Chapter 13 : The Bacterial Blood Microbiota/Microbiome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Bacterial Blood Microbiota/Microbiome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819828/9781555819811_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555819828/9781555819811_Chap13-2.gif


Many surfaces on the human body are continually exposed to microorganisms in the external environment and become colonized before or shortly after birth with a normal resident microbiota, the collection of microorganisms in a particular environment, which matures over time and persists throughout life. These nonsterile surfaces include the skin, mucous membranes, lower gastrointestinal tract, upper respiratory system, and anterior urethra. The community of microorganisms harbored in or on these sites is a highly complex mixture that varies in composition depending on nutrient availability, moisture, temperature, pH, and other environmental conditions. The composition of the normal microbiota can also be affected by host factors such as age, nutrition, and immune status.

Citation: Burd E, Westblade L. 2017. The Bacterial Blood Microbiota/Microbiome, p 277-295. In Dunne, Jr. W, Burnham C (ed), The Dark Art of Blood Cultures. ASM Press, Washington, DC. doi: 10.1128/9781555819811.ch13
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Thin-section transmission electron microscopy image showing rod-shaped and ellipsoid red blood cell-derived microparticles (average diameter, 0.190 to 0.288 µm [ ]) recovered from the supernatant of donor red blood cell storage units. Scanning electron microscopy image of the red blood cell microparticles. Images courtesy of Charles D. Searles, Division of Cardiology, Department of Medicine, Emory University, Atlanta, and section of Cardiology, Atlanta VA Medical Center.

Citation: Burd E, Westblade L. 2017. The Bacterial Blood Microbiota/Microbiome, p 277-295. In Dunne, Jr. W, Burnham C (ed), The Dark Art of Blood Cultures. ASM Press, Washington, DC. doi: 10.1128/9781555819811.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Alzheimer’s disease pathology is characterized by the cerebral cortical accumulation of neurofibrillary tangles (red arrow) that are formed within pyramidal neurons and the development of neuritic plaques (green arrow) with beta-amyloid cores (original magnification, 400×, Bielschowsky stain). Image courtesy of Daniel J. Brat, MD, PhD, Department of Pathology and Laboratory Medicine, Emory University School of Medicine.

Citation: Burd E, Westblade L. 2017. The Bacterial Blood Microbiota/Microbiome, p 277-295. In Dunne, Jr. W, Burnham C (ed), The Dark Art of Blood Cultures. ASM Press, Washington, DC. doi: 10.1128/9781555819811.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207214.
2. Jumpstart Consortium Human Microbiome Project Data Generation Working Group. 2012. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS One 7:e39315. doi:10.1371/journal.pone.0039315.
3. Wylie KM,, Truty RM,, Sharpton TJ,, Mihindukulasuriya KA,, Zhou Y,, Gao H,, Sodergren E,, Weinstock GM,, Pollard KS. 2012. Novel bacterial taxa in the human microbiome. PLoS One 7:e35294. doi:10.1371/journal.pone.0035294.
4. Cho I,, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260270.
5. McDonald D,, Ackermann G,, Khailova L,, Baird C,, Heyland D,, Kozar R,, Lemieux M,, Derenski K,, King J,, Vis-Kampen C,, Knight R,, Wischmeyer PE. 2016. Extreme dysbiosis of the microbiome in critical illness. mSphere. e00199-16. doi:10.1128/mSphere.00199-16.
6. Sartor RB. 2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577594.
7. Turnbaugh PJ,, Hamady M,, Yatsunenko T,, Cantarel BL,, Duncan A,, Ley RE,, Sogin ML,, Jones WJ,, Roe BA,, Affourtit JP,, Egholm M,, Henrissat B,, Heath AC,, Knight R,, Gordon JI. 2009. A core gut microbiome in obese and lean twins. Nature 457:480484.
8. Huffnagle GB. 2010. The microbiota and allergies/asthma. PLoS Pathog 6:e1000549. doi:10.1371/journal.ppat.1000549.
9. Han YW,, Fardini Y,, Chen C,, Iacampo KG,, Peraino VA,, Shamonki JM,, Redline RW. 2010. Term stillbirth caused by oral Fusobacterium nucleatum.Obstet Gynecol 115(Supplement):442445.
