1887

Chapter 19 : Antimicrobial Resistance in spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Antimicrobial Resistance in spp., Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap19-2.gif

Abstract:

The genus comprises 16 characterized species ( Table 1 ), and 13 validated species are included in the List of Prokaryotic names with Standing in Nomenclature ( ). The first species——was isolated in 1943 from human pleural fluid. It was classified as and subsequently renamed / ( ). Another 12 species were first identified residing in soil, sewage, or plants. Of the remaining three species, sp. D-1 and were first isolated from deer fur and animal compost, respectively, and was initially isolated from a sample of cerebrospinal fluid from a human immunodeficiency virus seropositive Rwandan refugee with primary meningoencephalitis ( ). is the most widely distributed bacterium of the spp. in the environment and is isolated from soil, water, plants, animals, and humans. Moreover, the number of nosocomial infections caused by this opportunistic pathogen is increasing ( ). Therefore, various studies of in both animals and humans focus on the emergence, infections, treatment, and antimicrobial resistance of as an opportunistic pathogen ( ). The main purpose of this article is to describe the antimicrobial resistance of isolated from animals.

Citation: Wang Y, He T, Shen Z, Wu C. 2018. Antimicrobial Resistance in spp., p 409-423. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0005-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Linear representation of the complete GI and its flanking regions in GZP-Sm1. The regions in gray represent the flanking regions of the GI when inserted into the bacterial chromosome. The arrows indicate the directions of gene transcription, and truncated genes are indicated by rectangles without arrowheads. Genes are depicted in different colors, and the regions of particular relevance (≥95% nucleotide sequence identity) are indicated by the dotted lines ( ).

