1887

Chapter 30 : Optimization of Antimicrobial Treatment to Minimize Resistance Selection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Optimization of Antimicrobial Treatment to Minimize Resistance Selection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap30-2.gif

Abstract:

Optimization of antimicrobial use is a cornerstone in the fight against antimicrobial resistance (AMR) and one of the five objectives of the WHO global action plan on AMR ( ). The growing evidence that antimicrobial use in animals may contribute to some multidrug-resistant (MDR) bacterial infections in humans has increased consumer demand and governmental pressure to optimize antimicrobial use in the veterinary sector ( ). Promoting appropriate use of antimicrobials in veterinary medicine and strengthening of the regulatory framework on veterinary medicines and medicated feed are key actions in the European Union One Health action plan against AMR ( ). Following a request from the EU Commission, the European Food Safety Authority and the European Medicines Agency (EMA) published a joint scientific opinion on how to reduce the need for antimicrobial use in food-producing animals ( ). In 2015, the EU Commission provided the member states with a set of guidelines for prudent antimicrobial use in veterinary medicine ( ), which covers the main animal production types (pigs, cattle, poultry, aquaculture, and rabbits) as well as other species (pets, fur animals, and other non-food-producing species). In the same year, the USA government released a national action plan for combating antimicrobial-resistant bacteria, which includes a plan to eliminate the use of medically important antimicrobials for growth promotion and to foster antimicrobial stewardship in animals ( ).

Citation: Guardabassi L, Apley M, Olsen J, Toutain P, Weese S. 2018. Optimization of Antimicrobial Treatment to Minimize Resistance Selection, p 637-673. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0018-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

A logical thinking process to enable antimicrobial stewardship across all animal species and therapeutic challenges. This logical process requires (1) veterinary guidance in constructing case definitions and validating the definitions through caretaker training and diagnostics, (2) consideration of possible alternatives to prevent, control, or treat the bacterial disease, (3) choice of a first-line agent for empiric treatment if there are no alternatives to antimicrobials, and (4) safe and effective usage of the selected agent. During the time of antimicrobial use, it is appropriate to constantly evaluate if the disease challenge is still present according to the definitions established in step 1 above. If not, stop the antimicrobial use and monitor according to these definitions and diagnostics. If the challenge is still present, constantly evaluate step 2.

Citation: Guardabassi L, Apley M, Olsen J, Toutain P, Weese S. 2018. Optimization of Antimicrobial Treatment to Minimize Resistance Selection, p 637-673. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0018-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mutant selection window and mutant prevention concentration (MPC). Optimal dosage regimens should maintain as long as possible the drug concentration at or above the MPC (blue area), which reflects the highest possible MIC of the resistant mutants (red bacteria). The minimum amount of time required to prevent selection of the resistant mutants can be estimated for each species by using a specific PK/PD index (T > MPC or AUC/MPC). The mutant selective window delimitates the range of antimicrobial concentrations selecting for the resistant mutants, which range from the MPC (upper horizontal red line) to the MIC (lower horizontal green line) of the initial (wild-type) bacterial population (green bacteria). Drug concentrations below the MIC inhibit neither the mutants nor the wild-type population. Abbreviations: T, drug concentration time; AUC, area under the concentration-time curve, C max, maximum drug concentration; C min, minimum drug concentration.

Citation: Guardabassi L, Apley M, Olsen J, Toutain P, Weese S. 2018. Optimization of Antimicrobial Treatment to Minimize Resistance Selection, p 637-673. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0018-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819804.chap30
1. World Health Organization (WHO) . 2015. AMR: draft global action plan on antimicrobial resistance. http://www.who.int/antimicrobial-resistance/global-action-plan/en/.
2. Review on Antimicrobial Resistance . 2015. Antimicrobials in agriculture and the environment: reducing unnecessary use and waste. https://amr-review.org/sites/default/files/Antimicrobials%20in%20agriculture%20and%20the%20environment%20-%20Reducing%20unnecessary%20use%20and%20waste.pdf.
3. European Commission . 2017. EU One Health action plan against AMR. https://ec.europa.eu/health/amr/.
4. European Medicines Agency (EMA) Committee for Medicinal Products for Veterinary Use (CVMP) and EFSA Panel on Biological Hazards (BIOHAZ) . 2017. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 15 : 4666.
5. European Commission . 2015. Commission notice. Guidelines for the prudent use of antimicrobials in veterinary medicine. Commission notice 2015/C 299/04. http://ec.europa.eu/health//sites/health/files/antimicrobial_resistance/docs/2015_prudent_use_guidelines_en.pdf.
6. The White House . 2015. National action plan for combating antibiotic-resistant bacteria. https://obamawhitehouse.archives.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf.
7. Teale CJ,, Moulin G . 2012. Prudent use guidelines: a review of existing veterinary guidelines. Rev Sci Tech 31 : 343 354.
8. Weese JS,, Giguère S,, Guardabassi L,, Morley PS,, Papich M,, Ricciuto DR,, Sykes JE . 2015. ACVIM consensus statement on therapeutic antimicrobial use in animls and antimicrobial resistance. J Vet Intern Med 29 : 487 498.[CrossRef][PubMed]
9. Chantziaras I,, Boyen F,, Callens B,, Dewulf J . 2014. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J Antimicrob Chemother 69 : 827 834.[CrossRef][PubMed]
10. Dorado-García A,, Dohmen W,, Bos ME,, Verstappen KM,, Houben M,, Wagenaar JA,, Heederik DJ . 2015. Dose-response relationship between antimicrobial drugs and livestock-associated MRSA in pig farming. Emerg Infect Dis 21 : 950 959.[CrossRef][PubMed]
11. Catry B,, Dewulf J,, Maes D,, Pardon B,, Callens B,, Vanrobaeys M,, Opsomer G,, de Kruif A,, Haesebrouck F . 2016. Effect of antimicrobial consumption and production type on antibacterial resistance in the bovine respiratory and digestive tract. PLoS One 11 : e0146488.[CrossRef][PubMed]
12. Cavaco LM,, Abatih E,, Aarestrup FM,, Guardabassi L . 2008. Selection and persistence of CTX-M-producing Escherichia coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or cefquinome. Antimicrob Agents Chemother 52 : 3612 3616.[PubMed]
13. Zhang L,, Huang Y,, Zhou Y,, Buckley T,, Wang HH . 2013. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob Agents Chemother 57 : 3659 3666.[PubMed]
14. Bibbal D,, Dupouy V,, Ferré JP,, Toutain PL,, Fayet O,, Prère MF,, Bousquet-Mélou A . 2007. Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces. Appl Environ Microbiol 73 : 4785 4790.[CrossRef][PubMed]
15. Gibbons JF,, Boland F,, Egan J,, Fanning S,, Markey BK,, Leonard FC . 2016. Antimicrobial resistance of faecal Escherichia coli isolates from pig farms with different durations of in-feed antimicrobial use. Zoonoses Public Health 63 : 241 250.[CrossRef][PubMed]
16. Garcia-Migura L,, Hendriksen RS,, Fraile L,, Aarestrup FM . 2014. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet Microbiol 170 : 1 9.[CrossRef][PubMed]
17. Erol E,, Locke SJ,, Donahoe JK,, Mackin MA,, Carter CN . 2012. Beta-hemolytic Streptococcus spp. from horses: a retrospective study (2000–2010). J Vet Diagn Invest 24 : 142 147.[CrossRef][PubMed]
18. Petersen A,, Christensen JP,, Kuhnert P,, Bisgaard M,, Olsen JE . 2006. Vertical transmission of a fluoroquinolone-resistant Escherichia coli within an integrated broiler operation. Vet Microbiol 116 : 120 128.[CrossRef][PubMed]
19. Bednorz C,, Oelgeschläger K,, Kinnemann B,, Hartmann S,, Neumann K,, Pieper R,, Bethe A,, Semmler T,, Tedin K,, Schierack P,, Wieler LH,, Guenther S . 2013. The broader context of antibiotic resistance: zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coliin vivo. Int J Med Microbiol 303 : 396 403.[CrossRef][PubMed]
20. Food and Drug Administration . 2015. Department of Human Health and Services. Veterinary Feed Directive. Fed Regist 80 : 3170831735. ••• https://www.gpo.gov/fdsys/pkg/FR-2015-06-03/pdf/2015-13393.pdf.
