1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-Negatives: the Paradigm

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    137.27 Kb
  • PDF
    788.00 Kb
  • HTML
    143.89 Kb
  • Authors: Maria S. Ramirez1, German M. Traglia3, David L. Lin4, Tung Tran5, Marcelo E. Tolmasky6
  • Editors: Marcelo Tolmasky7, Juan Carlos Alonso8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA; 2: Institute of Microbiology and Medical Parasitology, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina; 3: Institute of Microbiology and Medical Parasitology, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina; 4: Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA; 5: Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA; 6: Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA; 7: California State University, Fullerton, CA; 8: Centro Nacional de Biotecnología, Cantoblanco, Madrid, Spain
  • Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0016-2013
  • Received 03 January 2014 Accepted 10 January 2014 Published 24 October 2014
  • Marcelo E. Tolmasky, mtolmasky@fullerton.edu
image of Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-Negatives: the <span class="jp-italic">Klebsiella pneumoniae</span> Paradigm
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-Negatives: the Paradigm, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/PLAS-0016-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/5/PLAS-0016-2013-2.gif
  • Abstract:

    Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits, resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about the physiology of plasmids and their role in virulence and antibiotic resistance from the Gram-negative opportunistic pathogen . This bacterium has acquired multidrug resistance and is the causative agent of serious community- and hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most U.S. hospital infections.

  • Citation: Ramirez M, Traglia G, Lin D, Tran T, Tolmasky M. 2014. Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-Negatives: the Paradigm. Microbiol Spectrum 2(5):PLAS-0016-2013. doi:10.1128/microbiolspec.PLAS-0016-2013.

Key Concept Ranking

Type IV Secretion Systems
0.43266612
0.43266612

References

1. Cohen SN. 1993. Bacterial plasmids: their extraordinary contribution to molecular genetics. Gene 135:67–76. [PubMed][CrossRef]
2. Lederberg J, Tatum EL. 1946. Gene recombination in Escherichia coli. Nature 158:558. [PubMed][CrossRef]
3. Tatum EL, Lederberg J. 1947. Gene recombination in the bacterium Escherichia coli. J Bacteriol 53:673–684. [PubMed]
4. Datta N. 1985. Plasmids as organisms, p 3–16. In Helinski D, Cohen S, Clewell D, Jackson D, Hollaender A (ed), Plasmids in Bacteria, vol. 30. Plenum Press, New York, NY. [PubMed][CrossRef]
5. Watanabe T, Fukasawa T. 1961. Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J Bacteriol 81:669–678. [PubMed]
6. Watanabe T. 1963. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 27:87–115. [PubMed]
7. Hammerl JA, Freytag B, Lanka E, Appel B, Hertwig S. 2012. The pYV virulence plasmids of Yersinia pseudotuberculosis and Y. pestis contain a conserved DNA region responsible for the mobilization by the self-transmissible plasmid pYE854. Environ Microbiol Rep 4:433–438. [PubMed][CrossRef]
8. Stephens C, Murray W. 2001. Pathogen evolution: how good bacteria go bad. Curr Biol 11:R53–R56. [PubMed][CrossRef]
9. Elwell LP, Shipley PL. 1980. Plasmid-mediated factors associated with virulence of bacteria to animals. Annu Rev Microbiol 34:465–496. [PubMed][CrossRef]
10. Guiney DG, Fang FC, Krause M, Libby S. 1994. Plasmid-mediated virulence genes in non-typhoid Salmonella serovars. FEMS Microbiol Lett 124:1–9. [PubMed][CrossRef]
11. Johnson TJ, Nolan LK. 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 73:750–774. [PubMed][CrossRef]
12. Tolmasky ME, Crosa JH. 1991. Regulation of plasmid-mediated iron transport and virulence in Vibrio anguillarum. Biol Met 4:33–35. [PubMed][CrossRef]
13. Actis LA, Tolmasky ME, Crosa JH. 2011. Vibriosis, p 570–605. In Woo PT, Bruno DW (ed), Fish Diseases and Disorders, vol. 3, Viral, Bacterial and Fungal Infections. Cab International Publishing, Wallingford, UK.