10. Ravel J,, Gajer P,, Abdo Z,, Schneider GM,, Koenig SS,, McCulle SL,, Karlebach S,, Gorle R,, Russell J,, Tacket CO,, Brotman RM,, Davis CC,, Ault K,, Peralta L,, Forney LJ. 2011. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA 108(Suppl 1):46804687.
11. Branton WG,, Ellestad KK,, Maingat F,, Wheatley BM,, Rud E,, Warren RL,, Holt RA,, Surette MG,, Power C. 2013. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status. PLoS One 8:e54673. doi:10.1371/journal.pone.0054673.
12. Urbaniak C,, Gloor GB,, Brackstone M,, Scott L,, Tangney M,, Reid G. 2016. The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol 82:50395048.
13. Hilt EE,, McKinley K,, Pearce MM,, Rosenfeld AB,, Zilliox MJ,, Mueller ER,, Brubaker L,, Gai X,, Wolfe AJ,, Schreckenberger PC. 2014. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol 52:871876.
14. Pardo J,, Klinker KP,, Borgert SJ,, Trikha G,, Rand KH,, Ramphal R. 2014. Time to positivity of blood cultures supports antibiotic de-escalation at 48 hours. Ann Pharmacother 48:3340.
15. Durmaz G,, Us T,, Aydinli A,, Kiremitci A,, Kiraz N,, Akgün Y. 2003. Optimum detection times for bacteria and yeast species with the BACTEC 9120 aerobic blood culture system: evaluation for a 5-year period in a Turkish university hospital. J Clin Microbiol 41:819821.
16. Baron EJ,, Scott JD,, Tompkins LS. 2005. Prolonged incubation and extensive subculturing do not increase recovery of clinically significant microorganisms from standard automated blood cultures. Clin Infect Dis 41:16771680.
17. Forward KR. 2006. An evaluation of extended incubation time with blind subculture of blood cultures in patients with suspected endocarditis. Can J Infect Dis Med Microbiol 17:186188.
18. Granfors K,, Merilahti-Palo R,, Luukkainen R,, Möttönen T,, Lahesmaa R,, Probst P,, Märker-Hermann E,, Toivanen P. 1998. Persistence of Yersinia antigens in peripheral blood cells from patients with Yersinia enterocolitica O:3 infection with or without reactive arthritis. Arthritis Rheum 41:855862.
19. Damgaard C,, Magnussen K,, Enevold C,, Nilsson M,, Tolker-Nielsen T,, Holmstrup P,, Nielsen CH. 2015. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations. PLoS One 10:e0120826. doi:10.1371/journal.pone.0120826.
20. Berger SA,, Weitzman S,, Edberg SC,, Casey JI. 1974. Bacteremia after the use of an oral irrigation device. A controlled study in subjects with normal-appearing gingiva: comparison with use of toothbrush. Ann Intern Med 80:510511.
21. Maharaj B,, Coovadia Y,, Vayej AC. 2012. An investigation of the frequency of bacteraemia following dental extraction, tooth brushing and chewing. Cardiovasc J Afr 23:340344.
22. McLaughlin RW,, Vali H,, Lau PC,, Palfree RG,, De Ciccio A,, Sirois M,, Ahmad D,, Villemur R,, Desrosiers M,, Chan EC. 2002. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? J Clin Microbiol 40:47714775.
23. Mitchell AJ,, Gray WD,, Schroeder M,, Yi H,, Taylor JV,, Dillard RS,, Ke Z,, Wright ER,, Stephens D,, Roback JD,, Searles CD. 2016. Pleomorphic structures in human blood are red blood cell-derived microparticles, not bacteria. PLoS One 11:e0163582. doi:10.1371/journal.pone.0163582.
24. Païssé S,, Valle C,, Servant F,, Courtney M,, Burcelin R,, Amar J,, Lelouvier B. 2016. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 56:11381147.
25. Salter SJ,, Cox MJ,, Turek EM,, Calus ST,, Cookson WO,, Moffatt MF,, Turner P,, Parkhill J,, Loman NJ,, Walker AW. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87. doi:10.1186/s12915-014-0087-z.