21. Dorado-García A,, Mevius DJ,, Jacobs JJ,, Van Geijlswijk IM,, Mouton JW,, Wagenaar JA,, Heederik DJ . 2016. Quantitative assessment of antimicrobial resistance in livestock during the course of a nationwide antimicrobial use reduction in the Netherlands. J Antimicrob Chemother 71 : 3607 3619.[CrossRef][PubMed]
22. Jensen VF,, de Knegt LV,, Andersen VD,, Wingstrand A . 2014. Temporal relationship between decrease in antimicrobial prescription for Danish pigs and the “Yellow Card” legal intervention directed at reduction of antimicrobial use. Prev Vet Med 117 : 554 564.[CrossRef][PubMed]
23. National Food Institute, Statens Serum Institut . 2012. DANMAP 2011. Use of antimicrobial agents and occurrence of antimicrobial resistancein bacteria from food animals, food and humans in Denmark. https://danmap.org/~/media/Projekt%20sites/Danmap/DANMAP%20reports/Danmap_2011.ashx.
24. National Food Institute, Statens Serum Institut . 2016. DANMAP 2015. Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. https://danmap.org/~/media/Projekt%20sites/Danmap/DANMAP%20reports/DANMAP%20%202015/DANMAP%202015.ashx.
25. Aarestrup FM,, Jensen VF,, Emborg HD,, Jacobsen E,, Wegener HC . 2010. Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark. Am J Vet Res 71 : 726 733.[CrossRef][PubMed]
26. Emborg H,, Ersbøll AK,, Heuer OE,, Wegener HC . 2001. The effect of discontinuing the use of antimicrobial growth promoters on the productivity in the Danish broiler production. Prev Vet Med 50 : 53 70.[CrossRef]
27. EU Commission . 2003. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32003R1831.
28. Food and Drug Administration Center for Veterinary Medicine . 2017. FDA announces implementation of GFI#213, outlines continuing efforts to address antimicrobial resistance. CVM update 3 January 2017. Accessed 28 March 2017. https://www.fda.gov/AnimalVeterinary/NewsEvents/CVMUpdates/ucm535154.htm.
29. Government of Canada . 2014. Notice to stakeholders: collaborative efforts to promote the judicious use of medically-important antimicrobial drugs in food animal production. http://www.hc-sc.gc.ca/dhp-mps/vet/antimicrob/amr-notice-ram-avis-20140410-eng.php.
30. Center for Disease Dynamics, Economics & Policy (CDDEP) . 2015. State of the World’s Antibiotics, 2015. CDDEP, Washington, DC. http://cddep.org/publications/state_worlds_antibiotics_2015#sthash.u0R3NX7U.dpbs.
31. World Health Organization (WHO) . 2000. WHO global principles for the containment of antimicrobial resistance in animals intended for food. In Report of a WHO consultation with the participation of the Food and Agriculture of the United Nations and the Office International des Epizooties, 5–9 June, Geneva, Switzerland. WHO/CDS/CSR/APH/2000.4. http://apps.who.int/iris/bitstream/10665/68931/1/WHO_CDS_CSR_APH_2000.4.pdfE/.
32. European Medicines Agency (EMA) . 2016. Question and answer on the CVMP guideline on the SPC for antimicrobial products (EMEA/CVMP/SAGAM/383441/2005). EMA/CVMP/414812/2011-Rev.2. Veterinary Medicines Division. http://www.ema.europa.eu/docs/en_GB/document_library/Other/2011/07/WC500109155.pdf.
33. Ferran AA,, Toutain PL,, Bousquet-Mélou A . 2011. Impact of early versus later fluoroquinolone treatment on the clinical; microbiological and resistance outcomes in a mouse-lung model of Pasteurella multocida infection. Vet Microbiol 148 : 292 297.[CrossRef][PubMed]
34. Vasseur MV,, Laurentie M,, Rolland JG,, Perrin-Guyomard A,, Henri J,, Ferran AA,, Toutain PL,, Bousquet-Mélou A . 2014. Low or high doses of cefquinome targeting low or high bacterial inocula cure Klebsiella pneumoniae lung infections but differentially impact the levels of antibiotic resistance in fecal flora. Antimicrob Agents Chemother 58 : 1744 1748.[CrossRef][PubMed]
35. Lhermie G,, Ferran AA,, Assié S,, Cassard H,, El Garch F,, Schneider M,, Woerhlé F,, Pacalin D,, Delverdier M,, Bousquet-Mélou A,, Meyer G . 2016. Impact of timing and dosage of a fluoroquinolone treatment on the microbiological, pathological, and clinical outcomes of calves challenged with Mannheimia haemolytica. Front Microbiol 7 : 237.[CrossRef][PubMed]
36. D’Agata EM,, Dupont-Rouzeyrol M,, Magal P,, Olivier D,, Ruan S . 2008. The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria. PLoS One 3 : e4036.[CrossRef][PubMed]
37. Herrero-Fresno A,, Larsen I,, Olsen JE . 2015. Genetic relatedness of commensal Escherichia coli from nursery pigs in intensive pig production in Denmark and molecular characterization of genetically different strains. J Appl Microbiol 119 : 342 353.[CrossRef][PubMed]
38. Postma M,, Vanderhaeghen W,, Sarrazin S,, Maes D,, Dewulf J . 2017. Reducing antimicrobial usage in pig production without jeopardizing production parameters. Zoonoses Public Health 64 : 63 74.[CrossRef][PubMed]
39. Rojo-Gimeno C,, Postma M,, Dewulf J,, Hogeveen H,, Lauwers L,, Wauters E . 2016. Farm-economic analysis of reducing antimicrobial use whilst adopting improved management strategies on farrow-to-finish pigfarms. Prev Vet Med 129 : 74 87.[CrossRef][PubMed]
40. Bak H,, Rathkjen PH . 2009. Reduced use of antimicrobials after vaccination of pigs against porcine proliferative enteropathy in a Danish SPF herd. Acta Vet Scand 51 : 1.[CrossRef][PubMed]
41. Cheng G,, Hao H,, Xie S,, Wang X,, Dai M,, Huang L,, Yuan Z . 2014. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 5 : 217.[CrossRef][PubMed]
42. De Briyne N,, Atkinson J,, Pokludová L,, Borriello SP,, Price S . 2013. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe. Vet Rec 173 : 475.[CrossRef][PubMed]
43. Guardabassi L,, Damborg P,, Stamm I,, Kopp PA,, Broens EM,, Toutain PL, ESCMID Study Group for Veterinary Microbiology . 2017. Diagnostic microbiology in veterinary dermatology: present and future. Vet Dermatol 28 : 146-e30.[CrossRef][PubMed]
44. World Health Organization (WHO) . 2016. Critically Important Antimicrobials for Human Medicine, 5th rev. http://www.who.int/foodsafety/publications/antimicrobials-fifth/en/.
45. World Organization for Animal Health (OIE) . 2007. OIE list of antimicrobials of veterinary importance. http://www.oie.int/doc/ged/D9840.PDF.