14. Shannon JG, Hasenkrug AM, Dorward DW, Nair V, Carmody AB, Hinnebusch BJ. 2013. Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague. MBio 4:e00170–13. [PubMed][CrossRef]
15. Matsui H, Bacot CM, Garlington WA, Doyle TJ, Roberts S, Gulig PA. 2001. Virulence plasmid-borne spvB and spvC genes can replace the 90-kilobase plasmid in conferring virulence to Salmonella enterica serovar Typhimurium in subcutaneously inoculated mice. J Bacteriol 183:4652–4658. [PubMed][CrossRef]
16. Fabrega A, Vila J. 2013. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26:308–341. [PubMed][CrossRef]
17. Waters VL, Crosa JH. 1991. Colicin V virulence plasmids. Microbiol Rev 55:437–450. [PubMed]
18. Drancourt M. 2012. Plague in the genomic area. Clin Microbiol Infect 18:224–230. [PubMed][CrossRef]
19. Wajima T, Sabui S, Kano S, Ramamurthy T, Chatterjee NS, Hamabata T. 2013. Entire sequence of the colonization factor coli surface antigen 6-encoding plasmid pCss165 from an enterotoxigenic Escherichia coli clinical isolate. Plasmid 70:343–352. [PubMed][CrossRef]
20. Crosa JH, Actis LA, Mitoma Y, Perez-Casal J, Tolmasky ME, Valvano M. 1985. Plasmid-mediated iron sequestering systems in pathogenic strains of Vibrio anguillarum and Escherichia coli, p 759–774. In Helinski D, Cohen S, Clewell D, Jackson D, Hollaender A (ed), Plasmids in Bacteria. Plenum Press, New York, NY. [PubMed][CrossRef]
21. Infectious Diseases Society of America. 2010. The 10 x '20 Initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50:1081–1083. [PubMed][CrossRef]
22. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J, Jr, Infectious Diseases Society of America. 2008. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164. [PubMed][CrossRef]
23. Shlaes DM, Sahm D, Opiela C, Spellberg B. 2013. The FDA reboot of antibiotic development. Antimicrob Agents Chemother 57:4605–4607. [PubMed][CrossRef]
24. Spellberg B, Bartlett JG, Gilbert DN. 2013. The future of antibiotics and resistance. N Engl J Med 368:299–302. [PubMed][CrossRef]
25. Boucher HW, Talbot GH, Benjamin DK, Jr, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, Infectious Diseases Society of America. 2013. 10 x '20 progress: development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56:1685–1694. [PubMed][CrossRef]
26. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12. [PubMed][CrossRef]
27. Rice LB. 2010. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol 31(Suppl 1):S7–S10. [PubMed][CrossRef]
28. Kuehn BM. 2013. “Nightmare” bacteria on the rise in US hospitals, long-term care facilities. JAMA 309:1573–1574. [PubMed][CrossRef]
29. Rice LB. 2009. The clinical consequences of antimicrobial resistance. Curr Opin Microbiol 12:476–481. [PubMed][CrossRef]
30. Perez F, Endimiani A, Hujer KM, Bonomo RA. 2007. The continuing challenge of ESBLs. Curr Opin Pharmacol 7:459–469. [PubMed][CrossRef]
31. Coque TM, Oliver A, Perez-Diaz JC, Baquero F, Canton R. 2002. Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum beta-lactamases are carried by multiple Klebsiella pneumoniae clones in a single hospital (Madrid, 1989 to 2000). Antimicrob Agents Chemother 46:500–510. [PubMed][CrossRef]
32. Daza R, Gutierrez J, Piedrola G. 2001. Antibiotic susceptibility of bacterial strains isolated from patients with community-acquired urinary tract infections. Int J Antimicrob Agents 18:211–215. [PubMed][CrossRef]
33. Liam CK, Lim KH, Wong CM. 2001. Community-acquired pneumonia in patients requiring hospitalization. Respirology 6:259–264. [PubMed][CrossRef]
34. Nordmann P, Cuzon G, Naas T. 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236. [PubMed][CrossRef]
35. Poulou A, Voulgari E, Vrioni G, Koumaki V, Xidopoulos G, Chatzipantazi V, Markou F, Tsakris A. 2013. Outbreak caused by an ertapenem-resistant, CTX-M-15-producing Klebsiella pneumoniae ST101 clone carrying an OmpK36 porin variant. J Clin Microbiol 51:3176–3182 [PubMed][CrossRef]
36. Ramirez MS, Xie G, Marshall SH, Hujer KM, Chain PS, Bonomo RA, Tolmasky ME. 2012. Multidrug-resistant (MDR) Klebsiella pneumoniae clinical isolates: a zone of high heterogeneity (HHZ) as a tool for epidemiological studies. Clin Microbiol Infect 18:E254–E258. [PubMed][CrossRef]