26. Nikkari S,, McLaughlin IJ,, Bi W,, Dodge DE,, Relman DA. 2001. Does blood of healthy subjects contain bacterial ribosomal DNA? J Clin Microbiol 39:19561959.
27. Potgieter M,, Bester J,, Kell DB,, Pretorius E. 2015. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 39:567591.
28. Kelly CJ,, Colgan SP,, Frank DN. 2012. Of microbes and meals: the health consequences of dietary endotoxemia. Nutr Clin Pract 27:215225.
29. Turnbaugh PJ,, Ley RE,, Mahowald MA,, Magrini V,, Mardis ER,, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:10271031.
30. Prince M,, Comas-Herrera A,, Knapp M,, Guerchet M,, Karagiannidou M. World Alzheimer Report 2016. https://www.alz.co.uk. Accessed December 2016.
31. Alzheimer’s Association. 2016. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459509.
32. Naj AC, , et al, Alzheimer Disease Genetics Consortium. 2014. Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association study. JAMA Neurol 71:13941404.
33. Hu X,, Wang T,, Jin F. 2016. Alzheimer’s disease and gut microbiota. Sci China Life Sci 59:10061023.
34. Suárez-Calvet M,, Kleinberger G,, Araque Caballero ,, Brendel M,, Rominger A,, Alcolea D,, Fortea J,, Lleó A,, Blesa R,, Gispert JD,, Sánchez-Valle R,, Antonell A,, Rami L,, Molinuevo JL,, Brosseron F,, Traschütz A,, Heneka MT,, Struyfs H,, Engelborghs S,, Sleegers K,, Van Broeckhoven C,, Zetterberg H,, Nellgård B,, Blennow K,, Crispin A,, Ewers M,, Haass C. 2016. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8:466476.
35. Lyman M,, Lloyd DG,, Ji X,, Vizcaychipi MP,, Ma D. 2014. Neuroinflammation: the role and consequences. Neurosci Res 79:112.
36. Bester J,, Soma P,, Kell DB,, Pretorius E. 2015. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget 6:3528435303.
37. Li CQ,, Zheng Q,, Wang Q,, Zeng QP. 2016. Biotic/abiotic stress-driven Alzheimer’s disease. Front Cell Neurosci 10:269. doi:10.3389/fncel.2016.00269.
38. Agostini M,, Fasolato C. 2016. When, where and how? Focus on neuronal calcium dysfunctions in Alzheimer’s disease. Cell Calcium 60:289298.
39. Wang P,, Wang Z-Y. 2017. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res Rev 35:265290.
40. Itzhaki RF,, Lathe R,, Balin BJ,, Ball MJ,, Bearer EL,, Braak H,, Bullido MJ,, Carter C,, Clerici M,, Cosby SL,, Del Tredici K,, Field H,, Fulop T,, Grassi C,, Griffin WS,, Haas J,, Hudson AP,, Kamer AR,, Kell DB,, Licastro F,, Letenneur L,, Lövheim H,, Mancuso R,, Miklossy J,, Otth C,, Palamara AT,, Perry G,, Preston C,, Pretorius E,, Strandberg T,, Tabet N,, Taylor-Robinson SD,, Whittum-Hudson JA. 2016. Microbes and Alzheimer’s disease. J Alzheimers Dis 51:979984.
41. Soscia SJ,, Kirby JE,, Washicosky KJ,, Tucker SM,, Ingelsson M,, Hyman B,, Burton MA,, Goldstein LE,, Duong S,, Tanzi RE,, Moir RD. 2010. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5:e9505. doi:10.1371/journal.pone.0009505.
42. Dubaniewicz A,, Kalinowski L,, Dudziak M,, Kalinowska A,, Singh M. 2015. Peroxynitrite in sarcoidosis: relation to Mycobacterium stationary phase. Adv Exp Med Biol 866:4149.
43. Kell DB,, Kenny LC. 2016. A dormant microbial component in the development of preeclampsia. Front Med (Lausanne) 3:60. doi:10.3389/fmed.2016.00060.
44. Bouhnik Y,, Alain S,, Attar A,, Flourié B,, Raskine L,, Sanson-Le Pors MJ,, Rambaud JC. 1999. Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome. Am J Gastroenterol 94:13271331.
