1887

Chapter 4 : Mechanisms of Bacterial Resistance to Antimicrobial Agents

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mechanisms of Bacterial Resistance to Antimicrobial Agents, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555819804/9781555819798_Chap04-2.gif

Abstract:

With regard to their structures and functions, antimicrobial agents represent a highly diverse group of low-molecular-weight substances which interfere with bacterial growth, resulting in either a timely limited growth inhibition (bacteriostatic effect) or the killing of the bacteria (bactericidal effect). For more than 60 years, antimicrobial agents have been used to control bacterial infections in humans, animals, and plants. Nowadays, antimicrobial agents are among the most frequently used therapeutics in human and veterinary medicine ( ). In the early days of antimicrobial chemotherapy, antimicrobial resistance was not considered as an important problem, since the numbers of resistant strains were low and a large number of new highly effective antimicrobial agents of different classes were detected. These early antimicrobial agents represented products of the metabolic pathways of soil bacteria (e.g., , ) or fungi (e.g., , , ) ( Table 1 ) and provided their producers with a selective advantage in the fight for resources and the colonization of ecological niches ( ). This in turn forced the susceptible bacteria living in close contact with the antimicrobial producers to develop and/or refine mechanisms to circumvent the inhibitory effects of antimicrobial agents. As a consequence, the origins of bacterial resistance to antimicrobial agents can be assumed to be in a time long before the clinical use of these substances. With the elucidation of the chemical structure of the antimicrobial agents, which commonly followed soon after their detection, it was possible not only to produce antimicrobial agents synthetically in larger amounts at lower costs, but also to introduce modifications that altered the pharmacological properties of these substances and occasionally also extended their spectrum of activity.

Citation: van Duijkeren E, Schink A, Roberts M, Wang Y, Schwarz S. 2018. Mechanisms of Bacterial Resistance to Antimicrobial Agents, p 51-82. In Schwarz S, Cavaco L, Shen J (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.ARBA-0019-2017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555819804.chap4
1. Schwarz S,, Chaslus-Dancla E . 2001. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet Res 32 : 201 225.[CrossRef][PubMed]
2. Schwarz S,, Kehrenberg C,, Walsh TR . 2001. Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents 17 : 431 437.[CrossRef][PubMed]
3. Schwarz S,, Noble WC . 1999. Aspects of bacterial resistance to antimicrobial agents used in veterinary dermatological practice. Vet Dermatol 10 : 163 176.[CrossRef]
4. Fiebelkorn KR,, Crawford SA,, Jorgensen JH . 2005. Mutations in folP associated with elevated sulfonamide MICs for Neisseria meningitidis clinical isolates from five continents. Antimicrob Agents Chemother 49 : 536 540.[CrossRef]
5. Datta N,, Hedges RW . 1972. Trimethoprim resistance conferred by W plasmids in Enterobacteriaceae. J Gen Microbiol 72 : 349 355.[CrossRef][PubMed]
6. Endtz HP,, Ruijs GJ,, van Klingeren B,, Jansen WH,, van der Reyden T,, Mouton RP . 1991. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother 27 : 199 208.[CrossRef][PubMed]
7. Tsiodras S,, Gold HS,, Sakoulas G,, Eliopoulos GM,, Wennersten C,, Venkataraman L,, Moellering RC Jr,, Ferraro MJ . 2001. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358 : 207 208.[CrossRef]
8. Schwarz S,, Cloeckaert A,, Roberts MC, . 2006. Mechanisms and spread of bacterial resistance to antimicrobial agents, p 73 98. In Aarestrup FM (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.
9. Schwarz S,, Loeffler A,, Kadlec K . 2017. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Vet Dermatol 28 : 82–e19.[CrossRef][PubMed]
10. Livermore DM . 1995. β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8 : 557 584.[PubMed]
11. Georgopapadakou NH . 1993. Penicillin-binding proteins and bacterial resistance to β-lactams. Antimicrob Agents Chemother 37 : 2045 2053.[CrossRef][PubMed]
12. Paulsen IT,, Brown MH,, Skurray RA . 1996. Proton-dependent multidrug efflux systems. Microbiol Rev 60 : 575 608.[PubMed]
13. Quintiliani R Jr,, Sahm DF,, Courvalin P, . 1999. Mechanisms of resistance to antimicrobial agents, p 1505 1525. In Murray PR,, Baron EJ,, Pfaller MA,, Tenover FC,, Yolken RH (ed), Manual of Clinical Microbiology, 7th ed. ASM Press, Washington, DC.
14. Petrosino J,, Cantu C III,, Palzkill T . 1998. β-Lactamases: protein evolution in real time. Trends Microbiol 6 : 323 327.[CrossRef][PubMed]
15. Bush K . 2001. New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 32 : 1085 1089.[CrossRef][PubMed]
16. Bush K,, Jacoby GA,, Medeiros AA . 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39 : 1211 1233.[CrossRef][PubMed]
17. Ambler RP . 1980. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289 : 321 331.[CrossRef][PubMed]
18. Bush K,, Jacoby GA . 2010. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54 : 969 976.[CrossRef][PubMed]
19. Bradford PA . 2001. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14 : 933 951.[CrossRef][PubMed]
20. Bonnet R . 2004. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48 : 1 14.[CrossRef][PubMed]
21. Brolund A,, Sandegren L . 2016. Characterization of ESBL disseminating plasmids. Infect Dis (Lond) 48 : 18 25.[CrossRef][PubMed]
22. Weldhagen GF . 2004. Integrons and β-lactamases: a novel perspective on resistance. Int J Antimicrob Agents 23 : 556 562.[CrossRef][PubMed]
23. Gilmore KS,, Gilmore MS,, Sahm DF, . 2002. Methicillin resistance in Staphylococcus aureus, p 331 354. In Lewis K,, Salyers AA,, Taber HW,, Wax RG (ed), Bacterial Resistance to Antimicrobials. Marcel Dekker, New York, NY.