46. European Food Safety Authority (EFSA) . 2016. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2014. EFSA J 14 : 4380. https://www.efsa.europa.eu/en/efsajournal/pub/4380
47. Tam VH,, Louie A,, Deziel MR,, Liu W,, Drusano GL . 2007. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother 51 : 744 747.[CrossRef][PubMed]
48. Firsov AA,, Strukova EN,, Shlykova DS,, Portnoy YA,, Kozyreva VK,, Edelstein MV,, Dovzhenko SA,, Kobrin MB,, Zinner SH . 2013. Bacterial resistance studies using in vitro dynamic models: the predictive power of the mutant prevention and minimum inhibitory antibiotic concentrations. Antimicrob Agents Chemother 57 : 4956 4962.[CrossRef][PubMed]
49. Blondeau JM,, Borsos S,, Blondeau LD,, Blondeau BJ,, Hesje CE . 2012. Comparative minimum inhibitory and mutant prevention drug concentrations of enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin against bovine clinical isolates of Mannheimia haemolytica. Vet Microbiol 160 : 85 90.[CrossRef][PubMed]
50. Toutain PL,, Ferran AA,, Bousquet-Melou A,, Pelligand L,, Lees P . 2016. Veterinary medicine needs new and innovative green antimicrobial drugs. Front Microbiol 7 : 1196.[CrossRef][PubMed]
51. Pollet RA,, Glatz CE,, Dyer DC,, Barnes HJ . 1983. Pharmacokinetics of chlortetracycline potentiation with citric acid in the chicken. Am J Vet Res 44 : 1718 1721.[PubMed]
52. Pijpers A,, Schoevers EJ,, van Gogh H,, van Leengoed LA,, Visser IJ,, van Miert AS,, Verheijden JH . 1991. The influence of disease on feed and water consumption and on pharmacokinetics of orally administered oxytetracycline in pigs. J Anim Sci 69 : 2947 2954.[PubMed]
53. Nielsen P,, Gyrd-Hansen N . 1996. Bioavailability of oxytetracycline, tetracycline and chlortetracycline after oral administration to fed and fasted pigs. J Vet Pharmacol Ther 19 : 305 311.[CrossRef][PubMed]
54. Lindecrona RH,, Friis C,, Nielsen JP . 2000. Pharmacokinetics and penetration of danofloxacin into the gastrointestinal tract in healthy and in Salmonella typhimurium infected pigs. Res Vet Sci 68 : 211 216.[PubMed]
55. Nguyen TT,, Chachaty E,, Huy C,, Cambier C,, de Gunzburg J,, Mentré F,, Andremont A . 2012. Correlation between fecal concentrations of ciprofloxacin and fecal counts of resistant Enterobacteriaceae in piglets treated with ciprofloxacin: toward new means to control the spread of resistance? Antimicrob Agents Chemother 56 : 4973 4975.[CrossRef][PubMed]
56. Vasseur M,, Ferran A,, Bousquet-Mélou A,, Toutain PL . 2012. Impact of early versus later beta-lactam treatments on clinical and microbiological outcomes in an original mouse model of airborne Pasteurella multocida lung infection, p 124. In EAVPT (ed), 12th International Congress of the European Association for Veterinary Pharmacology and Toxicology, Noordwijkerhout, The Netherlands.
57. Toutain PL,, del Castillo JRE,, Bousquet-Mélou A . 2002. The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Res Vet Sci 73 : 105 114.[CrossRef]
58. Toutain PL,, Lees P . 2004. Integration and modelling of pharmacokinetic and pharmacodynamic data to optimize dosage regimens in veterinary medicine. J Vet Pharmacol Ther 27 : 467 477.[CrossRef][PubMed]
59. Ismail M,, El-Kattan YA . 2007. Comparative pharmacokinetics of marbofloxacin in healthy and Mannheimia haemolytica infected calves. Res Vet Sci 82 : 398 404.[CrossRef][PubMed]
60. Mzyk DA,, Baynes RE,, Messenger KM,, Martinez M,, Smith GW . 2017. Pharmacokinetics and distribution in interstitial and pulmonary epithelial lining fluid of danofloxacin in ruminant and preruminant calves. J Vet Pharmacol Ther 40 : 179 191.[CrossRef][PubMed]
61. Ensink JM,, Klein WR,, Mevius DJ,, Klarenbeek A,, Vulto AG . 1992. Bioavailability of oral penicillins in the horse: a comparison of pivampicillin and amoxicillin. J Vet Pharmacol Ther 15 : 221 230.[CrossRef][PubMed]
62. Baggot JD,, Love DN,, Stewart J,, Raus J . 1988. Bioavailability and disposition kinetics of amoxicillin in neonatal foals. Equine Vet J 20 : 125 127.[CrossRef][PubMed]
63. Agersø H,, Friis C . 1998. Bioavailability of amoxycillin in pigs. J Vet Pharmacol Ther 21 : 41 46.[CrossRef][PubMed]
64. Küng K,, Wanner M . 1994. Bioavailability of different forms of amoxycillin administered orally to dogs. Vet Rec 135 : 552 554.[PubMed]
65. Sánchez Navarro A . 2005. New formulations of amoxicillin/clavulanic acid: a pharmacokinetic and pharmacodynamic review. Clin Pharmacokinet 44 : 1097 1115.[CrossRef][PubMed]
66. Ambrose PG,, Grasela DM . 2000. The use of Monte Carlo simulation to examine pharmacodynamic variance of drugs: fluoroquinolone pharmacodynamics against Streptococcus pneumoniae. Diagn Microbiol Infect Dis 38 : 151 157.
67. Drusano GL,, Preston SL,, Hardalo C,, Hare R,, Banfield C,, Andes D,, Vesga O,, Craig WA . 2001. Use of preclinical data for selection of a phase II/III dose for evernimicin and identification of a preclinical MIC breakpoint. Antimicrob Agents Chemother 45 : 13 22.[CrossRef][PubMed]
68. Dudley MN,, Ambrose PG . 2000. See comment in PubMed Commons below Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: ready for prime time. Curr Opin Microbiol 3 : 515 21.
69. Toutain PL,, Potter T,, Pelligand L,, Lacroix M,, Illambas J,, Lees P . 2017. Standard PK/PD concepts can be applied to determine a dosage regimen for a macrolide: the case of tulathromycin in the calf. J Vet Pharmacol Ther 40 : 16 27.[CrossRef][PubMed]
70. Guillemot D,, Carbon C,, Vauzelle-Kervroëdan F,, Balkau B,, Maison P,, Bouvenot G,, Eschwège E . 1998. Inappropriateness and variability of antibiotic prescription among French office-based physicians. J Clin Epidemiol 51 : 61 68.[CrossRef]
71. Randall LP,, Cooles SW,, Coldham NC,, Stapleton KS,, Piddock LJ,, Woodward MJ . 2006. Modification of enrofloxacin treatment regimens for poultry experimentally infected with Salmonella enterica serovar Typhimurium DT104 to minimize selection of resistance. Antimicrob Agents Chemother 50 : 4030 4037.[CrossRef][PubMed]
72. Ungemach FR,, Müller-Bahrdt D,, Abraham G . 2006. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. Int J Med Microbiol 296( Suppl 41) : 33 38.[CrossRef][PubMed]
73. Anonymous . 2015. Pig Veterinary Society: prescribing principles for antimicrobials. http://www.pigvetsoc.org.uk/files/document/92/1401%20PIG%20VETERINARY%20SOCIETY-PP%20final.pdf.
74. Anonymous . 2016. Guidelines for the use of antimicrobials in the South African pig industry. http://www.sava.co.za/2017/05/26/antibiotic-guidelines-pig-industry/.
75. Burch DGS,, Duran OC,, Aarestrup FM, . 2009. Guidelines for antimicrobial use in swine, p 102 125. In Guardabassi L,, Jensen LB,, Kruse H (ed), Guide to Antimicrobial Use in Animals. Blackwell Publishing, Oxford, United Kingdom.[CrossRef]
76. Anonymous . 2013. Guidelines on Good Antibiotic Practice: As Little As Possible, but As Often As Possible. Videncenter for Svineproduktion, Landbrug og Fødevarer. http://svineproduktion.dk/viden/i-stalden/management/manualer/antibiotika.