Citation: Wang Y, He T, Shen Z, Wu C. 2018. Antimicrobial Resistance in spp., p 409-423. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0005-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819804.chap19
2. Swings J,, De Vos P,, Van den Mooter M,, De Ley J . 1983. Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia. Int J Syst Bacteriol 33 : 409 413.[CrossRef]
3. Drancourt M,, Bollet C,, Raoult D . 1997. Stenotrophomonas africana sp. nov., an opportunistic human pathogen in Africa. Int J Syst Bacteriol 47 : 160 163.[CrossRef][PubMed]
4. Brooke JS . 2012. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25 : 2 41.[CrossRef][PubMed]
5. Ryan RP,, Monchy S,, Cardinale M,, Taghavi S,, Crossman L,, Avison MB,, Berg G,, van der Lelie D,, Dow JM . 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7 : 514 525.[CrossRef][PubMed]
6. Hugh R,, Ryschenkow E . 1961. Pseudomonas maltophilia, an alcaligenes-like species. J Gen Microbiol 26 : 123 132.[CrossRef][PubMed]
7. Chien YC,, Chen CJ,, Lin TH,, Chen SH,, Chien YC . 2011. Characteristics of microbial aerosols released from chicken and swine feces. J Air Waste Manag Assoc 61 : 882 889.[CrossRef][PubMed]
8. Guo Y,, Zhu N,, Zhu S,, Deng C . 2007. Molecular phylogenetic diversity of bacteria and its spatial distribution in composts. J Appl Microbiol 103 : 1344 1354.[CrossRef][PubMed]
9. Mancini DA,, Mendonça RM,, Dias AL,, Mendonça RZ,, Pinto JR . 2005. Co-infection between influenza virus and flagellated bacteria. Rev Inst Med Trop São Paulo 47 : 275 280.[CrossRef][PubMed]
10. Hou D,, Bi Y,, Sun H,, Yang J,, Fu G,, Sun Y,, Liu J,, Pu J . 2012. Identification of swine influenza A virus and Stenotrophomonas maltophilia co-infection in Chinese pigs. Virol J 9 : 169.[CrossRef][PubMed]
11. Munsch-Alatossava P,, Alatossava T . 2006. Phenotypic characterization of raw milk-associated psychrotrophic bacteria. Microbiol Res 161 : 334 346.[CrossRef][PubMed]
12. Cleto S,, Matos S,, Kluskens L,, Vieira MJ . 2012. Characterization of contaminants from a sanitized milk processing plant. PLoS One 7 : e40189.[CrossRef][PubMed]
13. Coton M,, Delbés-Paus C,, Irlinger F,, Desmasures N,, Le Fleche A,, Stahl V,, Montel MC,, Coton E . 2012. Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses. Food Microbiol 29 : 88 98.[CrossRef][PubMed]
14. Cloud-Hansen KA,, Villiard KM,, Handelsman J,, Carey HV . 2007. Thirteen-lined ground squirrels ( Spermophilus tridecemlineatus) harbor multiantibiotic-resistant bacteria. J Am Assoc Lab Anim Sci 46 : 21 23.[PubMed]
15. Hejnar P,, Bardon J,, Sauer P,, Kolár M . 2007. Stenotrophomonas maltophilia as a part of normal oral bacterial flora in captive snakes and its susceptibility to antibiotics. Vet Microbiol 121 : 357 362.[CrossRef][PubMed]
16. Kim M,, Kwon TH,, Jung SM,, Cho SH,, Jin SY,, Park NH,, Kim CG,, Kim JS . 2013. Antibiotic resistance of bacteria isolated from the internal organs of edible snow crabs. PLoS One 8 : e70887.[CrossRef][PubMed]
17. Furushita M,, Okamoto A,, Maeda T,, Ohta M,, Shiba T . 2005. Isolation of multidrug-resistant Stenotrophomonas maltophilia from cultured yellowtail ( Seriola quinqueradiata) from a marine fish farm. Appl Environ Microbiol 71 : 5598 5600.[CrossRef][PubMed]
18. Matyar F,, Kaya A,, Dinçer S . 2008. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci Total Environ 407 : 279 285.[CrossRef]
19. Miranda CD,, Kehrenberg C,, Ulep C,, Schwarz S,, Roberts MC . 2003. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother 47 : 883 888.[CrossRef][PubMed]
20. Miranda CD,, Zemelman R . 2002. Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms. Sci Total Environ 293 : 207 218.[CrossRef]
21. Althouse GC,, Kuster CE,, Clark SG,, Weisiger RM . 2000. Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 53 : 1167 1176.[CrossRef]
22. Althouse GC,, Lu KG . 2005. Bacteriospermia in extended porcine semen. Theriogenology 63 : 573 584.[CrossRef][PubMed]