24. Hackbarth CJ,, Chambers HF . 1989. Methicillin-resistant staphylococci: genetics and mechanisms of resistance. Antimicrob Agents Chemother 33 : 991 994.[CrossRef][PubMed]
25. Katayama Y,, Ito T,, Hiramatsu K . 2000. A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44 : 1549 1555.[CrossRef][PubMed]
27. García-Álvarez L,, Holden MT,, Lindsay H,, Webb CR,, Brown DF,, Curran MD,, Walpole E,, Brooks K,, Pickard DJ,, Teale C,, Parkhill J,, Bentley SD,, Edwards GF,, Girvan EK,, Kearns AM,, Pichon B,, Hill RL,, Larsen AR,, Skov RL,, Peacock SJ,, Maskell DJ,, Holmes MA . 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11 : 595 603.[CrossRef][PubMed]
28. Shore AC,, Deasy EC,, Slickers P,, Brennan G,, O’Connell B,, Monecke S,, Ehricht R,, Coleman DC . 2011. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55 : 3765 3773.[CrossRef][PubMed]
29. Loncaric I,, Kübber-Heiss A,, Posautz A,, Stalder GL,, Hoffmann D,, Rosengarten R,, Walzer C . 2013. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. J Antimicrob Chemother 68 : 2222 2225.[CrossRef]
30. Harrison EM,, Paterson GK,, Holden MT,, Morgan FJ,, Larsen AR,, Petersen A,, Leroy S,, De Vliegher S,, Perreten V,, Fox LK,, Lam TJ,, Sampimon OC,, Zadoks RN,, Peacock SJ,, Parkhill J,, Holmes MA . 2013. A Staphylococcus xylosus isolate with a new mecC allotype. Antimicrob Agents Chemother 57 : 1524 1528.[CrossRef][PubMed]
31. Małyszko I,, Schwarz S,, Hauschild T . 2014. Detection of a new mecC allotype, mecC2, in methicillin-resistant Staphylococcus saprophyticus. J Antimicrob Chemother 69 : 2003 2005.[CrossRef][PubMed]
32. Ehlert K . 1999. Methicillin-resistance in Staphylococcus aureus: molecular basis, novel targets and antibiotic therapy. Curr Pharm Des 5 : 45 55.[PubMed]
33. Ling B,, Berger-Bächi B . 1998. Increased overall antibiotic susceptibility in Staphylococcus aureus femAB null mutants. Antimicrob Agents Chemother 42 : 936 938.[PubMed]
34. Charrel RN,, Pagès J-M,, De Micco P,, Mallea M . 1996. Prevalence of outer membrane porin alteration in β-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrob Agents Chemother 40 : 2854 2858.[PubMed]
35. Hopkins JM,, Towner KJ . 1990. Enhanced resistance to cefotaxime and imipenem associated with outer membrane protein alterations in Enterobacter aerogenes. J Antimicrob Chemother 25 : 49 55.[CrossRef][PubMed]
36. Mitsuyama J,, Hiruma R,, Yamaguchi A,, Sawai T . 1987. Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of β-lactams. Antimicrob Agents Chemother 31 : 379 384.[CrossRef][PubMed]
37. Simonet V,, Malléa M,, Pagès J-M . 2000. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother 44 : 311 315.[CrossRef][PubMed]
38. Martínez-Martínez L,, Hernández-Allés S,, Albertí S,, Tomás JM,, Benedi VJ,, Jacoby GA . 1996. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob Agents Chemother 40 : 342 348.[PubMed]
39. Wolter DJ,, Hanson ND,, Lister PD . 2004. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol Lett 236 : 137 143.[CrossRef][PubMed]
40. Poole K, . 2002. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms, p 273 298. In Paulsen IT,, Lewis K (ed), Microbial Multidrug Efflux. Horizon Scientific Press, Wymondham, United Kingdom.
41. Putman M,, van Veen HW,, Konings WN . 2000. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64 : 672 693.[CrossRef][PubMed]
42. Grave K,, Torren-Edo J,, Muller A,, Greko C,, Moulin G,, Mackay D,, Fuchs K,, Laurier L,, Iliev D,, Pokludova L,, Genakritis M,, Jacobsen E,, Kurvits K,, Kivilahti-Mantyla K,, Wallmann J,, Kovacs J,, Lenharthsson JM,, Beechinor JG,, Perrella A,, Mičule G,, Zymantaite U,, Meijering A,, Prokopiak D,, Ponte MH,, Svetlin A,, Hederova J,, Madero CM,, Girma K,, Eckford S, ESVAC Group . 2014. Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. J Antimicrob Chemother 69 : 2284 2291.[CrossRef][PubMed]
43. Casas C,, Anderson EC,, Ojo KK,, Keith I,, Whelan D,, Rainnie D,, Roberts MC . 2005. Characterization of pRAS1-like plasmids from atypical North American psychrophilic Aeromonas salmonicida. FEMS Microbiol Lett 242 : 59 63.[CrossRef][PubMed]
44. DePaola A,, Roberts MC . 1995. Class D and E tetracycline resistance determinants in Gram-negative catfish pond bacteria. Mol Cell Probes 9 : 311 313.[CrossRef]
45. Miranda CD,, Kehrenberg C,, Ulep C,, Schwarz S,, Roberts MC . 2003. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother 47 : 883 888.[CrossRef][PubMed]
46. Chopra I,, Roberts M . 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65 : 232 260.[CrossRef][PubMed]
47. Levy SB,, McMurry LM,, Barbosa TM,, Burdett V,, Courvalin P,, Hillen W,, Roberts MC,, Rood JI,, Taylor DE . 1999. Nomenclature for new tetracycline resistance determinants. Antimicrob Agents Chemother 43 : 1523 1524.[PubMed]
48. Roberts MC,, Schwarz S . 2016. Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans. J Environ Qual 45 : 576 592.[CrossRef][PubMed]
49. Roberts MC,, Schwarz S,, Aarts HJ . 2012. Erratum: acquired antibiotic resistance genes: an overview. Front Microbiol 3 : 384.[CrossRef][PubMed]
50. Roberts MC,, No D,, Kuchmiy E,, Miranda CD . 2015. Tetracycline resistance gene tet(39) identified in three new genera of bacteria isolated in 1999 from Chilean salmon farms. J Antimicrob Chemother 70 : 619 621.[CrossRef][PubMed]
51. Speer BS,, Shoemaker NB,, Salyers AA . 1992. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev 5 : 387 399.[CrossRef][PubMed]
52. Linkevicius M,, Sandegren L,, Andersson DI . 2015. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob Agents Chemother 60 : 789 796.[CrossRef][PubMed]