77. Jensen VF,, Emborg HD,, Aarestrup FM . 2012. Indications and patterns of therapeutic use of antimicrobial agents in the Danish pig production from 2002 to 2008. J Vet Pharmacol Ther 35 : 33 46.[CrossRef][PubMed]
78. Callens B,, Persoons D,, Maes D,, Laanen M,, Postma M,, Boyen F,, Haesebrouck F,, Butaye P,, Catry B,, Dewulf J . 2012. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev Vet Med 106 : 53 62.[CrossRef][PubMed]
79. van Rennings L,, von Münchhausen C,, Ottilie H,, Hartmann M,, Merle R,, Honscha W,, Käsbohrer A,, Kreienbrock L . 2015. Cross-sectional study on antibiotic usage in pigs in Germany. PLoS One 10 : e0119114.[CrossRef][PubMed]
80. Heo JM,, Opapeju FO,, Pluske JR,, Kim JC,, Hampson DJ,, Nyachoti CM . 2013. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl) 97 : 207 237.[CrossRef][PubMed]
81. Melkebeek V,, Goddeeris BM,, Cox E . 2013. ETEC vaccination in pigs. Vet Immunol Immunopathol 152 : 37 42.[CrossRef][PubMed]
82. Taylor D, . 1999. Clostridial infections, p 395 412. In Straw BE,, D’Allaire S,, Mengeling WL,, Taylor D (ed), Diseases of Swine. Iowa State University Press, Ames, IA.[PubMed]
83. Riising HJ,, Murmans M,, Witvliet M . 2005. Protection against neonatal Escherichia coli diarrhoea in pigs by vaccination of sows with a new vaccine that contains purified enterotoxic E. coli virulence factors F4ac, F4ab, F5 and F6 fimbrial antigens and heat-labile E. coli enterotoxin (LT) toxoid. J Vet Med B Infect Dis Vet Public Health 52 : 296 300.[CrossRef][PubMed]
84. Suiryanrayna MVAN,, Ramana JV . 2015. A review of the effects of dietary organic acids fed to swine. J Anim Sci Biotechnol 6 : 45.[CrossRef][PubMed]
85. Gantois I,, Ducatelle R,, Pasmans F,, Haesebrouck F,, Hautefort I,, Thompson A,, Hinton JC,, Van Immerseel F . 2006. Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol 72 : 946 949.[CrossRef][PubMed]
86. Hu Q,, Zhao Z,, Fang S,, Zhang Y,, Feng J . 2017. Phytosterols improve immunity and exert anti-inflammatory activiey in weaned piglets. J Sci Food Agric 97 : 4103 4109.[CrossRef][PubMed]
87. Den Hartog LA,, Smits CHM,, Henridks WH . 2016. Feed additive strategies for replacement of antimicrobial growth promoters and a responsible use of antimicrobials. Feedipedia www.feedipedia.org No 34, October 2016.
88. Thacker PA . 2013. Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol 4 : 35.[CrossRef][PubMed]
89. Jäger HC,, McKinley TJ,, Wood JL,, Pearce GP,, Williamson S,, Strugnell B,, Done S,, Habernoll H,, Palzer A,, Tucker AW . 2012. Factors associated with pleurisy in pigs: a case-control analysis of slaughter pig data for England and Wales. PLoS One 7 : e29655.[CrossRef][PubMed]
90. Fablet C,, Dorenlor V,, Eono F,, Eveno E,, Jolly JP,, Portier F,, Bidan F,, Madec F,, Rose N . 2012. Noninfectious factors associated with pneumonia and pleuritis in slaughtered pigs from 143 farrow-to-finish pig farms. Prev Vet Med 104 : 271 280.[CrossRef][PubMed]
91. Maes D,, Segales J,, Meyns T,, Sibila M,, Pieters M,, Haesebrouck F . 2008. Control of Mycoplasma hyopneumoniae infections in pigs. Vet Microbiol 126 : 297 309.[CrossRef][PubMed]
92. Stärk KD,, Miserez R,, Siegmann S,, Ochs H,, Infanger P,, Schmidt J . 2007. A successful national control programme for enzootic respiratory diseases in pigs in Switzerland. Rev Sci Tech 26 : 595 606.[CrossRef][PubMed]
93. Chae C . 2016. Porcine respiratory disease complex: interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae. Vet J 212 : 1 6.[CrossRef][PubMed]
94. Ramirez CR,, Harding AL,, Forteguerri EB,, Aldridge BM,, Lowe JF . 2015. Limited efficacy of antimicrobial metaphylaxis in finishing pigs: a randomized clinical trial. Prev Vet Med 121 : 176 178.[CrossRef][PubMed]
95. Bos ME,, Taverne FJ,, van Geijlswijk IM,, Mouton JW,, Mevius DJ,, Heederik DJ, Netherlands Veterinary Medicines Authority (SDa) . 2013. Consumption of antimicrobials in pigs, veal calves, and broilers in the Netherlands: quantitative results of nationwide collection of data in 2011. PLoS One 8 : e77525.[CrossRef][PubMed]
96. Larsen I,, Nielsen SS,, Olsen JE,, Nielsen JP . 2016. The efficacy of oxytetracycline treatment at batch, pen and individual level on Lawsonia intracellularis infection in nursery pigs in a randomised clinical trial. Prev Vet Med 124 : 25 33.[CrossRef][PubMed]
97. Græsbøll K,, Damborg P,, Mellerup A,, Herrero-Fresno A,, Larsen I,, Holm A,, Nielsen JP,, Christiansen LE,, Angen Ø,, Ahmed S,, Folkesson A,, Olsen JE . 2017. Effect of tetracycline dose and treatment mode on selection of resistant coliform bacteria in nursery pigs. Appl Environ Microbiol 83 : e00538–e17.[CrossRef][PubMed]
98. Weber N,, Nielsen JP,, Jakobsen AS,, Pedersen LL,, Hansen CF,, Pedersen KS . 2015. Occurrence of diarrhoea and intestinal pathogens in non-medicated nursery pigs. Acta Vet Scand 57 : 64.[CrossRef][PubMed]
99. Alali WQ,, Scott HM,, Harvey RB,, Norby B,, Lawhorn DB,, Pillai SD . 2008. Longitudinal study of antimicrobial resistance among Escherichia coli isolates from integrated multisite cohorts of humans and swine. Appl Environ Microbiol 74 : 3672 3681.[CrossRef][PubMed]
100. Liu Z,, Zhang Z,, Yan H,, Li J,, Shi L . 2015. Isolation and molecular characterization of multidrug-resistant Enterobacteriaceae strains from pork and environmental samples in Xiamen, China. J Food Prot 78 : 78 88.[CrossRef][PubMed]
101. Mirajkar NS,, Davies PR,, Gebhart CJ . 2016. Antimicrobial susceptibility patterns of Brachyspira species isolated from swine herds in the United States. J Clin Microbiol 54 : 2109 2119.[CrossRef][PubMed]
102. Pringle M,, Landén A,, Unnerstad HE,, Molander B,, Bengtsson B . 2012. Antimicrobial susceptibility of porcine Brachyspira hyodysenteriae and Brachyspira pilosicoli isolated in Sweden between 1990 and 2010. Acta Vet Scand 54 : 54.[CrossRef][PubMed]
103. Kirchgässner C,, Schmitt S,, Borgström A,, Wittenbrink MM . 2016. Antimicrobial susceptibility of Brachyspira hyodysenteriae in Switzerland. Schweiz Arch Tierheilkd 158 : 405 410.[CrossRef][PubMed]
104. Yeh JY,, Lee JH,, Yeh HR,, Kim A,, Lee JY,, Hwang JM,, Kang BK,, Kim JM,, Choi IS,, Lee JB . 2011. Antimicrobial susceptibility testing of two Lawsonia intracellularis isolates associated with proliferative hemorrhagic enteropathy and porcine intestinal adenomatosis in South Korea. Antimicrob Agents Chemother 55 : 4451 4453.[CrossRef][PubMed]
105. Wattanaphansak S,, Singer RS,, Gebhart CJ . 2009. In vitro antimicrobial activity against 10 North American and European Lawsonia intracellularis isolates. Vet Microbiol 134 : 305 310.[CrossRef][PubMed]
106. Clinical and Laboratory Standards Institute (CLSI) . 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Approved standard VET01-A4. CLSI, Wayne, PA.