23. Kilburn C,, Rooks DJ,, McCarthy AJ,, Murray RD . 2013. Antimicrobial resistance in some Gram-negative bacteria isolated from the bovine ejaculate. Reprod Domest Anim 48 : 525 528.[CrossRef][PubMed]
24. O’Connell D,, Mruk K,, Rocheleau JM,, Kobertz WR . 2011. Xenopus laevis oocytes infected with multi-drug-resistant bacteria: implications for electrical recordings. J Gen Physiol 138 : 271 277.[CrossRef][PubMed]
25. Johnson EH,, Al-Busaidy R,, Hameed MS . 2003. An outbreak of lymphadenitis associated with Stenotrophomonas ( Xanthomonas) maltophilia in Omani goats. J Vet Med B Infect Dis Vet Public Health 50 : 102 104.[CrossRef][PubMed]
26. Macdiarmid JA,, Burrell DH . 1986. Characterization of Pseudomonas maltophilia isolates from fleece rot. Appl Environ Microbiol 51 : 346 348.[PubMed]
27. Ohnishi M,, Sawada T,, Marumo K,, Harada K,, Hirose K,, Shimizu A,, Hayashimoto M,, Sato R,, Uchida N,, Kato H . 2012. Antimicrobial susceptibility and genetic relatedness of bovine Stenotrophomonas maltophilia isolates from a mastitis outbreak. Lett Appl Microbiol 54 : 572 576.[CrossRef][PubMed]
28. Hagi T,, Sasaki K,, Aso H,, Nomura M . 2013. Adhesive properties of predominant bacteria in raw cow’s milk to bovine mammary gland epithelial cells. Folia Microbiol (Praha) 58 : 515 522.[CrossRef][PubMed]
29. Petridou E,, Filioussis G,, Karavanis E,, Kritas SK . 2010. Stenotrophomonas maltophilia as a causal agent of pyogranulomatous hepatitis in a buffalo ( Bubalus bubalis). J Vet Diagn Invest 22 : 772 774.[CrossRef][PubMed]
30. Boedeker NC,, Walsh T,, Murray S,, Bromberg N . 2010. Medical and surgical management of severe inflammation of the nictitating membrane in a giant panda ( Ailuropoda melanoleuca). Vet Ophthalmol 13( Suppl) : 109 115.[CrossRef][PubMed]
31. Albini S,, Abril C,, Franchini M,, Hüssy D,, Filioussis G . 2009. Stenotrophomonas maltophilia isolated from the airways of animals with chronic respiratory disease. Schweiz Arch Tierheilkd 151 : 323 328.[CrossRef][PubMed]
32. Winther L,, Andersen RM,, Baptiste KE,, Aalbæk B,, Guardabassi L . 2010. Association of Stenotrophomonas maltophilia infection with lower airway disease in the horse: a retrospective case series. Vet J 186 : 358 363.[CrossRef][PubMed]
33. He T,, Shen J,, Schwarz S,, Wu C,, Wang Y . 2015. Characterization of a genomic island in Stenotrophomonas maltophilia that carries a novel floR gene variant. J Antimicrob Chemother 70 : 1031 1036.[PubMed]
34. Harris NB,, Rogers DG . 2001. Septicemia associated with Stenotrophomonas maltophilia in a West African dwarf crocodile ( Osteolaemus tetraspis subsp. tetraspis). J Vet Diagn Invest 13 : 255 258.[CrossRef][PubMed]
35. Muir P,, Oldenhoff WE,, Hudson AP,, Manley PA,, Schaefer SL,, Markel MD,, Hao Z . 2007. Detection of DNA from a range of bacterial species in the knee joints of dogs with inflammatory knee arthritis and associated degenerative anterior cruciate ligament rupture. Microb Pathog 42 : 47 55.[CrossRef][PubMed]
36. Clinical and Laboratory Standards Institute . 2015. Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fifth Informational Supplement M-S, CLSI, Wayne, PA.
37. Hejnar P,, Kolár M,, Sauer P . 2010. Antibiotic resistance of Stenotrophomonas maltophilia strains isolated from captive snakes. Folia Microbiol (Praha) 55 : 83 87.[CrossRef][PubMed]
38. Al-Hamad A,, Upton M,, Burnie J . 2009. Molecular cloning and characterization of SmrA, a novel ABC multidrug efflux pump from Stenotrophomonas maltophilia. J Antimicrob Chemother 64 : 731 734.[CrossRef][PubMed]
39. Lin YT,, Huang YW,, Liou RS,, Chang YC,, Yang TC . 2014. MacABCsm, an ABC-type tripartite efflux pump of Stenotrophomonas maltophilia involved in drug resistance, oxidative and envelope stress tolerances and biofilm formation. J Antimicrob Chemother 69 : 3221 3226.[CrossRef][PubMed]
40. Huang YW,, Hu RM,, Chu FY,, Lin HR,, Yang TC . 2013. Characterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia. J Antimicrob Chemother 68 : 2498 2505.[CrossRef][PubMed]
41. Hu RM,, Liao ST,, Huang CC,, Huang YW,, Yang TC . 2012. An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS One 7 : e51053.[CrossRef][PubMed]