37. Tolmasky ME, Chamorro RM, Crosa JH, Marini PM. 1988. Transposon-mediated amikacin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 32:1416–1420. [PubMed][CrossRef]
38. Woloj M, Tolmasky ME, Roberts MC, Crosa JH. 1986. Plasmid-encoded amikacin resistance in multiresistant strains of Klebsiella pneumoniae isolated from neonates with meningitis. Antimicrob Agents Chemother 29:315–319. [PubMed][CrossRef]
39. Hsueh PR, Wu JJ, Teng LJ, Chen YC, Yang PC, Ho SW, Luh KT. 2002. Primary liver abscess caused by one clone of Klebsiella pneumoniae with two colonial morphotypes and resistotypes. Emerg Infect Dis 8:100–102. [CrossRef]
40. Siu LK, Yeh KM, Lin JC, Fung CP, Chang FY. 2012. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis 12:881–887. [CrossRef]
41. Suzuki K, Nakamura A, Enokiya T, Iwashita Y, Tomatsu E, Muraki Y, Kaneko T, Okuda M, Katayama N, Imai H. 2013. Septic arthritis subsequent to urosepsis caused by hypermucoviscous Klebsiella pneumoniae. Intern Med 52:1641–1645. [PubMed][CrossRef]
42. Huang HY, Wu YH, Kuo CF. 2013. Klebsiella pneumoniae sepsis with unusual cutaneous presentation of generalized pustulosis. Clin Exp Dermatol 38:626–629. [PubMed][CrossRef]
43. Rashid T, Wilson C, Ebringer A. 2013. The link between ankylosing spondylitis, Crohn's disease, Klebsiella, and starch consumption. Clin Dev Immunol 2013:872632. [PubMed][CrossRef]
44. Ebringer A, Rashid T, Tiwana H, Wilson C. 2007. A possible link between Crohn's disease and ankylosing spondylitis via Klebsiella infections. Clin Rheumatol 26:289–297. [PubMed][CrossRef]
45. Rashid T, Ebringer A. 2007. Ankylosing spondylitis is linked to Klebsiella: the evidence. Clin Rheumatol 26:858–864. [PubMed][CrossRef]
46. Patel G, Bonomo RA. 2013. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol 4:48. [PubMed][CrossRef]
47. Pendleton JN, Gorman SP, Gilmore BF. 2013. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11:297–308. [PubMed][CrossRef]
48. Liu P, Li P, Jiang X, Bi D, Xie Y, Tai C, Deng Z, Rajakumar K, Ou HY. 2012. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a multidrug-resistant strain isolated from human sputum. J Bacteriol 194:1841–1842. [PubMed][CrossRef]
49. Tolmasky ME, Actis LA, Crosa JH. 2010. Plasmid DNA replication, p 3931–3953. In Flickinger M (ed), Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, vol. 6. John Wiley and Sons, New York, NY. [CrossRef]
50. Actis LA, Tolmasky ME, Crosa JH. 1999. Bacterial plasmids: replication of extrachromosomal genetic elements encoding resistance to antimicrobial compounds. Front Biosci 4:D43–D62. [PubMed][CrossRef]
51. Polisky B. 1988. ColE1 replication control circuitry: sense from antisense. Cell 55:929–932. [PubMed][CrossRef]
52. Allen JM, Simcha DM, Ericson NG, Alexander DL, Marquette JT, Van Biber BP, Troll CJ, Karchin R, Bielas JH, Loeb LA, Camps M. 2011. Roles of DNA polymerase I in leading and lagging-strand replication defined by a high-resolution mutation footprint of ColE1 plasmid replication. Nucleic Acids Res 39:7020–7033. [PubMed][CrossRef]
53. Eguchi Y, Tomizawa J. 1991. Complexes formed by complementary RNA stem-loops. Their formations, structures and interaction with ColE1 Rom protein. J Mol Biol 220:831–842. [PubMed][CrossRef]
54. Zakharova MV, Beletskaya IV, Denjmukhametov MM, Yurkova TV, Semenova LM, Shlyapnikov MG, Solonin AS. 2002. Characterization of pECL18 and pKPN2: a proposed pathway for the evolution of two plasmids that carry identical genes for a type II restriction-modification system. Mol Genet Genomics 267:171–178. [PubMed][CrossRef]
55. Riley MA, Pinou T, Wertz JE, Tan Y, Valletta CM. 2001. Molecular characterization of the klebicin B plasmid of Klebsiella pneumoniae. Plasmid 45:209–221. [PubMed][CrossRef]
56. Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EP, de la Cruz F. 2010. Mobility of plasmids. Microbiol Mol Biol Rev 74:434–452. [PubMed][CrossRef]
57. Tolmasky ME, Roberts M, Woloj M, Crosa JH. 1986. Molecular cloning of amikacin resistance determinants from a Klebsiella pneumoniae plasmid. Antimicrob Agents Chemother 30:315–320. [PubMed][CrossRef]
58. Tolmasky ME, Crosa JH. 1987. Tn1331, a novel multiresistance transposon encoding resistance to amikacin and ampicillin in Klebsiella pneumoniae. Antimicrob Agents Chemother 31:1955–1960. [PubMed][CrossRef]