107. Vicca J,, Stakenborg T,, Maes D,, Butaye P,, Peeters J,, de Kruif A,, Haesebrouck F . 2004. In vitro susceptibilities of Mycoplasma hyopneumoniae field isolates. Antimicrob Agents Chemother 48 : 4470 4472.[CrossRef][PubMed]
108. Stakenborg T,, Vicca J,, Butaye P,, Maes D,, Minion FC,, Peeters J,, De Kruif A,, Haesebrouck F . 2005. Characterization of in vivo acquired resistance of Mycoplasma hyopneumoniae to macrolides and lincosamides. Microb Drug Resist 11 : 290 294.[CrossRef][PubMed]
109. Opriessnig T,, Giménez-Lirola LG,, Halbur PG . 2011. Polymicrobial respiratory disease in pigs. Anim Health Res Rev 12 : 133 148.[CrossRef][PubMed]
110. Ruiz VL,, Bersano JG,, Carvalho AF,, Catroxo MH,, Chiebao DP,, Gregori F,, Miyashiro S,, Nassar AF,, Oliveira TM,, Ogata RA,, Scarcelli EP,, Tonietti PO . 2016. Case-control study of pathogens involved in piglet diarrhea. BMC Res Notes 9 : 22.[CrossRef][PubMed]
111. Palzer A,, Ritzmann M,, Wolf G,, Heinritzi K . 2008. Associations between pathogens in healthy pigs and pigs with pneumonia. Vet Rec 162 : 267 271.[CrossRef][PubMed]
112. Ståhl M,, Kokotovic B,, Hjulsager CK,, Breum SO,, Angen Ø . 2011. The use of quantitative PCR for identification and quantification of Brachyspira pilosicoli, Lawsonia intracellularis and Escherichia coli fimbrial types F4 and F18 in pig feces. Vet Microbiol 151 : 307 314.[CrossRef][PubMed]
113. Clasen J,, Mellerup A,, Olsen JE,, Angen Ø,, Folkesson A,, Halasa T,, Toft N,, Birkegård AC . 2016. Determining the optimal number of individual samples to pool for quantification of average herd levels of antimicrobial resistance genes in Danish pig herds using high-throughput qPCR. Vet Microbiol 189 : 46 51.[CrossRef][PubMed]
114. Pedersen KS,, Ståhl M,, Guedes RM,, Angen Ø,, Nielsen JP,, Jensen TK . 2012. Association between faecal load of Lawsonia intracellularis and pathological findings of proliferative enteropathy in pigs with diarrhoea. BMC Vet Res 8 : 198.[CrossRef][PubMed]
115. Pedersen KS,, Stege H,, Jensen TK,, Guedes R,, Ståhl M,, Nielsen JP,, Hjulsager C,, Larsen LE,, Angen Ø . 2013. Diagnostic performance of fecal quantitative real-time polymerase chain reaction for detection of Lawsonia intracellularis-associated proliferative enteropathy in nursery pigs. J Vet Diagn Invest 25 : 336 340.[CrossRef][PubMed]
116. Pedersen KS,, Okholm E,, Johansen M,, Angen Ø,, Jorsal SE,, Nielsen JP,, Bækbo P . 2015. Clinical utility and performance of sock sampling in weaner pig diarrhoea. Prev Vet Med 120 : 313 320.[CrossRef][PubMed]
117. Vangroenweghe F,, Karriker L,, Main R,, Christianson E,, Marsteller T,, Hammen K,, Bates J,, Thomas P,, Ellingson J,, Harmon K,, Abate S,, Crawford K . 2015. Assessment of litter prevalence of Mycoplasma hyopneumoniae in preweaned piglets utilizing an antemortem tracheobronchial mucus collection technique and a real-time polymerase chain reaction assay. J Vet Diagn Invest 27 : 606 610.[CrossRef][PubMed]
118. Tobias TJ,, Bouma A,, Klinkenberg D,, Daemen AJ,, Stegeman JA,, Wagenaar JA,, Duim B . 2012. Detection of Actinobacillus pleuropneumoniae in pigs by real-time quantitative PCR for the apxIVA gene. Vet J 193 : 557 560.[CrossRef][PubMed]
119. Scherrer S,, Frei D,, Wittenbrink MM . 2016. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocida in nasal swabs from swine. Acta Vet Scand 58 : 83.[CrossRef][PubMed]
120. Zhang M,, Xie Z,, Xie L,, Deng X,, Xie Z,, Luo S,, Liu J,, Pang Y,, Khan MI . 2015. Simultaneous detection of eight swine reproductive and respiratory pathogens using a novel GeXP analyser-based multiplex PCR assay. J Virol Methods 224 : 9 15.[CrossRef][PubMed]
121. Pedersen KS,, Johansen M,, Angen O,, Jorsal SE,, Nielsen JP,, Jensen TK,, Guedes R,, Ståhl M,, Bækbo P . 2014. Herd diagnosis of low pathogen diarrhoea in growing pigs: a pilot study. Ir Vet J 67 : 24.[CrossRef][PubMed]
122. Munk P,, Andersen VD,, de Knegt L,, Jensen MS,, Knudsen BE,, Lukjancenko O,, Mordhorst H,, Clasen J,, Agersø Y,, Folkesson A,, Pamp SJ,, Vigre H,, Aarestrup FM . 2017. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds. J Antimicrob Chemother 72 : 385 392.[CrossRef][PubMed]
123. Pedersen KS,, Kristensen CS,, Nielsen JP . 2012. Demonstration of non-specific colitis and increased crypt depth in colon of weaned pigs with diarrhea. Vet Q 32 : 45 49.[CrossRef][PubMed]
124. de Jong A,, Thomas V,, Simjee S,, Moyaert H,, El Garch F,, Maher K,, Morrissey I,, Butty P,, Klein U,, Marion H,, Rigaut D,, Vallé M . 2014. Antimicrobial susceptibility monitoring of respiratory tract pathogens isolated from diseased cattle and pigs across Europe: the VetPath study. Vet Microbiol 172 : 202 215.[CrossRef][PubMed]
125. Dayao DA,, Gibson JS,, Blackall PJ,, Turni C . 2014. Antimicrobial resistance in bacteria associated with porcine respiratory disease in Australia. Vet Microbiol 171 : 232 235.[CrossRef][PubMed]
126. Vanni M,, Merenda M,, Barigazzi G,, Garbarino C,, Luppi A,, Tognetti R,, Intorre L . 2012. Antimicrobial resistance of Actinobacillus pleuropneumoniae isolated from swine. Vet Microbiol 156 : 172 177.[CrossRef][PubMed]
127. Sweeney MT,, Quesnell R,, Tiwari R,, Lemay M,, Watts JL . 2013. In vitro activity and rodent efficacy of clinafloxacin for bovine and swine respiratory disease. Front Microbiol 4 : 154.[CrossRef][PubMed]
128. Lauritzen B,, Lykkesfeldt J,, Friis C . 2003. Evaluation of a single dose versus a divided dose regimen of danofloxacin in treatment of Actinobacillus pleuropneumoniae infection in pigs. Res Vet Sci 74 : 271 277.[CrossRef]
129. European Medicines Agency (EMA) . 2016. Updated advice on the use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health EMA/231573/2016. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/05/WC500207233.pdf.
130. Kempf I,, Jouy E,, Chauvin C . 2016. Colistin use and colistin resistance in bacteria from animals. Int J Antimicrob Agents 48 : 598 606.[CrossRef][PubMed]
131. Moodley A,, Nielsen SS,, Guardabassi L . 2011. Effects of tetracycline and zinc on selection of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 398 in pigs. Vet Microbiol 152 : 420 423.[CrossRef][PubMed]
132. Slifierz MJ,, Friendship R,, Weese JS . 2015. Zinc oxide therapy increases prevalence and persistence of methicillin-resistant Staphylococcus aureus in pigs: a randomized controlled trial. Zoonoses Public Health 62 : 301 308.[CrossRef][PubMed]
133. European Medicines Agency (EMA) . 2016. Committee for Medicinal Products for Veterinary Use (CVMP) Meeting of 06-08 December 2016 EMA/CVMP/794393/2016. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2016/12/WC500217843.pdf.
134. Madson DM,, Magstadt DR,, Arruda PH,, Hoang H,, Sun D,, Bower LP,, Bhandari M,, Burrough ER,, Gauger PC,, Pillatzki AE,, Stevenson GW,, Wilberts BL,, Brodie J,, Harmon KM,, Wang C,, Main RG,, Zhang J,, Yoon KJ . 2014. Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs. Vet Microbiol 174 : 60 68.[CrossRef]
135. Ahmad A,, Zachariasen C,, Christiansen LE,, Græsbøll K,, Toft N,, Matthews L,, Nielsen SS,, Olsen JE . 2016. Modeling the growth dynamics of multiple Escherichia coli strains in the pig intestine following intramuscular ampicillin treatment. BMC Microbiol 16 : 205.[CrossRef][PubMed]
136. Herrero-Fresno A,, Zachariasen C,, Nørholm N,, Holm A,, Christiansen LE,, Olsen JE . 2017. Effect of different oral oxytetracycline treatment regimes on selection of antimicrobial resistant coliforms in nursery pigs. Vet Microbiol 208 : 1 7.[CrossRef][PubMed]
137. Burow E,, Simoneit C,, Tenhagen BA,, Käsbohrer A . 2014. Oral antimicrobials increase antimicrobial resistance in porcine E. coli: a systematic review. Prev Vet Med 113 : 364 375.[CrossRef][PubMed]
138. Larsen I,, Hjulsager CK,, Holm A,, Olsen JE,, Nielsen SS,, Nielsen JP . 2016. A randomised clinical trial on the efficacy of oxytetracycline dose through water medication of nursery pigs on diarrhoea, faecal shedding of Lawsonia intracellularis and average daily weight gain. Prev Vet Med 123 : 52 59.[CrossRef][PubMed]
139. Zolynas R,, Cao J,, Simmons R . 2003. Evaluation of the efficacy and safety of Nuflor injectable solution (15mg/kg twice 48hours apart) in the treatment of swine respiratory disease (SRD). Proceedings of the AASV meeting, Orlando, FL, p 211 214.