42. Li XZ,, Zhang L,, Poole K . 2002. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46 : 333 343.[CrossRef][PubMed]
43. Alonso A,, Martínez JL . 2000. Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44 : 3079 3086.[CrossRef][PubMed]
44. Chen CH,, Huang CC,, Chung TC,, Hu RM,, Huang YW,, Yang TC . 2011. Contribution of resistance-nodulation-division efflux pump operon smeU1-V-W-U2-X to multidrug resistance of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 55 : 5826 5833.[CrossRef][PubMed]
45. Crossman LC,, Gould VC,, Dow JM,, Vernikos GS,, Okazaki A,, Sebaihia M,, Saunders D,, Arrowsmith C,, Carver T,, Peters N,, Adlem E,, Kerhornou A,, Lord A,, Murphy L,, Seeger K,, Squares R,, Rutter S,, Quail MA,, Rajandream MA,, Harris D,, Churcher C,, Bentley SD,, Parkhill J,, Thomson NR,, Avison MB . 2008. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9 : R74.[CrossRef][PubMed]
46. Gould VC,, Okazaki A,, Avison MB . 2013. Coordinate hyperproduction of SmeZ and SmeJK efflux pumps extends drug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 57 : 655 657.[CrossRef][PubMed]
47. Lin CW,, Huang YW,, Hu RM,, Yang TC . 2014. SmeOP-TolCSm efflux pump contributes to the multidrug resistance of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 58 : 2405 2408.[CrossRef][PubMed]
48. Cho HH,, Sung JY,, Kwon KC,, Koo SH . 2012. Expression of Sme efflux pumps and multilocus sequence typing in clinical isolates of Stenotrophomonas maltophilia. Ann Lab Med 32 : 38 43.[CrossRef][PubMed]
49. Srijaruskul K,, Charoenlap N,, Namchaiw P,, Chattrakarn S,, Giengkam S,, Mongkolsuk S,, Vattanaviboon P . 2015. Regulation by SoxR of mfsA, which encodes a major facilitator protein involved in paraquat resistance in Stenotrophomonas maltophilia. PLoS One 10 : e0123699.[CrossRef][PubMed]
50. Dulyayangkul P,, Charoenlap N,, Srijaruskul K,, Mongkolsuk S,, Vattanaviboon P . 2016. Major facilitator superfamily MfsA contributes to multidrug resistance in emerging nosocomial pathogen Stenotrophomonas maltophilia. J Antimicrob Chemother 71 : 2990 2991.[CrossRef][PubMed]
51. Zhang L,, Li XZ,, Poole K . 2001. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45 : 3497 3503.[CrossRef][PubMed]
52. Hernández A,, Ruiz FM,, Romero A,, Martínez JL . 2011. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog 7 : e1002103.[CrossRef][PubMed]
53. Sánchez MB,, Martínez JL . 2015. The efflux pump SmeDEF contributes to trimethoprim-sulfamethoxazole resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 59 : 4347 4348.[CrossRef][PubMed]
54. Lin YT,, Huang YW,, Chen SJ,, Chang CW,, Yang TC . 2015. The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice. Antimicrob Agents Chemother 59 : 4067 4073.[CrossRef][PubMed]
55. Huang YW,, Liou RS,, Lin YT,, Huang HH,, Yang TC . 2014. A linkage between SmeIJK efflux pump, cell envelope integrity, and σ E-mediated envelope stress response in Stenotrophomonas maltophilia. PLoS One 9 : e111784.[CrossRef][PubMed]
56. Crowder MW,, Walsh TR,, Banovic L,, Pettit M,, Spencer J . 1998. Overexpression, purification, and characterization of the cloned metallo-β-lactamase L1 from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 42 : 921 926.[PubMed]
57. Walsh TR,, MacGowan AP,, Bennett PM . 1997. Sequence analysis and enzyme kinetics of the L2 serine β-lactamase from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 41 : 1460 1464.[PubMed]
58. Okazaki A,, Avison MB . 2008. Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother 52 : 1525 1528.[CrossRef][PubMed]
59. Huang YW,, Lin CW,, Hu RM,, Lin YT,, Chung TC,, Yang TC . 2010. AmpN-AmpG operon is essential for expression of L1 and L2 β-lactamases in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 54 : 2583 2589.[CrossRef][PubMed]
60. Yang TC,, Huang YW,, Hu RM,, Huang SC,, Lin YT . 2009. AmpD I is involved in expression of the chromosomal L1 and L2 β-lactamases of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 53 : 2902 2907.[CrossRef][PubMed]