59. Tolmasky ME. 1990. Sequencing and expression of aadA, bla, and tnpR from the multiresistance transposon Tn1331. Plasmid 24:218–226. [PubMed][CrossRef]
60. Tolmasky ME, Crosa JH. 1993. Genetic organization of antibiotic resistance genes (aac(6′)-Ib, aadA, and oxa9) in the multiresistance transposon Tn1331. Plasmid 29:31–40. [PubMed][CrossRef]
61. Sarno R, McGillivary G, Sherratt DJ, Actis LA, Tolmasky ME. 2002. Complete nucleotide sequence of Klebsiella pneumoniae multiresistance plasmid pJHCMW1. Antimicrob Agents Chemother 46:3422–3427. [PubMed][CrossRef]
62. Dery KJ, Chavideh R, Waters V, Chamorro R, Tolmasky LS, Tolmasky ME. 1997. Characterization of the replication and mobilization regions of the multiresistance Klebsiella pneumoniae plasmid pJHCMW1. Plasmid 38:97–105. [PubMed][CrossRef]
63. Tolmasky ME, Colloms S, Blakely G, Sherratt DJ. 2000. Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system. Microbiology 146:581–589. [PubMed]
64. Pham H, Dery KJ, Sherratt DJ, Tolmasky ME. 2002. Osmoregulation of dimer resolution at the plasmid pJHCMW1 mwr locus by Escherichia coli XerCD recombination. J Bacteriol 184:1607–1616. [PubMed][CrossRef]
65. Bui D, Ramiscal J, Trigueros S, Newmark JS, Do A, Sherratt DJ, Tolmasky ME. 2006. Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes. J Bacteriol 188:2812–2820. [PubMed][CrossRef]
66. Trigueros S, Tran T, Sorto N, Newmark J, Colloms SD, Sherratt DJ, Tolmasky ME. 2009. mwr Xer site-specific recombination is hypersensitive to DNA supercoiling. Nucleic Acids Res 37:3580–3587. [PubMed][CrossRef]
67. Ramirez MS, Parenteau TR, Centron D, Tolmasky ME. 2008. Functional characterization of Tn1331 gene cassettes. J Antimicrob Chemother 62:669–673. [PubMed][CrossRef]
68. Ramirez MS, Tolmasky ME. 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171. [PubMed][CrossRef]
69. Ramirez MS, Nikolaidis N, Tolmasky ME. 2013. Rise and dissemination of aminoglycoside resistance: the aac(6′)-Ib paradigm. Front Microbiol 4:121. [PubMed][CrossRef]
70. Alavi MR, Antonic V, Ravizee A, Weina PJ, Izadjoo M, Stojadinovic A. 2011. An Enterobacter plasmid as a new genetic background for the transposon Tn1331. Infect Drug Resist 4:209–213. [PubMed][CrossRef]
71. Chen L, Chavda KD, Al Laham N, Melano RG, Jacobs MR, Bonomo RA, Kreiswirth BN. 2013. Complete nucleotide sequence of a blaKPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob Agents Chemother 57:5019–5025. [PubMed][CrossRef]
72. Garcia DC, Woloj M, Kaufman S, Sordelli DO, Pineiro S. 1995. Sequences related to Tn1331 associated with multiple antimicrobial resistance in different Salmonella serovars. Int J Antimicrob Agents 5:199–202. [PubMed][CrossRef]
73. Garcia DC, Catalano M, Pineiro S, Woloj M, Kaufman S, Sordelli DO. 1996. The emergence of resistance to amikacin in Serratia marcescens isolates from patients with nosocomial infection. Int J Antimicrob Agents 7:203–210. [PubMed][CrossRef]
74. Gootz TD, Lescoe MK, Dib-Hajj F, Dougherty BA, He W, Della-Latta P, Huard RC. 2009. Genetic organization of transposase regions surrounding blaKPC carbapenemase genes on plasmids from Klebsiella strains isolated in a New York City hospital. Antimicrob Agents Chemother 53:1998–2004. [PubMed][CrossRef]
75. Poirel L, Cabanne L, Collet L, Nordmann P. 2006. Class II transposon-borne structure harboring metallo-beta-lactamase gene blaVIM-2 in Pseudomonas putida. Antimicrob Agents Chemother 50:2889–2891. [PubMed][CrossRef]
76. Rice LB, Carias LL, Hutton RA, Rudin SD, Endimiani A, Bonomo RA. 2008. The KQ element, a complex genetic region conferring transferable resistance to carbapenems, aminoglycosides, and fluoroquinolones in Klebsiella pneumoniae. Antimicrob Agents Chemother 52:3427–3429. [PubMed][CrossRef]
77. Villa L, Poirel L, Nordmann P, Carta C, Carattoli A. 2012. Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrB1 genes. J Antimicrob Chemother 67:1645–1650. [PubMed][CrossRef]
78. Warburg G, Hidalgo-Grass C, Partridge SR, Tolmasky ME, Temper V, Moses AE, Block C, Strahilevitz J. 2012. A carbapenem-resistant Klebsiella pneumoniae epidemic clone in Jerusalem: sequence type 512 carrying a plasmid encoding aac(6′)-Ib. J Antimicrob Chemother 67:898–901. [PubMed][CrossRef]