140. Vilalta C,, Giboin H,, Schneider M,, El Garch F,, Fraile L . 2014. Pharmacokinetic/pharmacodynamic evaluation of marbofloxacin in the treatment of Haemophilus parasuis and Actinobacillus pleuropneumoniae infections in nursery and fattener pigs using Monte Carlo simulations. J Vet Pharmacol Ther 37 : 542 549.[CrossRef][PubMed]
141. Constable PD,, Pyörälä S,, Smith GW, . 2008. Guidelines for antimicrobial use in cattle, p 143 160. In Guardabassi L,, Jensen LB,, Kruse H (ed), Guide to Antimicrobial Use in Animals. Blackwell Publishing, Oxford, United Kingdom.[CrossRef]
142. American Association of Bovine Practitioners (AABP) . 2013. Prudent antimicrobial use guidelines. http://www.aabp.org/about/AABP_Guidelines.asp.
143. Edwards TA . 2010. Control methods for bovine respiratory disease for feedlot cattle. Vet Clin North Am Food Anim Pract 26 : 273 284.[CrossRef][PubMed]
144. Wittum TE,, Perino LJ . 1995. Passive immune status at postpartum hour 24 and long-term health and performance of calves. Am J Vet Res 56 : 1149 1154.[PubMed]
145. Theurer ME,, Larson RL,, White BJ . 2015. Systematic review and meta-analysis of the effectiveness of commercially available vaccines against bovine herpesvirus, bovine viral diarrhea virus, bovine respiratory syncytial virus, and parainfluenza type 3 virus for mitigation of bovine respiratory disease complex in cattle. J Am Vet Med Assoc 246 : 126 142.[CrossRef][PubMed]
146. Ellis JA . 2017. How efficacious are vaccines against bovine respiratory syncytial virus in cattle? Vet Microbiol 206 : 59 68.[PubMed]
147. Murray GM,, O’Neill RG,, More SJ,, McElroy MC,, Earley B,, Cassidy JP . 2016. Evolving views on bovine respiratory disease: an appraisal of selected control measures. Part 2. Vet J 217 : 78 82.
148. Larson RL,, Step DL . 2012. Evidence-based effectiveness of vaccination against Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni in feedlot cattle for mitigating the incidence and effect of bovine respiratory disease complex. Vet Clin North Am Food Anim Pract 28 : 97 106.[CrossRef][PubMed]
149. Health BA . 2017. Zelnate 2016 1-4-2017. https://academic.oup.com/jas/article/87/10/3418/4563405
150. Keefe G . 2012. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet Clin North Am Food Anim Pract 28 : 203 216.[CrossRef][PubMed]
151. Hogan J,, Smith KL . 2012. Managing environmental mastitis. Vet Clin North Am Food Anim Pract 28 : 217 224.[CrossRef][PubMed]
152. Gomes F,, Henriques M . 2016. Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol 72 : 377 382.[CrossRef][PubMed]
153. DeDonder KD,, Apley MD . 2015. A review of the expected effects of antimicrobials in bovine respiratory disease treatment and control using outcomes from published randomized clinical trials with negative controls. Vet Clin North Am Food Anim Pract 31 : 97 111, vi.[CrossRef][PubMed]
154. Wileman BW,, Thomson DU,, Reinhardt CD,, Renter DG . 2009. Analysis of modern technologies commonly used in beef cattle production: conventional beef production versus nonconventional production using meta-analysis. J Anim Sci 87 : 3418 3426.[PubMed]
155. González-Martín JV,, Elvira L,, Cerviño López M,, Pérez Villalobos N,, Calvo López-Guerrero E,, Astiz S . 2011. Reducing antibiotic use: selective metaphylaxis with florfenicol in commercial feedlots. Livest Sci 141 : 173 181.[CrossRef]
156. Scherpenzeel CG,, den Uijl IE,, van Schaik G,, Riekerink RG,, Hogeveen H,, Lam TJ . 2016. Effect of different scenarios for selective dry-cow therapy on udder health, antimicrobial usage, and economics. J Dairy Sci 99 : 3753 3764.[PubMed]
157. Biggs A,, Barrett D,, Bradley A,, Green M,, Reyher K,, Zadoks R . 2016. Antibiotic dry cow therapy: where next? Vet Rec 178 : 93 94.[PubMed]
158. Love WJ,, Lehenbauer TW,, Van Eenennaam AL,, Drake CM,, Kass PH,, Farver TB,, Aly SS . 2016. Sensitivity and specificity of on-farm scoring systems and nasal culture to detect bovine respiratory disease complex in preweaned dairy calves. J Vet Diagn Invest 28 : 119 128.[PubMed]
159. DeDonder K,, Thomson DU,, Loneragan GH,, Noffsinger T,, Taylor W,, Apley MD . 2010. Lung auscultation and rectal temperature as a predictor of lung lesions and bovine respiratory disease treatment outcome in feedyard cattle. Bov Pract 44 : 146 153.
160. Rose-Dye TK,, Burciaga-Robles LO,, Krehbiel CR,, Step DL,, Fulton RW,, Confer AW,, Richards CJ . 2011. Rumen temperature change monitored with remote rumen temperature boluses after challenges with bovine viral diarrhea virus and Mannheimia haemolytica. J Anim Sci 89 : 1193 1200.[PubMed]
161. Ollivett TL,, Buczinski S . 2016. On-farm use of ultrasonography for bovine respiratory disease. Vet Clin North Am Food Anim Pract 32 : 19 35.[CrossRef][PubMed]
162. White BJ,, Goehl DR,, Amrine DE,, Booker C,, Wildman B,, Perrett T . 2016. Bayesian evaluation of clinical diagnostic test characteristics of visual observations and remote monitoring to diagnose bovine respiratory disease in beef calves. Prev Vet Med 126 : 74 80.[PubMed]
163. Wolfger B,, Timsit E,, White BJ,, Orsel K . 2015. A systematic review of bovine respiratory disease diagnosis focused on diagnostic confirmation, early detection, and prediction of unfavorable outcomes in feedlot cattle. Vet Clin North Am Food Anim Pract 31 : 351 365.[PubMed]
164. DeDonder KD,, Apley MD . 2015. A literature review of antimicrobial resistance in pathogens associated with bovine respiratory disease. Anim Health Res Rev 16 : 125 134.[CrossRef][PubMed]
165. Lubbers BV,, Turnidge J . 2015. Antimicrobial susceptibility testing for bovine respiratory disease: getting more from diagnostic results. Vet J 203 : 149 154.[CrossRef][PubMed]
166. Wagner SA,, Erskine RJ, . 2013. Antimicrobial drug use in mastitis, p 519 528. In Giguère S,, Prescott JF,, Dowling PM, (ed), Antimicrobial Therapy in Veterinary Medicine. Wiley Blackwell, Ames, IA.
167. Roberson JR . 2012. Treatment of clinical mastitis. Vet Clin North Am Food Anim Pract 28 : 271 288.[CrossRef][PubMed]
168. Pinzón-Sánchez C,, Ruegg PL . 2011. Risk factors associated with short-term post-treatment outcomes of clinical mastitis. J Dairy Sci 94 : 3397 3410.[CrossRef][PubMed]
169. Barkema HW,, Schukken YH,, Zadoks RN . 2006. Invited review: the role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J Dairy Sci 89 : 1877 1895.[CrossRef]
170. Kayitsinga J,, Schewe RL,, Contreras GA,, Erskine RJ . 2016. Antimicrobial treatment of clinical mastitis in the eastern United States: the influence of dairy farmers’ mastitis management and treatment behavior and attitudes. J Dairy Sci 100( 2) : 1388 1407.[PubMed]
171. Lago A,, Godden SM,, Bey R,, Ruegg PL,, Leslie K . 2011. The selective treatment of clinical mastitis based on on-farm culture results. I. Effects on antibiotic use, milk withholding time, and short-term clinical and bacteriological outcomes. J Dairy Sci 94 : 4441 4456.