61. Lin CW,, Lin HC,, Huang YW,, Chung TC,, Yang TC . 2011. Inactivation of mrcA gene derepresses the basal-level expression of L1 and L2 β-lactamases in Stenotrophomonas maltophilia. J Antimicrob Chemother 66 : 2033 2037.[CrossRef][PubMed]
62. al Naiemi N,, Duim B,, Bart A . 2006. CTX-M extended-spectrum β-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J Med Microbiol 55 : 1607 1608.[CrossRef][PubMed]
63. Lavigne JP,, Gaillard JB,, Bourg G,, Tichit C,, Lecaillon E,, Sotto A . 2008. Extended-spectrum β-lactamases-producing Stenotrophomonas maltophilia strains: CTX-M enzymes detection and virulence study. Pathol Biol (Paris) 56 : 447 453. (In French.)[CrossRef][PubMed]
64. Maravić A,, Skočibušić M,, Fredotović Z,, Cvjetan S,, Samanić I,, Puizina J . 2014. Characterization of environmental CTX-M-15-producing Stenotrophomonas maltophilia. Antimicrob Agents Chemother 58 : 6333 6334.[CrossRef][PubMed]
65. Avison MB,, von Heldreich CJ,, Higgins CS,, Bennett PM,, Walsh TR . 2000. A TEM-2 β-lactamase encoded on an active Tn 1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia. J Antimicrob Chemother 46 : 879 884.[CrossRef][PubMed]
66. Liu W,, Zou D,, Wang X,, Li X,, Zhu L,, Yin Z,, Yang Z,, Wei X,, Han L,, Wang Y,, Shao C,, Wang S,, He X,, Liu D,, Liu F,, Wang J,, Huang L,, Yuan J . 2012. Proteomic analysis of clinical isolate of Stenotrophomonas maltophilia with bla NDM-1, bla L1 and bla L2 β-lactamase genes under imipenem treatment. J Proteome Res 11 : 4024 4033.[CrossRef][PubMed]
67. Li XZ,, Zhang L,, McKay GA,, Poole K . 2003. Role of the acetyltransferase AAC(6′)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J Antimicrob Chemother 51 : 803 811.[CrossRef][PubMed]
68. Okazaki A,, Avison MB . 2007. Aph(3′)-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 51 : 359 360.[CrossRef][PubMed]
69. Tada T,, Miyoshi-Akiyama T,, Dahal RK,, Mishra SK,, Shimada K,, Ohara H,, Kirikae T,, Pokhrel BM . 2014. Identification of a novel 6′- N-aminoglycoside acetyltransferase, AAC(6′)-Iak, from a multidrug-resistant clinical isolate of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 58 : 6324 6327.[CrossRef][PubMed]
70. Sánchez MB . 2015. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol 6 : 658.[CrossRef][PubMed]
71. Ribera A,, Doménech-Sanchez A,, Ruiz J,, Benedi VJ,, Jimenez de Anta MT,, Vila J . 2002. Mutations in gyrA and parC QRDRs are not relevant for quinolone resistance in epidemiological unrelated Stenotrophomonas maltophilia clinical isolates. Microb Drug Resist 8 : 245 251.[CrossRef][PubMed]
72. Valdezate S,, Vindel A,, Echeita A,, Baquero F,, Cantó R . 2002. Topoisomerase II and IV quinolone resistance-determining regions in Stenotrophomonas maltophilia clinical isolates with different levels of quinolone susceptibility. Antimicrob Agents Chemother 46 : 665 671.[CrossRef][PubMed]
73. Cha MK,, Kang CI,, Kim SH,, Cho SY,, Ha YE,, Chung DR,, Peck KR,, Song JH . 2016. Emergence of fluoroquinolone-resistant Stenotrophomonas maltophilia in blood isolates causing bacteremia: molecular epidemiology and microbiologic characteristics. Diagn Microbiol Infect Dis 85 : 210 212.[CrossRef][PubMed]
74. Sanchez MB,, Hernandez A,, Martinez JL . 2009. Stenotrophomonas maltophilia drug resistance. Future Microbiol 4 : 655 660.[CrossRef][PubMed]
75. Gordon NC,, Wareham DW . 2010. Novel variants of the Sm qnr family of quinolone resistance genes in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 65 : 483 489.[CrossRef][PubMed]
76. Sánchez MB,, Hernández A,, Rodríguez-Martínez JM,, Martínez-Martínez L,, Martínez JL . 2008. Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiol 8 : 148.[CrossRef][PubMed]
77. Sánchez MB,, Martínez JL . 2010. SmQnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 54 : 580 581.[CrossRef][PubMed]
78. Shimizu K,, Kikuchi K,, Sasaki T,, Takahashi N,, Ohtsuka M,, Ono Y,, Hiramatsu K . 2008. Sm qnr, a new chromosome-carried quinolone resistance gene in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 52 : 3823 3825.[CrossRef][PubMed]