79. Reyes-Lamothe R, Tran T, Meas D, Lee L, Li AM, Sherratt DJ, Tolmasky ME. 2014. High-copy bacterial plasmids diffuse in the nucleoid-free space, replicate stochastically and are randomly partitioned at cell division. Nucleic Acids Res 42:1042–1051. [PubMed][CrossRef]
80. Pasquali F, Kehrenberg C, Manfreda G, Schwarz S. 2005. Physical linkage of Tn3 and part of Tn1721 in a tetracycline and ampicillin resistance plasmid from Salmonella Typhimurium. J Antimicrob Chemother 55:562–565. [PubMed][CrossRef]
81. Tran T, Sherratt DJ, Tolmasky ME. 2010. fpr, a deficient Xer recombination site from a Salmonella plasmid, fails to confer stability by dimer resolution: comparative studies with the pJHCMW1 mwr site. J Bacteriol 192:883–887. [PubMed][CrossRef]
82. Garcia-Fernandez A, Villa L, Carta C, Venditti C, Giordano A, Venditti M, Mancini C, Carattoli A. 2012. Klebsiella pneumoniae ST258 producing KPC-3 identified in Italy carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrob Agents Chemother 56:2143–2145. [PubMed][CrossRef]
83. Das B, Martinez E, Midonet C, Barre FX. 2013. Integrative mobile elements exploiting Xer recombination. Trends Microbiol 21:23–30. [PubMed][CrossRef]
84. Summers DK, Sherratt DJ. 1984. Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36:1097–1103. [PubMed][CrossRef]
85. Colloms SD, Sykora P, Szatmari G, Sherratt DJ. 1990. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol 172:6973–6980. [PubMed]
86. Cornet F, Mortier I, Patte J, Louarn JM. 1994. Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif. J Bacteriol 176:3188–3195. [PubMed]
87. Summers D. 1998. Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol Microbiol 29:1137–1145. [PubMed][CrossRef]
88. Tran T, Andres P, Petroni A, Soler-Bistue A, Albornoz E, Zorreguieta A, Reyes-Lamothe R, Sherratt DJ, Corso A, Tolmasky ME. 2012. Small plasmids harboring qnrB19: a model for plasmid evolution mediated by site-specific recombination at oriT and Xer sites. Antimicrob Agents Chemother 56:1821–1827. [PubMed][CrossRef]
89. Val ME, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, Barre FX. 2005. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell 19:559–566. [PubMed][CrossRef]
90. Grosso F, Quinteira S, Poirel L, Novais A, Peixe L. 2012. Role of common blaOXA-24/OXA-40-carrying platforms and plasmids in the spread of OXA-24/OXA-40 among Acinetobacter species clinical isolates. Antimicrob Agents Chemother 56:3969–3972. [PubMed][CrossRef]
91. Blakely GW, Sherratt DJ. 1994. Interactions of the site-specific recombinases XerC and XerD with the recombination site dif. Nucleic Acids Res 22:5613–5620. [PubMed][CrossRef]
92. Hayes F, Sherratt DJ. 1997. Recombinase binding specificity at the chromosome dimer resolution site dif of Escherichia coli. J Mol Biol 266:525–537. [PubMed][CrossRef]
93. D'Andrea MM, Giani T, D'Arezzo S, Capone A, Petrosillo N, Visca P, Luzzaro F, Rossolini GM. 2009. Characterization of pABVA01, a plasmid encoding the OXA-24 carbapenemase from Italian isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 53:3528–3533. [PubMed][CrossRef]
94. Merino M, Acosta J, Poza M, Sanz F, Beceiro A, Chaves F, Bou G. 2010. OXA-24 carbapenemase gene flanked by XerC/XerD-like recombination sites in different plasmids from different Acinetobacter species isolated during a nosocomial outbreak. Antimicrob Agents Chemother 54:2724–2727. [PubMed][CrossRef]
95. Povilonis J, Seputiene V, Krasauskas R, Juskaite R, Miskinyte M, Suziedelis K, Suziedeliene E. 2013. Spread of carbapenem-resistant Acinetobacter baumannii carrying a plasmid with two genes encoding OXA-72 carbapenemase in Lithuanian hospitals. J Antimicrob Chemother 68:1000–1006. [PubMed][CrossRef]
96. Montealegre MC, Maya JJ, Correa A, Espinal P, Mojica MF, Ruiz SJ, Rosso F, Vila J, Quinn JP, Villegas MV. 2012. First identification of OXA-72 carbapenemase from Acinetobacter pittii in Colombia. Antimicrob Agents Chemother 56:3996–3998. [PubMed][CrossRef]
97. Francia MV, Varsaki A, Garcillan-Barcia MP, Latorre A, Drainas C, de la Cruz F. 2004. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 28:79–100. [PubMed][CrossRef]
98. Cao V, Lambert T, Courvalin P. 2002. ColE1-like plasmid pIP843 of Klebsiella pneumoniae encoding extended-spectrum beta-lactamase CTX-M-17. Antimicrob Agents Chemother 46:1212–1217. [PubMed][CrossRef]
