres C,, Poeta P . 2013. Antimicrobial resistance and virulence genes in Escherichia coli and enterococci from red foxes ( Vulpes vulpes). Anaerobe 23 : 82 86.[CrossRef][PubMed]
147. Sacristán C,, Esperón F,, Herrera-León S,, Iglesias I,, Neves E,, Nogal V,, Muñoz MJ,, de la Torre A . 2014. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain. Avian Pathol 43 : 172 175.[CrossRef][PubMed]
148. Santos T,, Silva N,, Igrejas G,, Rodrigues P,, Micael J,, Rodrigues T,, Resendes R,, Gonçalves A,, Marinho C,, Gonçalves D,, Cunha R,, Poeta P . 2013. Dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores Archipelago. Anaerobe 24 : 25 31.[CrossRef][PubMed]
149. Karczmarczyk M,, Abbott Y,, Walsh C,, Leonard N,, Fanning S . 2011. Characterization of multidrug-resistant Escherichia coli isolates from animals presenting at a university veterinary hospital. Appl Environ Microbiol 77 : 7104 7112.[CrossRef][PubMed]
150. Shin SW,, Byun JW,, Jung M,, Shin MK,, Yoo HS . 2014. Antimicrobial resistance, virulence genes and PFGE-profiling of Escherichia coli isolates from South Korean cattle farms. J Microbiol 52 : 785 793.[CrossRef][PubMed]
151. Toszeghy M,, Phillips N,, Reeves H,, Wu G,, Teale C,, Coldham N,, Randall L . 2012. Molecular and phenotypic characterisation of extended spectrum β-lactamase CTX-M Escherichia coli from farm animals in Great Britain. Res Vet Sci 93 : 1142 1150.[CrossRef][PubMed]
152. Yamamoto S,, Iwabuchi E,, Hasegawa M,, Esaki H,, Muramatsu M,, Hirayama N,, Hirai K . 2013. Prevalence and molecular epidemiological characterization of antimicrobial-resistant Escherichia coli isolates from Japanese black beef cattle. J Food Prot 76 : 394 404.[CrossRef][PubMed]
153. Adelowo OO,, Fagade OE,, Agersø Y . 2014. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria. J Infect Dev Ctries 8 : 1103 1112.[CrossRef][PubMed]
154. Zhang FY,, Huo SY,, Li YR,, Xie R,, Wu XJ,, Chen LG,, Gao YH . 2014. A survey of the frequency of aminoglycoside antibiotic-resistant genotypes and phenotypes in Escherichia coli in broilers with septicaemia in Hebei, China. Br Poult Sci 55 : 305 310.[CrossRef][PubMed]
155. Gonçalves A,, Torres C,, Silva N,, Carneiro C,, Radhouani H,, Coelho C,, Araújo C,, Rodrigues J,, Vinué L,, Somalo S,, Poeta P,, Igrejas G . 2010. Genetic characterization of extended-spectrum β-lactamases in Escherichia coli isolates of pigs from a Portuguese intensive swine farm. Foodborne Pathog Dis 7 : 1569 1573.[CrossRef][PubMed]
156. Tang X,, Tan C,, Zhang X,, Zhao Z,, Xia X,, Wu B,, Guo A,, Zhou R,, Chen H . 2011. Antimicrobial resistances of extraintestinal pathogenic Escherichia coli isolates from swine in China. Microb Pathog 50 : 207 212.[CrossRef][PubMed]
157. Zhang WJ,, Xu XR,, Schwarz S,, Wang XM,, Dai L,, Zheng HJ,, Liu S . 2014. Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr. J Antimicrob Chemother 69 : 385 389.[CrossRef][PubMed]
158. Falagas ME,, Vouloumanou EK,, Samonis G,, Vardakas KZ . 2016. Fosfomycin. Clin Microbiol Rev 29 : 321 347.[CrossRef][PubMed]
159. Pérez DS,, Tapia MO,, Soraci AL . 2014. Fosfomycin: uses and potentialities in veterinary medicine. Open Vet J 4 : 26 43.[PubMed]