53. Fiedler S,, Bender JK,, Klare I,, Halbedel S,, Grohmann E,, Szewzyk U,, Werner G . 2016. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J Antimicrob Chemother 71 : 871 881.[CrossRef][PubMed]
54. Roberts MC . 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19 : 1 24.[CrossRef][PubMed]
55. Allmeier H,, Cresnar B,, Greck M,, Schmitt R . 1992. Complete nucleotide sequence of Tn 1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111 : 11 20.[CrossRef]
56. Chalmers R,, Sewitz S,, Lipkow K,, Crellin P . 2000. Complete nucleotide sequence of Tn 10. J Bacteriol 182 : 2970 2972.[CrossRef][PubMed]
57. Lawley TD,, Burland V,, Taylor DE . 2000. Analysis of the complete nucleotide sequence of the tetracycline-resistance transposon Tn 10. Plasmid 43 : 235 239.[CrossRef][PubMed]
58. Kehrenberg C,, Werckenthin C,, Schwarz S . 1998. Tn 5706, a transposon-like element from Pasteurella multocida mediating tetracycline resistance. Antimicrob Agents Chemother 42 : 2116 2118.[PubMed]
59. Projan SJ,, Kornblum J,, Moghazeh SL,, Edelman I,, Gennaro ML,, Novick RP . 1985. Comparative sequence and functional analysis of pT181 and pC221, cognate plasmid replicons from Staphylococcus aureus. Mol Gen Genet 199 : 452 464.[CrossRef][PubMed]
60. Schwarz S,, Noble WC . 1994. Tetracycline resistance genes in staphylococci from the skin of pigs. J Appl Bacteriol 76 : 320 326.[CrossRef][PubMed]
61. Werckenthin C,, Schwarz S,, Roberts MC . 1996. Integration of pT181-like tetracycline resistance plasmids into large staphylococcal plasmids involves IS 257. Antimicrob Agents Chemother 40 : 2542 2544.[PubMed]
62. Taylor DE,, Chau A . 1996. Tetracycline resistance mediated by ribosomal protection. Antimicrob Agents Chemother 40 : 1 5.[PubMed]
63. Connell SR,, Tracz DM,, Nierhaus KH,, Taylor DE . 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47 : 3675 3681.[CrossRef][PubMed]
64. Flannagan SE,, Zitzow LA,, Su YA,, Clewell DB . 1994. Nucleotide sequence of the 18-kb conjugative transposon Tn 916 from Enterococcus faecalis. Plasmid 32 : 350 354.[CrossRef][PubMed]
65. Salyers AA,, Shoemaker NB,, Stevens AM,, Li L-Y . 1995. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev 59 : 579 590.[PubMed]
66. Forsberg KJ,, Patel S,, Wencewicz TA,, Dantas G . 2015. The tetracycline destructases: A novel family of tetracycline-inactivating enzymes. Chem Biol 22 : 888 897.[CrossRef][PubMed]
67. Speer BS,, Bedzyk L,, Salyers AA . 1991. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase. J Bacteriol 173 : 176 183.[CrossRef][PubMed]
68. Diaz-Torres ML,, McNab R,, Spratt DA,, Villedieu A,, Hunt N,, Wilson M,, Mullany P . 2003. Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother 47 : 1430 1432.[CrossRef][PubMed]
69. Nonaka L,, Suzuki S . 2002. New Mg 2+-dependent oxytetracycline resistance determinant tet 34 in Vibrio isolates from marine fish intestinal contents. Antimicrob Agents Chemother 46 : 1550 1552.[CrossRef][PubMed]
70. Ross JI,, Eady EA,, Cove JH,, Cunliffe WJ . 1998. 16S rRNA mutation associated with tetracycline resistance in a Gram-positive bacterium. Antimicrob Agents Chemother 42 : 1702 1705.[PubMed]
71. Sutcliffe JA,, Leclercq R, . 2003. Mechanisms of resistance to macrolides, lincosamides and ketolides, p 281 317. In Schonfeld W,, Kirst HA (ed), Macrolide Antibiotics. Birkhauser Verlag, Basel, Switzerland.
72. Schwarz S,, Shen J,, Kadlec K,, Wang Y,, Brenner Michael G,, Feßler AT,, Vester B . 2016. Lincosamides, streptogramins, phenicols, and pleuromutilins: mode of action and mechanisms of resistance. Cold Spring Harb Perspect Med 6 : a027037.[CrossRef][PubMed]
73. Fyfe C,, Grossman TH,, Kerstein K,, Sutcliffe J . 2016. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med 6 : a025395.[CrossRef][PubMed]
74. Roberts MC,, Sutcliffe J,, Courvalin P,, Jensen LB,, Rood J,, Seppala H . 1999. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43 : 2823 2830.[PubMed]
75. Leclercq R,, Courvalin P . 1991. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35 : 1267 1272.[CrossRef][PubMed]
76. Weisblum B . 1995. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39 : 577 585.[CrossRef][PubMed]
77. Weisblum B . 1995. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 39 : 797 805.[CrossRef][PubMed]
78. Schmitz F-J,, Petridou J,, Jagusch H,, Astfalk N,, Scheuring S,, Schwarz S . 2002. Molecular characterization of ketolide-resistant erm(A)-carrying Staphylococcus aureus isolates selected in vitro by telithromycin, ABT-773, quinupristin and clindamycin. J Antimicrob Chemother 49 : 611 617.[CrossRef][PubMed]
79. Schmitz F-J,, Petridou J,, Astfalk N,, Köhrer K,, Scheuring S,, Schwarz S . 2002. Molecular analysis of constitutively expressed erm(C) genes selected in vitro by incubation in the presence of the noninducers quinupristin, telithromycin, or ABT-773. Microb Drug Resist 8 : 171 177.[CrossRef][PubMed]
80. Lüthje P,, Schwarz S . 2007. Molecular analysis of constitutively expressed erm(C) genes selected in vitro in the presence of the non-inducers pirlimycin, spiramycin and tylosin. J Antimicrob Chemother 59 : 97 101.[CrossRef][PubMed]
81. Werckenthin C,, Schwarz S,, Westh H . 1999. Structural alterations in the translational attenuator of constitutively expressed ermC genes. Antimicrob Agents Chemother 43 : 1681 1685.[PubMed]
82. Leclercq R,, Courvalin P . 1991. Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob Agents Chemother 35 : 1273 1276.[CrossRef][PubMed]