79. Garcia-Leon G,, Salgado F,, Oliveros JC,, Sanchez MB,, Martinez JL . 2014. Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia. Environ Microbiol 16 : 1282 1296.[PubMed]
80. García-León G,, Ruiz de Alegría Puig C,, García de la Fuente C,, Martínez-Martínez L,, Martínez JL,, Sánchez MB . 2015. High-level quinolone resistance is associated with the overexpression of smeVWX in Stenotrophomonas maltophilia clinical isolates. Clin Microbiol Infect 21 : 464 467.[CrossRef][PubMed]
81. Rådström P,, Swedberg G . 1988. RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Antimicrob Agents Chemother 32 : 1684 1692.[CrossRef][PubMed]
82. Barbolla R,, Catalano M,, Orman BE,, Famiglietti A,, Vay C,, Smayevsky J,, Centrón D,, Piñeiro SA . 2004. Class 1 integrons increase trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophilia isolates. Antimicrob Agents Chemother 48 : 666 669.[CrossRef][PubMed]
83. Toleman MA,, Bennett PM,, Bennett DM,, Jones RN,, Walsh TR . 2007. Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes. Emerg Infect Dis 13 : 559 565.[CrossRef][PubMed]
84. Chung HS,, Kim K,, Hong SS,, Hong SG,, Lee K,, Chong Y . 2015. The sul1 gene in Stenotrophomonas maltophilia with high-level resistance to trimethoprim/sulfamethoxazole. Ann Lab Med 35 : 246 249.[CrossRef][PubMed]
85. Hu LF,, Chang X,, Ye Y,, Wang ZX,, Shao YB,, Shi W,, Li X,, Li JB . 2011. Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int J Antimicrob Agents 37 : 230 234.[CrossRef][PubMed]
86. Hu LF,, Chen GS,, Kong QX,, Gao LP,, Chen X,, Ye Y,, Li JB . 2016. Increase in the prevalence of resistance determinants to trimethoprim/sulfamethoxazole in clinical Stenotrophomonas maltophilia isolates in China. PLoS One 11 : e0157693.[CrossRef][PubMed]
87. Huang YW,, Hu RM,, Yang TC . 2013. Role of the pcm-tolCsm operon in the multidrug resistance of Stenotrophomonas maltophilia. J Antimicrob Chemother 68 : 1987 1993.[CrossRef][PubMed]
88. Sánchez MB,, Martínez JL . 2015. The efflux pump SmeDEF contributes to trimethoprim-sulfamethoxazole resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 59 : 4347 4348.[CrossRef][PubMed]
89. He T,, Shen Y,, Schwarz S,, Cai J,, Lv Y,, Li J,, Feßler AT,, Zhang R,, Wu C,, Shen J,, Wang Y . 2016. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother 71 : 1466 1473.[CrossRef][PubMed]
90. Chang LL,, Lin HH,, Chang CY,, Lu PL . 2007. Increased incidence of class 1 integrons in trimethoprim/sulfamethoxazole-resistant clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 59 : 1038 1039.[CrossRef][PubMed]
91. Rahmati-Bahram A,, Magee JT,, Jackson SK . 1995. Growth temperature-dependent variation of cell envelope lipids and antibiotic susceptibility in Stenotrophomonas ( Xanthomonas) maltophilia. J Antimicrob Chemother 36 : 317 326.[CrossRef][PubMed]
92. McKay GA,, Woods DE,, MacDonald KL,, Poole K . 2003. Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun 71 : 3068 3075.[CrossRef][PubMed]
93. Liu YY,, Wang Y,, Walsh TR,, Yi LX,, Zhang R,, Spencer J,, Doi Y,, Tian G,, Dong B,, Huang X,, Yu LF,, Gu D,, Ren H,, Chen X,, Lv L,, He D,, Zhou H,, Liang Z,, Liu JH,, Shen J . 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16 : 161 168.[CrossRef]
94. Gooderham WJ,, Hancock RE . 2009. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev 33 : 279 294.[CrossRef][PubMed]
95. Bader MW,, Sanowar S,, Daley ME,, Schneider AR,, Cho U,, Xu W,, Klevit RE,, Le Moual H,, Miller SI . 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122 : 461 472.[CrossRef][PubMed]
96. Liu MC,, Tsai YL,, Huang YW,, Chen HY,, Hsueh PR,, Lai SY,, Chen LC,, Chou YH,, Lin WY,, Liaw SJ . 2016. Stenotrophomonas maltophilia PhoP, a two-component response regulator, involved in antimicrobial susceptibilities. PLoS One 11 : e0153753.[CrossRef][PubMed]
97. Avison MB,, Higgins CS,, von Heldreich CJ,, Bennett PM,, Walsh TR . 2001. Plasmid location and molecular heterogeneity of the L1 and L2 β-lactamase genes of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45 : 413 419.[CrossRef][PubMed]