160. Silver LL . 2017. Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med 7 : 7.[CrossRef][PubMed]
161. Wang X,, Zhu Y,, Hua X,, Chen F,, Wang C,, Zhang Y,, Liu S,, Zhang W . 2018. F14:A-:B- and IncX4 Inc group cfr-positive plasmids circulating in Escherichia coli of animal origin in Northeast China. Vet Microbiol 217 : 53 57.[CrossRef][PubMed]
162. Wang XM,, Dong Z,, Schwarz S,, Zhu Y,, Hua X,, Zhang Y,, Liu S,, Zhang WJ . 2017. Plasmids of diverse Inc groups disseminate the fosfomycin resistance gene fosA3 among Escherichia coli isolates from pigs, chickens, and dairy cows in Northeast China. Antimicrob Agents Chemother 61 : e00859–e00817.[CrossRef][PubMed]
163. Hou J,, Huang X,, Deng Y,, He L,, Yang T,, Zeng Z,, Chen Z,, Liu JH . 2012. Dissemination of the fosfomycin resistance gene fosA3 with CTX-M β-lactamase genes and rmtB carried on IncFII plasmids among Escherichia coli isolates from pets in China. Antimicrob Agents Chemother 56 : 2135 2138.[CrossRef][PubMed]
164. Yao H,, Wu D,, Lei L,, Shen Z,, Wang Y,, Liao K . 2016. The detection of fosfomycin resistance genes in Enterobacteriaceae from pets and their owners. Vet Microbiol 193 : 67 71.[CrossRef][PubMed]
165. Xie M,, Lin D,, Chen K,, Chan EW,, Yao W,, Chen S . 2016. Molecular characterization of Escherichia coli strains isolated from retail meat that harbor bla CTX-M and fosA3 genes. Antimicrob Agents Chemother 60 : 2450 2455.[CrossRef][PubMed]
166. He L,, Partridge SR,, Yang X,, Hou J,, Deng Y,, Yao Q,, Zeng Z,, Chen Z,, Liu JH . 2013. Complete nucleotide sequence of pHN7A8, an F33:A-:B-type epidemic plasmid carrying bla CTX-M-65, fosA3 and rmtB from China. J Antimicrob Chemother 68 : 46 50.[CrossRef][PubMed]
167. Ho PL,, Chan J,, Lo WU,, Law PY,, Chow KH . 2013. Plasmid-mediated fosfomycin resistance in Escherichia coli isolated from pig. Vet Microbiol 162 : 964 967.[CrossRef][PubMed]
168. Sun H,, Li S,, Xie Z,, Yang F,, Sun Y,, Zhu Y,, Zhao X,, Jiang S . 2012. A novel multidrug resistance plasmid isolated from an Escherichia coli strain resistant to aminoglycosides. J Antimicrob Chemother 67 : 1635 1638.[CrossRef][PubMed]
169. Pan YS,, Yuan L,, Zong ZY,, Liu JH,, Wang LF,, Hu GZ . 2014. A multidrug-resistance region containing bla CTX-M-65, fosA3 and rmtB on conjugative IncFII plasmids in Escherichia coli ST117 isolates from chicken. J Med Microbiol 63 : 485 488.[CrossRef][PubMed]
170. Hou J,, Yang X,, Zeng Z,, Lv L,, Yang T,, Lin D,, Liu JH . 2013. Detection of the plasmid-encoded fosfomycin resistance gene fosA3 in Escherichia coli of food-animal origin. J Antimicrob Chemother 68 : 766 770.[CrossRef][PubMed]
171. Ho PL,, Chan J,, Lo WU,, Law PY,, Li Z,, Lai EL,, Chow KH . 2013. Dissemination of plasmid-mediated fosfomycin resistance fosA3 among multidrug-resistant Escherichia coli from livestock and other animals. J Appl Microbiol 114 : 695 702.[CrossRef][PubMed]
172. Tseng SP,, Wang SF,, Kuo CY,, Huang JW,, Hung WC,, Ke GM,, Lu PL . 2015. Characterization of fosfomycin resistant extended-spectrum β-lactamase-producing Escherichia coli isolates from human and pig in Taiwan. PLoS One 10 : e0135864.[CrossRef][PubMed]