83. Sharkey LK,, Edwards TA,, O’Neill AJ . 2016. ABC-F proteins mediate antibiotic resistance through ribosomal protection. MBio 7 : e01975.[CrossRef][PubMed]
84. Ross JI,, Eady EA,, Cove JH,, Cunliffe WJ,, Baumberg S,, Wootton JC . 1990. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 4 : 1207 1214.[CrossRef][PubMed]
85. Reynolds E,, Ross JI,, Cove JH . 2003. Msr(A) and related macrolide/streptogramin resistance determinants: incomplete transporters? Int J Antimicrob Agents 22 : 228 236.[CrossRef]
86. Lüthje P,, Schwarz S . 2006. Antimicrobial resistance of coagulase-negative staphylococci from bovine subclinical mastitis with particular reference to macrolide-lincosamide resistance phenotypes and genotypes. J Antimicrob Chemother 57 : 966 969.[CrossRef][PubMed]
87. Clancy J,, Petitpas J,, Dib-Hajj F,, Yuan W,, Cronan M,, Kamath AV,, Bergeron J,, Retsema JA . 1996. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol Microbiol 22 : 867 879.[CrossRef][PubMed]
88. Cousin S Jr,, Whittington WL,, Roberts MC . 2003. Acquired macrolide resistance genes in pathogenic Neisseria spp. isolated between 1940 and 1987. Antimicrob Agents Chemother 47 : 3877 3880.[CrossRef][PubMed]
89. Ojo KK,, Ulep C,, Van Kirk N,, Luis H,, Bernardo M,, Leitao J,, Roberts MC . 2004. The mef(A) gene predominates among seven macrolide resistant genes identified in 13 Gram-negative genera from healthy Portuguese children. Antimicrob Agents Chemother 48 : 3451 3456.[CrossRef][PubMed]
90. Daly MM,, Doktor S,, Flamm R,, Shortridge D . 2004. Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. J Clin Microbiol 42 : 3570 3574.[CrossRef][PubMed]
91. Plante I,, Centrón D,, Roy PH . 2003. An integron cassette encoding erythromycin esterase, ere(A), from Providencia stuartii. J Antimicrob Chemother 51 : 787 790.[CrossRef][PubMed]
92. Lipka M,, Filipek R,, Bochtler M . 2008. Crystal structure and mechanism of the Staphylococcus cohnii virginiamycin B lyase (Vgb). Biochemistry 47 : 4257 4265.[CrossRef][PubMed]
93. Chesneau O,, Tsvetkova K,, Courvalin P . 2007. Resistance phenotypes conferred by macrolide phosphotransferases. FEMS Microbiol Lett 269 : 317 322.[CrossRef][PubMed]
94. Vester B,, Douthwaite S . 2001. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 45 : 1 12.[CrossRef][PubMed]
95. Meier A,, Kirschner P,, Springer B,, Steingrube VA,, Brown BA,, Wallace RJ Jr,, Böttger EC . 1994. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob Agents Chemother 38 : 381 384.[CrossRef][PubMed]
96. Karlsson M,, Fellström C,, Heldtander MU,, Johansson KE,, Franklin A . 1999. Genetic basis of macrolide and lincosamide resistance in Brachyspira ( Serpulina) hyodysenteriae. FEMS Microbiol Lett 172 : 255 260.[CrossRef][PubMed]
97. Haanperä M,, Huovinen P,, Jalava J . 2005. Detection and quantification of macrolide resistance mutations at positions 2058 and 2059 of the 23S rRNA gene by pyrosequencing. Antimicrob Agents Chemother 49 : 457 460.[CrossRef][PubMed]
98. Harrow SA,, Gilpin BJ,, Klena JD . 2004. Characterization of erythromycin resistance in Campylobacter coli and Campylobacter jejuni isolated from pig offal in New Zealand. J Appl Microbiol 97 : 141 148.[CrossRef][PubMed]
99. Mingeot-Leclercq M-P,, Glupczynski Y,, Tulkens PM . 1999. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43 : 727 737.[PubMed]
100. Shaw KJ,, Rather PN,, Hare RS,, Miller GH . 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57 : 138 163.[PubMed]
101. Ramirez MS,, Tolmasky ME . 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13 : 151 171.[CrossRef][PubMed]
102. Wright GD . 1999. Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2 : 499 503.[CrossRef][PubMed]
103. Davies J,, Wright GD . 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5 : 234 240.[CrossRef]
104. Hedges RW,, Shannon KP . 1984. Resistance to apramycin in Escherichia coli isolated from animals: detection of a novel aminoglycoside-modifying enzyme. J Gen Microbiol 130 : 473 482.[PubMed]
105. Chaslus-Dancla E,, Glupcznski Y,, Gerbaud G,, Lagorce M,, Lafont JP,, Courvalin P . 1989. Detection of apramycin resistant Enterobacteriaceae in hospital isolates. FEMS Microbiol Lett 52 : 261 265.[CrossRef][PubMed]
106. Chaslus-Dancla E,, Pohl P,, Meurisse M,, Marin M,, Lafont JP . 1991. High genetic homology between plasmids of human and animal origins conferring resistance to the aminoglycosides gentamicin and apramycin. Antimicrob Agents Chemother 35 : 590 593.[CrossRef][PubMed]
107. Johnson AP,, Burns L,, Woodford N,, Threlfall EJ,, Naidoo J,, Cooke EM,, George RC . 1994. Gentamicin resistance in clinical isolates of Escherichia coli encoded by genes of veterinary origin. J Med Microbiol 40 : 221 226.[CrossRef][PubMed]
108. Lyon BR,, Skurray R . 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51 : 88 134.[PubMed]
109. Rouch DA,, Byrne ME,, Kong YC,, Skurray RA . 1987. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn 4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J Gen Microbiol 133 : 3039 3052.[PubMed]
110. Lange CC,, Werckenthin C,, Schwarz S . 2003. Molecular analysis of the plasmid-borne aacA/aphD resistance gene region of coagulase-negative staphylococci from chickens. J Antimicrob Chemother 51 : 1397 1401.[CrossRef][PubMed]
111. Leelaporn A,, Yodkamol K,, Waywa D,, Pattanachaiwit S . 2008. A novel structure of Tn 4001-truncated element, type V, in clinical enterococcal isolates and multiplex PCR for detecting aminoglycoside resistance genes. Int J Antimicrob Agents 31 : 250 254.[CrossRef][PubMed]
112. Recchia GD,, Hall RM . 1995. Gene cassettes: a new class of mobile element. Microbiology 141 : 3015 3027.[CrossRef][PubMed]