98. Alonso A,, Sanchez P,, Martínez JL . 2000. Stenotrophomonas maltophilia D457R contains a cluster of genes from Gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother 44 : 1778 1782.[CrossRef][PubMed]
99. Palleroni NJ,, Bradbury JF . 1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 43 : 606 609.[CrossRef][PubMed]
100. Finkmann W,, Altendorf K,, Stackebrandt E,, Lipski A . 2000. Characterization of N 2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50 : 273 282.[CrossRef][PubMed]
101. Yamamura S,, Morita Y,, Hasan Q,, Rao SR,, Murakami Y,, Yokoyama K,, Tamiya E . 2002. Characterization of a new keratin-degrading bacterium isolated from deer fur. J Biosci Bioeng 93 : 595 600.[CrossRef]
102. Assih EA,, Ouattara AS,, Thierry S,, Cayol JL,, Labat M,, Macarie H . 2002. Stenotrophomonas acidaminiphila sp. nov., a strictly aerobic bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 52 : 559 568.[CrossRef][PubMed]
103. Wolf A,, Fritze A,, Hagemann M,, Berg G . 2002. Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 52 : 1937 1944.[PubMed]
104. Yoon JH,, Kang SJ,, Oh HW,, Oh TK . 2006. Stenotrophomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56 : 1363 1367.[CrossRef][PubMed]
105. Yang HC,, Im WT,, Kang MS,, Shin DY,, Lee ST . 2006. Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int J Syst Evol Microbiol 56 : 81 84.[CrossRef][PubMed]
106. Heylen K,, Vanparys B,, Peirsegaele F,, Lebbe L,, De Vos P . 2007. Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. Int J Syst Evol Microbiol 57 : 2056 2061.[CrossRef][PubMed]
107. Kaparullina E,, Doronina N,, Chistyakova T,, Trotsenko Y . 2009. Stenotrophomonas chelatiphaga sp. nov., a new aerobic EDTA-degrading bacterium. Syst Appl Microbiol 32 : 157 162.[CrossRef][PubMed]
108. Kim HB,, Srinivasan S,, Sathiyaraj G,, Quan LH,, Kim SH,, Bui TP,, Liang ZQ,, Kim YJ,, Yang DC . 2010. Stenotrophomonas ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 60 : 1522 1526.[CrossRef][PubMed]
109. Lee M,, Woo SG,, Chae M,, Shin MC,, Jung HM,, Ten LN . 2011. Stenotrophomonas daejeonensis sp. nov., isolated from sewage. Int J Syst Evol Microbiol 61 : 598 604.[CrossRef][PubMed]
110. Ramos PL,, Van Trappen S,, Thompson FL,, Rocha RC,, Barbosa HR,, De Vos P,, Moreira-Filho CA . 2011. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int J Syst Evol Microbiol 61 : 926 931.[CrossRef][PubMed]
111. Handa Y,, Tazato N,, Nagatsuka Y,, Koide T,, Kigawa R,, Sano C,, Sugiyama J . 2016. Stenotrophomonas tumulicola sp. nov., a major contaminant of the stone chamber interior in the Takamatsuzuka Tumulus. Int J Syst Evol Microbiol 66 : 1119 1124.[CrossRef][PubMed]
112. Pan X,, Lin D,, Zheng Y,, Zhang Q,, Yin Y,, Cai L,, Fang H,, Yu Y . 2016. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: characterization and genome functional analysis. Sci Rep 6 : 21332.[CrossRef][PubMed]
113. Hindler JF,, Tamashiro L, . 2004. Broth microdilution MIC test, p 5.2.1 5.2.17. In Clarke L,, Della-Latta P,, Denys GA,, Douglas SD,, Garcia LS,, Hazen KC,, Hindler JF,, Jenkins SG,, Mangels JI,, Miller JM,, Nachamkin I,, Pfaller MA,, Snyder JW,, Weissfeld AS,, York MK (ed), Clinical Microbiology Procedures Handbook, 2nd ed. ASM Press, Washington, DC.

Tables

Generic image for table
Table 1

Characterization of species

Citation: Wang Y, He T, Shen Z, Wu C. 2018. Antimicrobial Resistance in spp., p 409-423. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0005-2017
Generic image for table
Table 2

Antimicrobial resistance of isolated from animals and animal products

Citation: Wang Y, He T, Shen Z, Wu C. 2018. Antimicrobial Resistance in spp., p 409-423. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0005-2017
Generic image for table
TABLE 3

Molecular mechanisms of antimicrobial resistance of

Citation: Wang Y, He T, Shen Z, Wu C. 2018. Antimicrobial Resistance in spp., p 409-423. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0005-2017

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error