99. Le TM, Baker S, Le TP, Le TP, Cao TT, Tran TT, Nguyen VM, Campbell JI, Lam MY, Nguyen TH, Nguyen VV, Farrar J, Schultsz C. 2009. High prevalence of plasmid-mediated quinolone resistance determinants in commensal members of the Enterobacteriaceae in Ho Chi Minh City, Vietnam. J Med Microbiol 58:1585–1592. [PubMed][CrossRef]
100. Nordmann P, Naas T, Poirel L. 2011. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798. [PubMed][CrossRef]
101. Nassif X, Sansonetti PJ. 1986. Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect Immun 54:603–608. [PubMed]
102. Nassif X, Honore N, Vasselon T, Cole ST, Sansonetti PJ. 1989. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol Microbiol 3:1349–1359. [PubMed][CrossRef]
103. Nassif X, Fournier JM, Arondel J, Sansonetti PJ. 1989. Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun 57:546–552. [PubMed]
104. Wacharotayankun R, Arakawa Y, Ohta M, Tanaka K, Akashi T, Mori M, Kato N. 1993. Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtrC and FixJ. Infect Immun 61:3164–3174. [PubMed]
105. Perry RD, Fetherston JD. 2011. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect 13:808–817. [PubMed][CrossRef]
106. Zimbler DL, Penwell WF, Gaddy JA, Menke SM, Tomaras AP, Connerly PL, Actis LA. 2009. Iron acquisition functions expressed by the human pathogen Acinetobacter baumannii. Biometals 22:23–32. [PubMed][CrossRef]
107. Crosa JH. 1997. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336. [PubMed]
108. Chen Q, Wertheimer AM, Tolmasky ME, Crosa JH. 1996. The AngR protein and the siderophore anguibactin positively regulate the expression of iron-transport genes in Vibrio anguillarum. Mol Microbiol 22:127–134. [PubMed][CrossRef]
109. Darfeuille-Michaud A, Jallat C, Aubel D, Sirot D, Rich C, Sirot J, Joly B. 1992. R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infect Immun 60:44–55. [PubMed]
110. Yu VL, Hansen DS, Ko WC, Sagnimeni A, Klugman KP, von Gottberg A, Goossens H, Wagener MM, Benedi VJ, International Klebseilla Study Group. 2007. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis 13:986–993. [PubMed][CrossRef]
111. Vernet V, Madoulet C, Chippaux C, Philippon A. 1992. Incidence of two virulence factors (aerobactin and mucoid phenotype) among 190 clinical isolates of Klebsiella pneumoniae producing extended-spectrum beta-lactamase. FEMS Microbiol Lett 75:1–5. [PubMed]
112. Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. 2004. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337:189–198. [PubMed][CrossRef]
113. Sorsa LJ, Dufke S, Heesemann J, Schubert S. 2003. Characterization of an iroBCDEN gene cluster on a transmissible plasmid of uropathogenic Escherichia coli: evidence for horizontal transfer of a chromosomal virulence factor. Infect Immun 71:3285–3293. [PubMed][CrossRef]
114. Braun V, Mahren S, Ogierman M. 2003. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr Opin Microbiol 6:173–180. [CrossRef]
115. Mahren S, Schnell H, Braun V. 2005. Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens. Arch Microbiol 184:175–186. [PubMed][CrossRef]
116. Wu KM, Li LH, Yan JJ, Tsao N, Liao TL, Tsai HC, Fung CP, Chen HJ, Liu YM, Wang JT, Fang CT, Chang SC, Shu HY, Liu TT, Chen YT, Shiau YR, Lauderdale TL, Su IJ, Kirby R, Tsai SF. 2009. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol 191:4492–4501. [PubMed][CrossRef]
117. Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, Kim YR, Lee J, Yang KS. 2012. Complete genome sequence of the 2,3-butanediol-producing Klebsiella pneumoniae strain KCTC 2242. J Bacteriol 194:2736–2737. [PubMed][CrossRef]
118. Dolejska M, Villa L, Dobiasova H, Fortini D, Feudi C, Carattoli A. 2013. Plasmid content of a clinically relevant Klebsiella pneumoniae clone from the Czech Republic producing CTX-M-15 and QnrB1. Antimicrob Agents Chemother 57:1073–1076. [PubMed][CrossRef]
119. Taylor DE, Rooker M, Keelan M, Ng LK, Martin I, Perna NT, Burland NT, Blattner FR. 2002. Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic Escherichia coli O157:H7 isolates. J Bacteriol 184:4690–4698. [PubMed][CrossRef]
120. Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D. 2001. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658. [PubMed][CrossRef]
121. Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA. 1995. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166. [PubMed][CrossRef]