45. Poole S,, Singhrao SK,, Kesavalu L,, Curtis MA,, Crean S. 2013. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimers Dis 36:665677.
46. Scannapieco FA,, Cantos A. 2016. Oral inflammation and infection, and chronic medical diseases: implications for the elderly. Periodontol 2000 72:153175.
47. Lockhart PB,, Brennan MT,, Sasser HC,, Fox PC,, Paster BJ,, Bahrani-Mougeot FK. 2008. Bacteremia associated with toothbrushing and dental extraction. Circulation 117:31183125.
48. Lynch SV,, Pedersen O. 2016. The human intestinal microbiome in health and disease. N Engl J Med 375:23692379.
49. Zhang R,, Miller RG,, Gascon R,, Champion S,, Katz J,, Lancero M,, Narvaez A,, Honrada R,, Ruvalcaba D,, McGrath MS. 2009. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 206:121124.
50. Pretorius E,, Mbotwe S,, Bester J,, Robinson CJ,, Kell DB. 2016. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide. J R Soc Interface 13:20160539.
51. Park J,, Min JS,, Kim B,, Chae UB,, Yun JW,, Choi MS,, Kong IK,, Chang KT,, Lee DS. 2015. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett 584:191196.
52. Block ML,, Zecca L,, Hong JS. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:5769.
53. Lee JW,, Lee YK,, Yuk DY,, Choi DY,, Ban SB,, Oh KW,, Hong JT. 2008. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 5:37. doi:10.1186/1742-2094-5-37.
54. Philippens IH,, Ormel PR,, Baarends G,, Johansson M,, Remarque EJ,, Doverskog M. 2017. Acceleration of amyloidosis by inflammation in the amyloid-beta marmoset monkey model of Alzheimer’s disease. J Alzheimers Dis 55:101113.
55. Kumar DK,, Choi SH,, Washicosky KJ,, Eimer WA,, Tucker S,, Ghofrani J,, Lefkowitz A,, McColl G,, Goldstein LE,, Tanzi RE,, Moir RD. 2016. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 8:340ra72. doi:10.1126/scitranslmed.aaf1059.
56. Harach T,, Marungruang N,, Dutilleul N,, Cheatham V,, Mc Coy KD,, Neher JJ,, Jucker M,, Fåk F,, Lasser T,, Bolmont T. 2015. Reduction of Alzheimer’s disease beta-amyloid pathology in the absence of gut microbiota. arXiv:1509.02273v2 [q-bio.MN].
57. Minter MR,, Zhang C,, Leone V,, Ringus DL,, Zhang X,, Oyler-Castrillo P,, Musch MW,, Liao F,, Ward JF,, Holtzman DM,, Chang EB,, Tanzi RE,, Sisodia SS. 2016. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 6:30028. doi:10.1038/srep30028.
58. Lee DC,, Rizer J,, Selenica LB,, Reid P,, Kraft C,, Johnson A,, Blair L,, Gordon MN,, Dickey CA,, Morgan D. 2010. LPS-induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J Neuroinflammation 7:56. doi:10.1186/1742-2094-7-56.
59. Kobayashi N,, Masuda J,, Kudoh J,, Shimizu N,, Yoshida T. 2008. Binding sites on tau proteins as components for antimicrobial peptides. Biocontrol Sci 13:4956.
60. He Q,, Yu W,, Wu J,, Chen C,, Lou Z,, Zhang Q,, Zhao J,, Wang J,, Xiao B. 2013. Intranasal LPS-mediated Parkinson’s model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS One 8:e78418. doi:10.1371/journal.pone.0078418.
61. Chukkapalli SS,, Rivera-Kweh MF,, Velsko IM,, Chen H,, Zheng D,, Bhattacharyya I,, Gangula PR,, Lucas AR,, Kesavalu L. 2015. Chronic oral infection with major periodontal bacteria Tannerella forsythia modulates systemic atherosclerosis risk factors and inflammatory markers. Pathog Dis 73:ftv009. doi:10.1093/femspd/ftv009.
62. Felice VD,, Quigley EM,, Sullivan AM,, O’Keeffe GW,, O’Mahony SM. 2016. Microbiota-gut-brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord 27:18.
63. Miklossy J,, McGeer PL. 2016. Common mechanisms involved in Alzheimer’s disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY) 8:575588.