113. Sandvang D,, Aarestrup FM . 2000. Characterization of aminoglycoside resistance genes and class 1 integrons in porcine and bovine gentamicin-resistant Escherichia coli. Microb Drug Resist 6 : 19 27.[CrossRef][PubMed]
114. Feßler AT,, Kadlec K,, Schwarz S . 2011. Novel apramycin resistance gene apmA in bovine and porcine methicillin-resistant Staphylococcus aureus ST398 isolates. Antimicrob Agents Chemother 55 : 373 375.[CrossRef][PubMed]
115. Kadlec K,, Feßler AT,, Couto N,, Pomba CF,, Schwarz S . 2012. Unusual small plasmids carrying the novel resistance genes dfrK or apmA isolated from methicillin-resistant or -susceptible staphylococci. J Antimicrob Chemother 67 : 2342 2345.[CrossRef][PubMed]
116. Feßler AT,, Zhao Q,, Schoenfelder S,, Kadlec K,, Brenner Michael G,, Wang Y,, Ziebuhr W,, Shen J,, Schwarz S . 2017. Complete sequence of a plasmid from a bovine methicillin-resistant Staphylococcus aureus harbouring a novel ica-like gene cluster in addition to antimicrobial and heavy metal resistance genes. Vet Microbiol 200 : 95 100.[CrossRef][PubMed]
117. Murphy E . 1985. Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3″) (9). Mol Gen Genet 200 : 33 39.[CrossRef][PubMed]
118. Wendlandt S,, Li B,, Lozano C,, Ma Z,, Torres C,, Schwarz S . 2013. Identification of the novel spectinomycin resistance gene spw in methicillin-resistant and methicillin-susceptible Staphylococcus aureus of human and animal origin. J Antimicrob Chemother 68 : 1679 1680.[CrossRef][PubMed]
119. Jamrozy DM,, Coldham NG,, Butaye P,, Fielder MD . 2014. Identification of a novel plasmid-associated spectinomycin adenyltransferase gene spd in methicillin-resistant Staphylococcus aureus ST398 isolated from animal and human sources. J Antimicrob Chemother 69 : 1193 1196.[CrossRef][PubMed]
120. Wendlandt S,, Feßler AT,, Kadlec K,, van Duijkeren E,, Schwarz S . 2014. Identification of the novel spectinomycin resistance gene spd in a different plasmid background among methicillin-resistant Staphylococcus aureus CC398 and methicillin-susceptible S. aureus ST433. J Antimicrob Chemother 69 : 2000 2003.[CrossRef][PubMed]
121. Wendlandt S,, Kadlec K,, Schwarz S . 2015. Four novel plasmids from Staphylococcus hyicus and CoNS that carry a variant of the spectinomycin resistance gene spd. J Antimicrob Chemother 70 : 948 949.[CrossRef][PubMed]
122. Rosenberg EY,, Ma D,, Nikaido H . 2000. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 182 : 1754 1756.[CrossRef][PubMed]
123. Edgar R,, Bibi E . 1997. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J Bacteriol 179 : 2274 2280.[CrossRef][PubMed]
124. Salyers AA,, Whitt DD . 1994. Bacterial Pathogenesis: a Molecular Approach. ASM Press, Washington, DC.
125. Galimand M,, Courvalin P,, Lambert T . 2003. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother 47 : 2565 2571.[CrossRef][PubMed]
126. Potron A,, Poirel L,, Nordmann P . 2015. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 45 : 568 585.[CrossRef][PubMed]
127. Wachino J,, Arakawa Y . 2012. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat 15 : 133 148.[CrossRef][PubMed]
128. Meier A,, Sander P,, Schaper KJ,, Scholz M,, Böttger EC . 1996. Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 40 : 2452 2454.[PubMed]
129. Prammananan T,, Sander P,, Brown BA,, Frischkorn K,, Onyi GO,, Zhang Y,, Böttger EC,, Wallace RJ Jr . 1998. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis 177 : 1573 1581.[CrossRef][PubMed]
130. Cohen KA,, Bishai WR,, Pym AS . 2014. Molecular basis of drug resistance in Mycobacterium tuberculosis. Microbiol Spectr 2 :.[CrossRef][PubMed]
131. Elwell LP,, Fling ME, . 1989. Resistance to trimethoprim, p 249 290. In Bryan LE (ed), Microbial Resistance to Drugs. Springer Verlag, Berlin, Germany.[CrossRef]
132. Huovinen P . 2001. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 32 : 1608 1614.[CrossRef][PubMed]
133. Huovinen P,, Sundström L,, Swedberg G,, Sköld O . 1995. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 39 : 279 289.[CrossRef][PubMed]
134. Sköld O . 2000. Sulfonamide resistance: mechanisms and trends. Drug Resist Updat 3 : 155 160.[CrossRef][PubMed]
135. Sköld O . 2001. Resistance to trimethoprim and sulfonamides. Vet Res 32 : 261 273.[CrossRef][PubMed]
136. Köhler T,, Kok M,, Michea-Hamzehpour M,, Plesiat P,, Gotoh N,, Nishino T,, Curty LK,, Pechere J-C . 1996. Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa. Antimicrob Agents Chemother 40 : 2288 2290.[PubMed]
137. Padayachee T,, Klugman KP . 1999. Novel expansions of the gene encoding dihydropteroate synthase in trimethoprim-sulfamethoxazole-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 43 : 2225 2230.[PubMed]
138. Dale GE,, Broger C,, D’Arcy A,, Hartman PG,, DeHoogt R,, Jolidon S,, Kompis I,, Labhardt AM,, Langen H,, Locher H,, Page MG,, Stüber D,, Then RL,, Wipf B,, Oefner C . 1997. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J Mol Biol 266 : 23 30.[CrossRef][PubMed]
139. Pikis A,, Donkersloot JA,, Rodriguez WJ,, Keith JM . 1998. A conservative amino acid mutation in the chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus pneumoniae. J Infect Dis 178 : 700 706.[CrossRef][PubMed]
140. de Groot R,, Sluijter M,, de Bruyn A,, Campos J,, Goessens WHF,, Smith AL,, Hermans PWM . 1996. Genetic characterization of trimethoprim resistance in Haemophilus influenzae. Antimicrob Agents Chemother 40 : 2131 2136.[PubMed]
141. Sundström L,, Rådström P,, Swedberg G,, Sköld O . 1988. Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn 21. Mol Gen Genet 213 : 191 201.[CrossRef][PubMed]