172. Constable PD,, Morin DE . 2003. Treatment of clinical mastitis. Using antimicrobial susceptibility profiles for treatment decisions. Vet Clin North Am Food Anim Pract 19 : 139 155.[CrossRef]
173. Barlow J . 2011. Mastitis therapy and antimicrobial susceptibility: a multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. J Mammary Gland Biol Neoplasia 16 : 383 407.[CrossRef][PubMed]
174. Hoe FG,, Ruegg PL . 2005. Relationship between antimicrobial susceptibility of clinical mastitis pathogens and treatment outcome in cows. J Am Vet Med Assoc 227 : 1461 1468.[CrossRef]
175. Hendriksen RS,, Karlsmose S,, Aarestrup FM,, Krogh K,, Voss H . 2009. Fra gram positiv til negativ og fra kokker til stave – Sammendrag af resultaterne af årets ringtest for identifikation og resistensbestemmelse af mastitispatogener. Dansk Vettidsskr 92 : 28 33.
176. Koskinen MT,, Holopainen J,, Pyörälä S,, Bredbacka P,, Pitkälä A,, Barkema HW,, Bexiga R,, Roberson J,, Sølverød L,, Piccinini R,, Kelton D,, Lehmusto H,, Niskala S,, Salmikivi L . 2009. Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. J Dairy Sci 92 : 952 959.[CrossRef][PubMed]
177. O’Connor AM,, Yuan C,, Cullen JN,, Coetzee JF,, da Silva N,, Wang C . 2016. A mixed treatment meta-analysis of antibiotic treatment options for bovine respiratory disease: an update. Prev Vet Med 132 : 130 139.[PubMed]
178. Royster E,, Wagner S . 2015. Treatment of mastitis in cattle. Vet Clin North Am Food Anim Pract 31 : 17 46.[CrossRef][PubMed]
179. Pyörälä S . 2009. Treatment of mastitis during lactation. Ir Vet J 62( Suppl 4) : S40 S44.[CrossRef][PubMed]
180. Nordiske Meieriorganisasjoners Samarbeidsutvalg for Mjolkekvalitetsarbeid (NMSM) . 2009. Nordic guidelines for mastitis therapy. http://www.sva.se/globalassets/redesign2011/pdf/antibiotika/antibiotikaresistens/nordic-guidelines-for-mastitis-therapy.pdf.
181. Apley MD . 2015. Treatment of calves with bovine respiratory disease: duration of therapy and post-treatment intervals. Vet Clin North Am Food Anim Pract 31 : 441 453, vii.[CrossRef][PubMed]
182. Vallé M,, Schneider M,, Galland D,, Giboin H,, Woehrlé F . 2012. Pharmacokinetic and pharmacodynamic testing of marbofloxacin administered as a single injection for the treatment of bovine respiratory disease. J Vet Pharmacol Ther 35 : 519 528.[CrossRef][PubMed]
183. Swinkels JM,, Hilkens A,, Zoche-Golob V,, Krömker V,, Buddiger M,, Jansen J,, Lam TJ . 2015. Social influences on the duration of antibiotic treatment of clinical mastitis in dairy cows. J Dairy Sci 98 : 2369 2380.[PubMed]
184. Swinkels JM,, Cox P,, Schukken YH,, Lam TJ . 2013. Efficacy of extended cefquinome treatment of clinical Staphylococcus aureus mastitis. J Dairy Sci 96 : 4983 4992.[PubMed]
185. Weese JS,, Blondeau JM,, Boothe D,, Breitschwerdt EB,, Guardabassi L,, Hillier A,, Lloyd DH,, Papich MG,, Rankin SC,, Turnidge JD,, Sykes JE . 2011. Antimicrobial use guidelines for treatment of urinary tract disease in dogs and cats: antimicrobial guidelines working group of the international society for companion animal infectious diseases. Vet Med Int 2011 : 263768.[CrossRef][PubMed]
186. Hillier A,, Lloyd DH,, Weese JS,, Blondeau JM,, Boothe D,, Breitschwerdt E,, Guardabassi L,, Papich MG,, Rankin S,, Turnidge JD,, Sykes JE . 2014. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet Dermatol 25 : 163 175, e42-3.
187. Lappin MR,, Blondeau J,, Boothe D,, Breitschwerdt EB,, Guardabassi L,, Lloyd DH,, Papich MG,, Rankin SC,, Sykes JE,, Turnidge J,, Weese JS . 2017. Antimicrobial use guidelines for treatment of respiratory tract disease in dogs and cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J Vet Intern Med 31 : 279 294.[CrossRef][PubMed]
188. Beco L,, Guaguère E,, Lorente Méndez C,, Noli C,, Nuttall T,, Vroom M . 2013. Suggested guidelines for using systemic antimicrobials in bacterial skin infections (1): diagnosis based on clinical presentation, cytology and culture. Vet Rec 172 : 72 78.[CrossRef][PubMed]
189. Guardabassi L,, Frank L,, Houser G,, Papich M, . 2008. Guidelines for antimicrobial use in dogs and cats, p 183 206. In Guardabassi L,, Jensen LB,, Kruse H (ed), Guide to Antimicrobial use in Animals. Blackwell Publishing, Oxford, United Kingdom.[CrossRef]
190. Danish Small Animal Veterinary Association (SvHKS) . 2013. Antibiotic use guidelines for companion animal practice. https://www.ddd.dk/sektioner/hundkatsmaedyr/antibiotikavejledning/Documents/AntibioticGuidelines.pdf.
191. Swedish Veterinary Association . 2009. Guidelines for the clinical use of antibiotics in the treatment of dogs and cats. http://www.svf.se/Documents/S%C3%A4llskapet/Sm%C3%A5djurssektionen/Policy%20ab%20english%2010b.pdf.
192. Guardabassi L,, Prescott JF . 2015. Antimicrobial stewardship in small animal veterinary practice: from theory to practice. Vet Clin North Am Small Anim Pract 45 : 361 376, vii.[CrossRef][PubMed]
193. Weese JS . 2006. Investigation of antimicrobial use and the impact of antimicrobial use guidelines in a small animal veterinary teaching hospital: 1995–2004. J Am Vet Med Assoc 228 : 553 558.[CrossRef][PubMed]
194. Hughes LA,, Williams N,, Clegg P,, Callaby R,, Nuttall T,, Coyne K,, Pinchbeck G,, Dawson S . 2012. Cross-sectional survey of antimicrobial prescribing patterns in UK small animal veterinary practice. Prev Vet Med 104 : 309 316.[CrossRef][PubMed]
195. Stull JW,, Weese JS . 2015. Infection control in veterinary small animal practice. Vet Clin North Am Small Anim Pract 45 : xi xii.[CrossRef][PubMed]
196. Rantala M,, Hölsö K,, Lillas A,, Huovinen P,, Kaartinen L . 2004. Survey of condition-based prescribing of antimicrobial drugs for dogs at a veterinary teaching hospital. Vet Rec 155 : 259 262.[CrossRef][PubMed]
197. Escher M,, Vanni M,, Intorre L,, Caprioli A,, Tognetti R,, Scavia G . 2011. Use of antimicrobials in companion animal practice: a retrospective study in a veterinary teaching hospital in Italy. J Antimicrob Chemother 66 : 920 927.[CrossRef][PubMed]
198. Mueller RS,, Bergvall K,, Bensignor E,, Bond R . 2012. A review of topical therapy for skin infections with bacteria and yeast. Vet Dermatol 23 : 330 341.[CrossRef][PubMed]
199. Borio S,, Colombo S,, La Rosa G,, De Lucia M,, Damborg P,, Guardabassi L . 2015. Effectiveness of a combined (4% chlorhexidine digluconate shampoo and solution) protocol in MRS and non-MRS canine superficial pyoderma: a randomized, blinded, antibiotic-controlled study. Vet Dermatol 26 : 339 344, e72.[CrossRef]
200. Summers JF,, Hendricks A,, Brodbelt DC . 2014. Prescribing practices of primary-care veterinary practitioners in dogs diagnosed with bacterial pyoderma. BMC Vet Res 10 : 240.[CrossRef][PubMed]
201. Watson AD,, Maddison JE . 2001. Systemic antibacterial drug use in dogs in Australia. Aust Vet J 79 : 740 746.[CrossRef]
202. Mateus AL,, Brodbelt DC,, Barber N,, Stärk KD . 2014. Qualitative study of factors associated with antimicrobial usage in seven small animal veterinary practices in the UK. Prev Vet Med 117 : 68 78.[CrossRef][PubMed]
203. Unterer S,, Strohmeyer K,, Kruse BD,, Sauter-Louis C,, Hartmann K . 2011. Treatment of aseptic dogs with hemorrhagic gastroenteritis with amoxicillin/clavulanic acid: a prospective blinded study. J Vet Intern Med 25 : 973 979.[CrossRef][PubMed]
204. Cai T,, Nesi G,, Mazzoli S,, Meacci F,, Lanzafame P,, Caciagli P,, Mereu L,, Tateo S,, Malossini G,, Selli C,, Bartoletti R . 2015. Asymptomatic bacteriuria treatment is associated with a higher prevalence of antibiotic resistant strains in women with urinary tract infections. Clin Infect Dis 61 : 1655 1661.