64. Marietta EV,, Murray JA,, Luckey DH,, Jeraldo PR,, Lamba A,, Patel R,, Luthra HS,, Mangalam A,, Taneja V. 2016. Human gut-derived Prevotella histicola suppresses inflammatory arthritis in humanized mice. Arthritis Rheumatol 68:28782888.
65. Chen J,, Wright K,, Davis JM,, Jeraldo P,, Marietta EV,, Murray J,, Nelson H,, Matteson EL,, Taneja V. 2016. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8:43. doi:10.1186/s13073-016-0299-7.
66. Colpitts SL,, Kasper LH. 2017. Influence of the gut microbiome on autoimmunity in the central nervous system. J Immunol 198:596604.
67. Kell DB,, Pretorius E. 2015. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol 7:13391377.
68. Brecher ME,, Hay SN. 2005. Bacterial contamination of blood components. Clin Microbiol Rev 18:195204.
69. Bihl F,, Castelli D,, Marincola F,, Dodd RY,, Brander C. 2007. Transfusion-transmitted infections. J Transl Med 5:25. doi:10.1186/1479-5876-5-25.
70. Hillyer CD,, Josephson CD,, Blajchman MA,, Vostal JG,, Epstein JS,, Goodman JL. 2003. Bacterial contamination of blood components: risks, strategies, and regulation: joint ASH and AABB educational session in transfusion medicine. Hematology (Am Soc Hematol Educ Program) 2003:575589.
71. Savory J,, Huang Y,, Wills MR,, Herman MM. 1998. Reversal by desferrioxamine of tau protein aggregates following two days of treatment in aluminum-induced neurofibrillary degeneration in rabbit: implications for clinical trials in Alzheimer’s disease. Neurotoxicology 19:209214.
72. Cherny RA,, Atwood CS,, Xilinas ME,, Gray DN,, Jones WD,, McLean CA,, Barnham KJ,, Volitakis I,, Fraser FW,, Kim Y,, Huang X,, Goldstein LE,, Moir RD,, Lim JT,, Beyreuther K,, Zheng H,, Tanzi RE,, Masters CL,, Bush AI. 2001. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665676.
73. Opazo C,, Barría MI,, Ruiz FH,, Inestrosa NC. 2003. Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16:9198.
74. Ibach B,, Haen E,, Marienhagen J,, Hajak G. 2005. Clioquinol treatment in familiar early onset of Alzheimer’s disease: a case report. Pharmacopsychiatry 38:178179.
75. Adlard PA,, Cherny RA,, Finkelstein DI,, Gautier E,, Robb E,, Cortes M,, Volitakis I,, Liu X,, Smith JP,, Perez K,, Laughton K,, Li QX,, Charman SA,, Nicolazzo JA,, Wilkins S,, Deleva K,, Lynch T,, Kok G,, Ritchie CW,, Tanzi RE,, Cappai R,, Masters CL,, Barnham KJ,, Bush AI. 2008. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 59:4355.
76. Squitti R. 2012. Metals in Alzheimer’s disease: a systemic perspective. Front Biosci (Landmark Ed) 17:451472.
77. Robert A,, Liu Y,, Nguyen M,, Meunier B. 2015. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer’s disease. Acc Chem Res 48:13321339.
78. Deardorff WJ,, Grossberg GT. 2017. Targeting neuroinflammation in Alzheimer’s disease: evidence for NSAIDs and novel therapeutics. Expert Rev Neurother 17:1732.
79. El-Shimy IA,, Heikal OA,, Hamdi N. 2015. Minocycline attenuates Aβ oligomers-induced pro-inflammatory phenotype in primary microglia while enhancing Aβ fibrils phagocytosis. Neurosci Lett 609:3641.
80. Budni J,, Garcez ML,, de Medeiros J,, Cassaro E,, Bellettini-Santos T,, Mina F,, Quevedo J. 2016. The anti-inflammatory role of minocycline in Alzheimer’s disease. Curr Alzheimer Res 13:13191329.
81. Winek K,, Dirnagl U,, Meisel A. 2016. The gut microbiome as therapeutic target in central nervous system diseases: implications for stroke. Neurotherapeutics 13:762774.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error