142. Rådström P,, Swedberg G . 1988. RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Antimicrob Agents Chemother 32 : 1684 1692.[CrossRef][PubMed]
143. Swedberg G,, Sköld O . 1980. Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial resistance to sulfonamides. J Bacteriol 142 : 1 7.[PubMed]
144. Perreten V,, Boerlin P . 2003. A new sulfonamide resistance gene ( sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother 47 : 1169 1172.[CrossRef][PubMed]
145. Grape M,, Sundström L,, Kronvall G . 2003. Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources. J Antimicrob Chemother 52 : 1022 1024.[CrossRef][PubMed]
146. Guerra B,, Junker E,, Helmuth R . 2004. Incidence of the recently described sulfonamide resistance gene sul3 among German Salmonella enterica strains isolated from livestock and food. Antimicrob Agents Chemother 48 : 2712 2715.[CrossRef][PubMed]
147. Guerra B,, Junker E,, Schroeter A,, Malorny B,, Lehmann S,, Helmuth R . 2003. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J Antimicrob Chemother 52 : 489 492.[CrossRef]
148. Pattishall KH,, Acar J,, Burchall JJ,, Goldstein FW,, Harvey RJ . 1977. Two distinct types of trimethoprim-resistant dihydrofolate reductase specified by R-plasmids of different compatibility groups. J Biol Chem 252 : 2319 2323.[PubMed]
149. Sekiguchi J,, Tharavichitkul P,, Miyoshi-Akiyama T,, Chupia V,, Fujino T,, Araake M,, Irie A,, Morita K,, Kuratsuji T,, Kirikae T . 2005. Cloning and characterization of a novel trimethoprim-resistant dihydrofolate reductase from a nosocomial isolate of Staphylococcus aureus CM.S2 (IMCJ1454). Antimicrob Agents Chemother 49 : 3948 3951.[CrossRef][PubMed]
150. Dale GE,, Langen H,, Page MG,, Then RL,, Stüber D . 1995. Cloning and characterization of a novel, plasmid-encoded trimethoprim-resistant dihydrofolate reductase from Staphylococcus haemolyticus MUR313. Antimicrob Agents Chemother 39 : 1920 1924.[CrossRef][PubMed]
151. Charpentier E,, Courvalin P . 1997. Emergence of the trimethoprim resistance gene dfrD in Listeria monocytogenes BM4293. Antimicrob Agents Chemother 41 : 1134 1136.[PubMed]
152. Kadlec K,, Schwarz S . 2009. Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet(L). Antimicrob Agents Chemother 53 : 776 778.[CrossRef][PubMed]
153. Kadlec K,, Schwarz S . 2010. Identification of the novel dfrK-carrying transposon Tn 559 in a porcine methicillin-susceptible Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 54 : 3475 3477.[CrossRef][PubMed]
154. López M,, Kadlec K,, Schwarz S,, Torres C . 2012. First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn 559 in enterococci. Microb Drug Resist 18 : 13 18.[CrossRef][PubMed]
155. Rouch DA,, Messerotti LJ,, Loo LSL,, Jackson CA,, Skurray RA . 1989. Trimethoprim resistance transposon Tn 4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS 257. Mol Microbiol 3 : 161 175.[CrossRef][PubMed]
156. Kehrenberg C,, Schwarz S . 2005. dfrA20, a novel trimethoprim resistance gene from Pasteurella multocida. Antimicrob Agents Chemother 49 : 414 417.[CrossRef][PubMed]
157. Webber M,, Piddock LJV . 2001. Quinolone resistance in Escherichia coli. Vet Res 32 : 275 284.[CrossRef][PubMed]
158. Bager F,, Helmuth R . 2001. Epidemiology of quinolone resistance in Salmonella. Vet Res 32 : 285 290.[CrossRef][PubMed]
159. Drlica K,, Zhao X . 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61 : 377 392.[PubMed]
160. Everett MJ,, Piddock LJV, . 1998. Mechanisms of resistance to fluoroquinolones, p 259 296. In Kuhlmann J,, Dalhoff A,, Zeiler H-J (ed), Quinolone Antibacterials. Springer Verlag, Berlin, Germany.[CrossRef]
161. Hooper DC . 1999. Mechanisms of fluoroquinolone resistance. Drug Resist Updat 2 : 38 55.[CrossRef][PubMed]
162. Ruiz J . 2003. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother 51 : 1109 1117.[CrossRef][PubMed]
163. Guan X,, Xue X,, Liu Y,, Wang J,, Wang Y,, Wang J,, Wang K,, Jiang H,, Zhang L,, Yang B,, Wang N,, Pan L . 2013. Plasmid-mediated quinolone resistance: current knowledge and future perspectives. J Int Med Res 41 : 20 30.[CrossRef][PubMed]
164. Yoshida H,, Bogaki M,, Nakamura M,, Nakamura S . 1990. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 34 : 1271 1272.[CrossRef][PubMed]
165. Cloeckaert A,, Chaslus-Dancla E . 2001. Mechanisms of quinolone resistance in Salmonella. Vet Res 32 : 291 300.[CrossRef][PubMed]
166. Jones ME,, Sahm DF,, Martin N,, Scheuring S,, Heisig P,, Thornsberry C,, Köhrer K,, Schmitz F-J . 2000. Prevalence of gyrA, gyrB, parC, and parE mutations in clinical isolates of Streptococcus pneumoniae with decreased susceptibilities to different fluoroquinolones and originating from worldwide surveillance studies during the 1997-1998 respiratory season. Antimicrob Agents Chemother 44 : 462 466.[CrossRef][PubMed]
167. Everett MJ,, Jin YF,, Ricci V,, Piddock LJV . 1996. Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrob Agents Chemother 40 : 2380 2386.[PubMed]
168. Poole K . 2000. Efflux-mediated resistance to fluoroquinolones in Gram-negative bacteria. Antimicrob Agents Chemother 44 : 2233 2241.[CrossRef][PubMed]
169. Poole K . 2000. Efflux-mediated resistance to fluoroquinolones in Gram-positive bacteria and the mycobacteria. Antimicrob Agents Chemother 44 : 2595 2599.[CrossRef][PubMed]
170. Alekshun MN,, Levy SB . 1999. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7 : 410 413.[CrossRef]
171. Okusu H,, Ma D,, Nikaido H . 1996. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178 : 306 308.[CrossRef][PubMed]