173. Grave K,, Torren-Edo J,, Muller A,, Greko C,, Moulin G,, Mackay D, Group E, ESVAC Group . 2014. Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. J Antimicrob Chemother 69 : 2284 2291.[CrossRef][PubMed]
174. Shin SW,, Shin MK,, Jung M,, Belaynehe KM,, Yoo HS . 2015. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Appl Environ Microbiol 81 : 5560 5566.[CrossRef][PubMed]
175. Metzger SA,, Hogan JS . 2013. Short communication: antimicrobial susceptibility and frequency of resistance genes in Escherichia coli isolated from bovine mastitis. J Dairy Sci 96 : 3044 3049.[CrossRef][PubMed]
176. Srinivasan V,, Gillespie BE,, Lewis MJ,, Nguyen LT,, Headrick SI,, Schukken YH,, Oliver SP . 2007. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Vet Microbiol 124 : 319 328.[CrossRef][PubMed]
177. Lanz R,, Kuhnert P,, Boerlin P . 2003. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol 91 : 73 84.[CrossRef]
178. Jurado-Rabadán S,, de la Fuente R,, Ruiz-Santa-Quiteria JA,, Orden JA,, de Vries LE,, Agersø Y . 2014. Detection and linkage to mobile genetic elements of tetracycline resistance gene tet(M) in Escherichia coli isolates from pigs. BMC Vet Res 10 : 155 162.[CrossRef][PubMed]
179. Hölzel CS,, Harms KS,, Bauer J,, Bauer-Unkauf I,, Hörmansdorfer S,, Kämpf P,, Mölle G,, Oehme C,, Preikschat P,, Schwaiger K . 2012. Diversity of antimicrobial resistance genes and class-1-integrons in phylogenetically related porcine and human Escherichia coli. Vet Microbiol 160 : 403 412.[CrossRef][PubMed]
180. Seifi S,, Khoshbakht R . 2016. Prevalence of tetracycline resistance determinants in broiler isolated Escherichia coli in Iran. Br Poult Sci 57 : 729 733.[CrossRef][PubMed]
181. Costa D,, Poeta P,, Sáenz Y,, Coelho AC,, Matos M,, Vinué L,, Rodrigues J,, Torres C . 2008. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Vet Microbiol 127 : 97 105.[CrossRef][PubMed]
182. Bryan A,, Shapir N,, Sadowsky MJ . 2004. Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Appl Environ Microbiol 70 : 2503 2507.[CrossRef][PubMed]
183. Allmeier H,, Cresnar B,, Greck M,, Schmitt R . 1992. Complete nucleotide sequence of Tn 1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111 : 11 20.[CrossRef]
184. Chalmers R,, Sewitz S,, Lipkow K,, Crellin P . 2000. Complete nucleotide sequence of Tn 10. J Bacteriol 182 : 2970 2972.[CrossRef][PubMed]
185. Siqueira AK,, Michael GB,, Domingos DF,, Ferraz MM,, Ribeiro MG,, Schwarz S,, Leite DS . 2016. Diversity of class 1 and 2 integrons detected in Escherichia coli isolates from diseased and apparently healthy dogs. Vet Microbiol 194 : 79 83.[CrossRef][PubMed]
186. Huang SY,, Zhu XQ,, Wang Y,, Liu HB,, Dai L,, He JK,, Li BB,, Wu CM,, Shen JZ . 2012. Co-carriage of qnrS1, floR, and bla( CTX-M-14) on a multidrug-resistant plasmid in Escherichia coli isolated from pigs. Foodborne Pathog Dis 9 : 896 901.[CrossRef][PubMed]
187. Schwarz S,, Kehrenberg C,, Doublet B,, Cloeckaert A . 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28 : 519 542.[CrossRef][PubMed]
188. Wang XM,, Liao XP,, Liu SG,, Zhang WJ,, Jiang HX,, Zhang MJ,, Zhu HQ,, Sun Y,, Sun J,, Li AX,, Liu YH . 2011. Serotypes, virulence genes, and antimi