205. Weese JS,, Blondeau J,, Boothe D,, Guardabassi L,, Gumley N,, Lappin M,, Papich M,, Rankin S,, Sykes J,, Westropp J . 2016. Guidelines for management of urinary tract infections in dogs and cats. American College of Veterinary Internal Medicine Forum, Denver, CO, 10 June 2016.
206. Murphy CP,, Reid-Smith RJ,, Boerlin P,, Weese JS,, Prescott JF,, Janecko N,, McEwen SA . 2012. Out-patient antimicrobial drug use in dogs and cats for new disease events from community companion animal practices in Ontario. Can Vet J 53 : 291 298.[PubMed]
207. Robinson NJ,, Dean RS,, Cobb M,, Brennan ML . 2016. Factors influencing common diagnoses made during first-opinion small-animal consultations in the United Kingdom. Prev Vet Med 131 : 87 94.[CrossRef][PubMed]
208. Trott DJ,, Filippich LJ,, Bensink JC,, Downs MT,, McKenzie SE,, Townsend KM,, Moss SM,, Chin JJ . 2004. Canine model for investigating the impact of oral enrofloxacin on commensal coliforms and colonization with multidrug-resistant Escherichia coli. J Med Microbiol 53 : 439 443.[CrossRef][PubMed]
209. Lawrence M,, Kukanich K,, Kukanich B,, Heinrich E,, Coetzee JF,, Grauer G,, Narayanan S . 2013. Effect of cefovecin on the fecal flora of healthy dogs. Vet J 198 : 259 266.[CrossRef][PubMed]
210. Ding Y,, Jia YY,, Li F,, Liu WX,, Lu CT,, Zhu YR,, Yang J,, Ding LK,, Yang L,, Wen AD . 2012. The effect of staggered administration of zinc sulfate on the pharmacokinetics of oral cephalexin. Br J Clin Pharmacol 73 : 422 427.[CrossRef][PubMed]
211. Papich MG,, Davis JL,, Floerchinger AM . 2010. Pharmacokinetics, protein binding, and tissue distribution of orally administered cefpodoxime proxetil and cephalexin in dogs. Am J Vet Res 71 : 1484 1491.[CrossRef][PubMed]
212. British Small Animal Veterinary Association (BSAVA) . 2015. British Small Animal Veterinary Association (BSAVA) Guideline on Companion Animals. https://www.bsava.com/Resources/Veterinary-resources/Medicines-Guide.
213. Mouton JW,, Ambrose PG,, Canton R,, Drusano GL,, Harbarth S,, MacGowan A,, Theuretzbacher U,, Turnidge J . 2011. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updat 14 : 107 117.[CrossRef][PubMed]
214. Stein GE,, Schooley SL,, Nicolau DP . 2008. Urinary bactericidal activity of single doses (250, 500, 750 and 1000 mg) of levofloxacin against fluoroquinolone-resistant strains of Escherichia coli. Int J Antimicrob Agents 32 : 320 325.[CrossRef][PubMed]
215. Katz DE,, Lindfield KC,, Steenbergen JN,, Benziger DP,, Blackerby KJ,, Knapp AG,, Martone WJ . 2008. A pilot study of high-dose short duration daptomycin for the treatment of patients with complicated skin and skin structure infections caused by Gram-positive bacteria. Int J Clin Pract 62 : 1455 1464.[CrossRef][PubMed]
216. Levison ME,, Levison JH . 2009. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am 23 : 791 815, vii.[CrossRef][PubMed]
217. Toutain PL,, Bousquet-Mélou A,, Martinez M . 2007. AUC/MIC: a PK/PD index for antibiotics with a time dimension or simply a dimensionless scoring factor? J Antimicrob Chemother 60 : 1185 1188.[CrossRef][PubMed]
218. Awji EG,, Tassew DD,, Lee JS,, Lee SJ,, Choi MJ,, Reza MA,, Rhee MH,, Kim TH,, Park SC . 2012. Comparative mutant prevention concentration and mechanism of resistance to veterinary fluoroquinolones in Staphylococcus pseudintermedius. Vet Dermatol 23 : 376 380, e68-9.[CrossRef]
219. Drlica K,, Zhao X,, Blondeau JM,, Hesje C . 2006. Low correlation between MIC and mutant prevention concentration. Antimicrob Agents Chemother 50 : 403 404.[CrossRef][PubMed]
220. Wetzstein HG . 2005. Comparative mutant prevention concentrations of pradofloxacin and other veterinary fluoroquinolones indicate differing potentials in preventing selection of resistance. Antimicrob Agents Chemother 49 : 4166 4173.[CrossRef][PubMed]
221. Gugel J,, Dos Santos Pereira A,, Pignatari AC,, Gales AC . 2006. beta-Lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. Antimicrob Agents Chemother 50 : 2276 2277.[CrossRef][PubMed]
222. Falagas ME,, Bliziotis IA,, Rafailidis PI . 2007. Do high doses of quinolones decrease the emergence of antibacterial resistance? A systematic review of data from comparative clinical trials. J Infect 55 : 97 105.[CrossRef][PubMed]
223. Craig WA, . 2007. Pharmacodynamics of antimicrobials: general concepts and applications, p 1 19. In Nightingale CH,, Ambrose PG,, Drusano GL,, Murakawa K (ed), Antimicrobials Pharmacodynamics in Theory and in Clinical Practices, 2nd ed. Informa Healthcare, New York, NY.
224. Stevens DL,, Bisno AL,, Chambers HF,, Dellinger EP,, Goldstein EJ,, Gorbach SL,, Hirschmann JV,, Kaplan SL,, Montoya JG,, Wade JC . 2014. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis 59 : 147 159.[CrossRef]
225. Gonzalez D,, Delmore P,, Bloom BT,, Cotten CM,, Poindexter BB,, McGowan E,, Shattuck K,, Bradford KK,, Smith PB,, Cohen-Wolkowiez M,, Morris M,, Yin W,, Benjamin DK Jr,, Laughon MM . 2016. Clindamycin pharmacokinetics and safety in preterm and term infants. Antimicrob Agents Chemother 60 : 2888 2894.[CrossRef][PubMed]
226. Batzias GC,, Delis GA,, Athanasiou LV . 2005. Clindamycin bioavailability and pharmacokinetics following oral administration of clindamycin hydrochloride capsules in dogs. Vet J 170 : 339 345.[CrossRef][PubMed]
227. Clare S,, Hartmann FA,, Jooss M,, Bachar E,, Wong YY,, Trepanier LA,, Viviano KR . 2014. Short- and long-term cure rates of short-duration trimethoprim-sulfamethoxazole treatment in female dogs with uncomplicated bacterial cystitis. J Vet Intern Med 28 : 818 826.[CrossRef][PubMed]
228. Gupta K,, Hooton TM,, Naber KG,, Wullt B,, Colgan R,, Miller LG,, Moran GJ,, Nicolle LE,, Raz R,, Schaeffer AJ,, Soper DE . 2011. Infectious Diseases Society of America.; European Society for Microbiology and Infectious Diseases. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52 : e103-20.[PubMed]