172. Olliver A,, Vallé M,, Chaslus-Dancla E,, Cloeckaert A . 2004. Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 238 : 267 272.[CrossRef][PubMed]
173. Oethinger M,, Podglajen I,, Kern WV,, Levy SB . 1998. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob Agents Chemother 42 : 2089 2094.[PubMed]
174. Barbosa TM,, Levy SB . 2000. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 182 : 3467 3474.[CrossRef][PubMed]
175. Lee A,, Mao W,, Warren MS,, Mistry A,, Hoshino K,, Okumura R,, Ishida H,, Lomovskaya O . 2000. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 182 : 3142 3150.[CrossRef][PubMed]
176. Oethinger M,, Kern WV,, Jellen-Ritter AS,, McMurry LM,, Levy SB . 2000. Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother 44 : 10 13.[CrossRef][PubMed]
177. Lomovskaya O,, Lee A,, Hoshino K,, Ishida H,, Mistry A,, Warren MS,, Boyer E,, Chamberland S,, Lee VJ . 1999. Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43 : 1340 1346.[PubMed]
178. Baucheron S,, Chaslus-Dancla E,, Cloeckaert A . 2004. Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204. J Antimicrob Chemother 53 : 657 659.[CrossRef][PubMed]
179. Baucheron S,, Imberechts H,, Chaslus-Dancla E,, Cloeckaert A . 2002. The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium phage type DT204. Microb Drug Resist 8 : 281 289.[CrossRef][PubMed]
180. Cohen SP,, McMurry LM,, Levy SB . 1988. marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 170 : 5416 5422.[CrossRef][PubMed]
181. McMurry LM,, George AM,, Levy SB . 1994. Active efflux of chloramphenicol in susceptible Escherichia coli strains and in multiple-antibiotic-resistant (Mar) mutants. Antimicrob Agents Chemother 38 : 542 546.[CrossRef][PubMed]
182. Hooper DC,, Wolfson JS,, Bozza MA,, Ng EY . 1992. Genetics and regulation of outer membrane protein expression by quinolone resistance loci nfxB, nfxC, and cfxB. Antimicrob Agents Chemother 36 : 1151 1154.[CrossRef]
183. Juárez-Verdayes MA,, Parra-Ortega B,, Hernández-Rodríguez C,, Betanzos-Cabrera G,, Rodríguez-Martínez S,, Cancino-Diaz ME,, Cancino-Diaz JC . 2012. Identification and expression of nor efflux family genes in Staphylococcus epidermidis that act against gatifloxacin. Microb Pathog 52 : 318 325.[CrossRef][PubMed]
184. Tran JH,, Jacoby GA . 2002. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci USA 99 : 5638 5642.[CrossRef][PubMed]
185. Jacoby GA,, Strahilevitz J,, Hooper DC . 2014. Plasmid-mediated quinolone resistance. Microbiol Spectrum 2 : PLAS-0006-2013
186. Rodríguez-Martínez JM,, Machuca J,, Cano ME,, Calvo J,, Martínez-Martínez L,, Pascual A . 2016. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Updat 29 : 13 29.[CrossRef][PubMed]
187. Murray IA,, Shaw WV . 1997. O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob Agents Chemother 41 : 1 6.[PubMed]
188. Schwarz S,, Kehrenberg C,, Doublet B,, Cloeckaert A . 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28 : 519 542.[CrossRef][PubMed]
189. Shaw WV . 1983. Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC Crit Rev Biochem 14 : 1 46.[CrossRef][PubMed]
190. Alekshun MN,, Levy SB, . 2000. Bacterial drug resistance: response to survival threats, p 323 366. In Storz G,, Hengge-Aronis R (ed), Bacterial Stress Responses. ASM Press, Washington, DC.
191. Alton NK,, Vapnek D . 1979. Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn 9. Nature 282 : 864 869.[CrossRef][PubMed]
192. Murray IA,, Hawkins AR,, Keyte JW,, Shaw WV . 1988. Nucleotide sequence analysis and overexpression of the gene encoding a type III chloramphenicol acetyltransferase. Biochem J 252 : 173 179.[CrossRef][PubMed]
193. Murray IA,, Martinez-Suarez JV,, Close TJ,, Shaw WV . 1990. Nucleotide sequences of genes encoding the type II chloramphenicol acetyltransferases of Escherichia coli and Haemophilus influenzae, which are sensitive to inhibition by thiol-reactive reagents. Biochem J 272 : 505 510.[CrossRef][PubMed]
194. Brenner DG,, Shaw WV . 1985. The use of synthetic oligonucleotides with universal templates for rapid DNA sequencing: results with staphylococcal replicon pC221. EMBO J 4 : 561 568.[PubMed]
195. Horinouchi S,, Weisblum B . 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150 : 815 825.[PubMed]
196. Schwarz S,, Cardoso M . 1991. Nucleotide sequence and phylogeny of a chloramphenicol acetyltransferase encoded by the plasmid pSCS7 from Staphylococcus aureus. Antimicrob Agents Chemother 35 : 1551 1556.[CrossRef][PubMed]
197. Lovett PS . 1990. Translational attenuation as the regulator of inducible cat genes. J Bacteriol 172 : 1 6.[CrossRef][PubMed]
198. Bannam TL,, Rood JI . 1991. Relationship between the Clostridium perfringens catQ gene product and chloramphenicol acetyltransferases from other bacteria. Antimicrob Agents Chemother 35 : 471 476.[CrossRef][PubMed]
199. Lang KS,, Anderson JM,, Schwarz S,, Williamson L,, Handelsman J,, Singer RS . 2010. Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Appl Environ Microbiol 76 : 5321 5326.[CrossRef][PubMed]
200. Stokes HW,, Hall RM . 1991. Sequence analysis of the inducible chloramphenicol resistance determinant in the Tn 1696 integron suggests regulation by translational attenuation. Plasmid 26 : 10 19.[CrossRef]
201. Cloeckaert A,, Baucheron S,, Chaslus-Dancla E . 2001. Nonenzymatic chloramphenicol resistance mediated by IncC plasmid R55 is encoded by a floR gene variant. Antimicrob Agents Chemother 45 : 2381 2382.[CrossRef][PubMed]
202. Cloeckaert A,, Baucheron S,, Flaujac G,, Schwarz S,, Kehrenberg C,, Martel JL,, Chaslus-Dancla E . 2000. Plasmid-mediated florfenicol resistance encoded by the floR gene in Escherichia coli isolated from cattle. Antimicrob Agents Chemother 44 : 2858 2860.[CrossRef][PubMed]
203. Hochhut B,, Lotfi Y,, Mazel D,, Faruque SM,, Woodgate R,, Waldor MK . 2001. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother 45 : 2991 3000.[CrossRef][PubMed]
204. Kehrenberg C,, Schwarz S . 2005. Plasmid-borne florfenicol resistance in Pasteurella multocida. J Antimicrob Chemother 55 : 773 775.[CrossRef][PubMed]
205. Keyes K,, Hudson C,, Maurer JJ,, Thayer S,, White DG,, Lee MD . 2000. Detection of florfenicol resistance genes in Escherichia coli isolated from sick chickens. Antimicrob Agents Chemother 44 : 421 424.[CrossRef][PubMed]
206. Kim E,, Aoki T . 1996. Sequence analysis of the florfenicol resistance gene encoded in the transferable R-plasmid of a fish pathogen, Pasteurella piscicida. Microbiol Immunol 40 : 665 669.[CrossRef][PubMed]
207. White DG,, Hudson C,, Maurer JJ,, Ayers S,, Zhao S,, Lee MD,, Bolton L,, Foley T,, Sherwood J . 2000. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J Clin Microbiol 38 : 4593 4598.[PubMed]
208. Michael GB,, Kadlec K,, Sweeney MT,, Brzuszkiewicz E,, Liesegang H,, Daniel R,, Murray RW,, Watts JL,, Schwarz S . 2012. ICE Pmu1, an integrative conjugative element (ICE) of Pasteurella multocida: analysis of the regions that comprise 12 antimicrobial resistance genes. J Antimicrob Chemother 67 : 84 90.[CrossRef][PubMed]
209. Hall RM . 2010. Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol 5 : 1525 1538.[CrossRef][PubMed]
210. He T,, Shen J,, Schwarz S,, Wu C,, Wang Y . 2015. Characterization of a genomic island in Stenotrophomonas maltophilia that carries a novel floR gene variant. J Antimicrob Chemother 70 : 1031 1036.[CrossRef][PubMed]
211. Kehrenberg C,, Schwarz S . 2004. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob Agents Chemother 48 : 615 618.[CrossRef][PubMed]
212. Kehrenberg C,, Schwarz S . 2005. Florfenicol-chloramphenicol exporter gene fexA is part of the novel transposon Tn558. Antimicrob Agents Chemother 49 : 813 815.[CrossRef][PubMed]
213. Liu H,, Wang Y,, Wu C,, Schwarz S,, Shen Z,, Jeon B,, Ding S,, Zhang Q,, Shen J . 2012. A novel phenicol exporter gene, fexB, found in enterococci of animal origin. J Antimicrob Chemother 67 : 322 325.[CrossRef][PubMed]
214. Ettayebi M,, Prasad SM,, Morgan EA . 1985. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J Bacteriol 162 : 551 557.[PubMed]
215. Long KS,, Vester B . 2012. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56 : 603 612.[CrossRef][PubMed]
216. Mendes RE,, Deshpande LM,, Farrell DJ,, Spanu T,, Fadda G,, Jones RN . 2010. Assessment of linezolid resistance mechanisms among Staphylococcus epidermidis causing bacteraemia in Rome, Italy. J Antimicrob Chemother 65 : 2329 2335.[CrossRef]
217. Shaw KJ,, Barbachyn MR . 2011. The oxazolidinones: past, present, and future. Ann N Y Acad Sci 1241 : 48 70.[CrossRef][PubMed]
218. Locke JB,, Hilgers M,, Shaw KJ . 2009. Mutations in ribosomal protein L3 are associated with oxazolidinone resistance in staphylococci of clinical origin. Antimicrob Agents Chemother 53 : 5275 5278.[CrossRef][PubMed]
219. Wolter N,, Smith AM,, Farrell DJ,, Schaffner W,, Moore M,, Whitney CG,, Jorgensen JH,, Klugman KP . 2005. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents Chemother 49 : 3554 3557.[CrossRef][PubMed]
220. Shore AC,, Lazaris A,, Kinnevey PM,, Brennan OM,, Brennan GI,, O’Connell B,, Feßler AT,, Schwarz S,, Coleman DC . 2016. First report of cfr-carrying plasmids in the pandemic sequence type 22 methicillin-resistant Staphylococcus aureus staphylococcal cassette chromosome mec type IV clone. Antimicrob Agents Chemother 60 : 3007 3015.[CrossRef][PubMed]
221. Schwarz S,, Werckenthin C,, Kehrenberg C . 2000. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother 44 : 2530 2533.[CrossRef][PubMed]
222. Kehrenberg C,, Schwarz S,, Jacobsen L,, Hansen LH,, Vester B . 2005. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57 : 1064 1073.[CrossRef][PubMed]
223. Long KS,, Poehlsgaard J,, Kehrenberg C,, Schwarz S,, Vester B . 2006. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50 : 2500 2505.[CrossRef][PubMed]
224. Shen J,, Wang Y,, Schwarz S . 2013. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68 : 1697 1706.[CrossRef][PubMed]
225. Wang Y,, Li D,, Song L,, Liu Y,, He T,, Liu H,, Wu C,, Schwarz S,, Shen J . 2013. First report of the multiresistance gene cfr in Streptococcus suis. Antimicrob Agents Chemother 57 : 4061 4063.[CrossRef][PubMed]
226. Hansen LH,, Vester B . 2015. A cfr-like gene from Clostridium difficile confers multiple antibiotic resistance by the same mechanism as the cfr gene. Antimicrob Agents Chemother 59 : 5841 5843.[CrossRef][PubMed]
227. Deshpande LM,, Ashcraft DS,, Kahn HP,, Pankey G,, Jones RN,, Farrell DJ,, Mendes RE . 2015. Detection of a new cfr-like gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 59 : 6256 6261.[CrossRef][PubMed]
228. Tang Y,, Dai L,, Sahin O,, Wu Z,, Liu M,, Zhang Q . 2017. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter. J Antimicrob Chemother 72 : 1581 1588.[CrossRef][PubMed]
229. Wang Y,, Lv Y,, Cai J,, Schwarz S,, Cui L,, Hu Z,, Zhang R,, Li J,, Zhao Q,, He T,, Wang D,, Wang Z,, Shen Y,, Li Y,, Feßler AT,, Wu C,, Yu H,, Deng X,, Xia X,, Shen J . 2015. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70 : 2182 2190.[CrossRef][PubMed]
230. He T,, Shen Y,, Schwarz S,, Cai J,, Lv Y,, Li J,