122. Gupta A, Matsui K, Lo JF, Silver S. 1999. Molecular basis for resistance to silver cations in Salmonella. Nat Med 5:183–188. [PubMed][CrossRef]
123. Huang TW, Chen TL, Chen YT, Lauderdale TL, Liao TL, Lee YT, Chen CP, Liu YM, Lin AC, Chang YH, Wu KM, Kirby R, Lai JF, Tan MC, Siu LK, Chang CM, Fung CP, Tsai SF. 2013. Copy number change of the NDM-1 sequence in a multidrug-resistant Klebsiella pneumoniae clinical isolate. PLoS One 8:e62774. [PubMed][CrossRef]
124. Sandegren L, Linkevicius M, Lytsy B, Melhus A, Andersson DI. 2012. Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. J Antimicrob Chemother 67:74–83. [PubMed][CrossRef]
125. Bojer MS, Struve C, Ingmer H, Hansen DS, Krogfelt KA. 2010. Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nosocomial persistence of Klebsiella pneumoniae. PLoS One 5:e15467. [PubMed][CrossRef]
126. Bojer MS, Hammerum AM, Jorgensen SL, Hansen F, Olsen SS, Krogfelt KA, Struve C. 2012. Concurrent emergence of multidrug resistance and heat resistance by CTX-M-15-encoding conjugative plasmids in Klebsiella pneumoniae. APMIS 120:699–705. [PubMed][CrossRef]
127. Guglielmini J, de la Cruz F, Rocha EP. 2013. Evolution of conjugation and type IV secretion systems. Mol Biol Evol 30:315–331. [PubMed][CrossRef]
128. Soler Bistue AJ, Birshan D, Tomaras AP, Dandekar M, Tran T, Newmark J, Bui D, Gupta N, Hernandez K, Sarno R, Zorreguieta A, Actis LA, Tolmasky ME. 2008. Klebsiella pneumoniae multiresistance plasmid pMET1: similarity with the Yersinia pestis plasmid pCRY and integrative conjugative elements. PLoS One 3:e1800. [PubMed]
129. Song Y, Tong Z, Wang J, Wang L, Guo Z, Han Y, Zhang J, Pei D, Zhou D, Qin H, Pang X, Han Y, Zhai J, Li M, Cui B, Qi Z, Jin L, Dai R, Chen F, Li S, Ye C, Du Z, Lin W, Wang J, Yu J, Yang H, Wang J, Huang P, Yang R. 2004. Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res 11:179–197. [PubMed][CrossRef]
130. Stephan R, Lehner A, Tischler P, Rattei T. 2011. Complete genome sequence of Cronobacter turicensis LMG 23827, a food-borne pathogen causing deaths in neonates. J Bacteriol 193:309–310. [PubMed][CrossRef]
131. Schubert S, Dufke S, Sorsa J, Heesemann J. 2004. A novel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity island. Mol Microbiol 51:837–848. [PubMed][CrossRef]
132. Carattoli A. 2013. Plasmids and the spread of resistance. Int J Med Microbiol 303:298–304. [PubMed][CrossRef]
133. Schultsz C, Geerlings S. 2012. Plasmid-mediated resistance in Enterobacteriaceae: changing landscape and implications for therapy. Drugs 72:1–16. [PubMed][CrossRef]
134. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796. [PubMed][CrossRef]
135. Nordmann P, Poirel L, Walsh TR, Livermore DM. 2011. The emerging NDM carbapenemases. Trends Microbiol 19:588–595. [PubMed][CrossRef]
136. Chen L, Chavda KD, Melano RG, Hong T, Rojtman AD, Jacobs MR, Bonomo RA, Kreiswirth BN. 2014. Molecular survey of the dissemination of two blaKPC-harboring IncFIA plasmids in New Jersey and New York hospitals. Antimicrob Agents Chemother 58:2289–2294. [PubMed][CrossRef]
137. Chen L, Chavda KD, Melano RG, Jacobs MR, Koll B, Hong T, Rojtman AD, Levi MH, Bonomo RA, Kreiswirth BN. 2014. Comparative genomic analysis of KPC-encoding pKpQIL-like plasmids and their distribution in New Jersey and New York Hospitals. Antimicrob Agents Chemother 58:2871–2877. [PubMed][CrossRef]
138. Deleo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD, Porter AR, Chavda KD, Jacobs MR, Mathema B, Olsen RJ, Bonomo RA, Musser JM, Kreiswirth BN. 2014. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci USA 111:4988–4993. [PubMed][CrossRef]
139. Giakkoupi P, Papagiannitsis CC, Miriagou V, Pappa O, Polemis M, Tryfinopoulou K, Tzouvelekis LS, Vatopoulos AC. 2011. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009-10). J Antimicrob Chemother 66:1510–1513. [PubMed][CrossRef]
140. Johnson AP, Woodford N. 2013. Global spread of antibiotic resistance: the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 62:499–513. [PubMed][CrossRef]
141. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, NISC Comparative Sequencing Program Group, Henderson DK, Palmore TN, Segre JA. 2012. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4:148ra116.
142. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. 2009. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054. [PubMed][CrossRef]
143. Nordmann P, Poirel L, Toleman MA, Walsh TR. 2011. Does broad-spectrum beta-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J Antimicrob Chemother 66:689–692. [PubMed][CrossRef]
144. Tolmasky ME. 2007. Overview of dissemination mechanisms of genes coding for resistance to antibiotics, p 267–270. In Bonomo RA, Tolmasky ME (ed), Enzyme-Mediated Resistance to Antibiotics: Mechanisms, Dissemination, and Prospects for Inhibition. ASM Press, Washington, DC. [CrossRef]
145. Levy S. 2002. The Antibiotic Paradox. How the Misuse of Antibiotics Destroys Their Curative Powers, 2nd ed. Perseus Publishing, Cambridge, MA.
146. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. [PubMed][CrossRef]
147. Colloms SD. 2013. The topology of plasmid-monomerizing Xer site-specific recombination. Biochem Soc Trans 41:589–594. [PubMed][CrossRef]
148. Minh PN, Devroede N, Massant J, Maes D, Charlier D. 2009. Insights into the architecture and stoichiometry of Escherichia coli PepA*DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy. Nucleic Acids Res 37:1463–1476. [PubMed][CrossRef]
149. Reijns M, Lu Y, Leach S, Colloms SD. 2005. Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol 57:927–941. [PubMed][CrossRef]
150. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. [PubMed][CrossRef]
151. Whelan KF, Colleran E, Taylor DE. 1995. Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol 177:5016–5027. [PubMed]
152. Chen YT, Lin AC, Siu LK, Koh TH. 2012. Sequence of closely related plasmids encoding bla(NDM-1) in two unrelated Klebsiella pneumoniae isolates in Singapore. PLoS One 7:e48737. [PubMed][CrossRef]
153. Ho P, Li Z, Lo W, Cheung Y, Lin C, Sham P, Cheng V, Ng T, Que T, Chow K. 2012. Identification and characterization of a novel incompatibility group X3 plasmid carrying blaNDM-1 in Enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerg Microbes Infect 1:e39. [CrossRef]
154. Carattoli A, Villa L, Poirel L, Bonnin RA, Nordmann P. 2012. Evolution of IncA/C blaCMY-(2)-carrying plasmids by acquisition of the blaNDM-(1) carbapenemase gene. Antimicrob Agents Chemother 56:783–786. [PubMed][CrossRef]
155. Zioga A, Whichard JM, Kotsakis SD, Tzouvelekis LS, Tzelepi E, Miriagou V. 2009. CMY-31 and CMY-36 cephalosporinases encoded by ColE1-like plasmids. Antimicrob Agents Chemother 53:1256–1259. [PubMed][CrossRef]
microbiolspec.PLAS-0016-2013.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0016-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0016-2013
2014-10-24
2017-10-18

Abstract:

Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits, resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about the physiology of plasmids and their role in virulence and antibiotic resistance from the Gram-negative opportunistic pathogen . This bacterium has acquired multidrug resistance and is the causative agent of serious community- and hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most U.S. hospital infections.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/PLAS-0016-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0016-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Small plasmids. General genetic organization of small ColE1-type plasmids from and other . Alignment of the nucleotide sequences of the replication regions of ColE1-type plasmids using CLUSTAL W ( 146 ). Alignment of the nucleotide sequences of Xer site-specific recombination sites of ColE1-type plasmids using CLUSTAL W. The ARG box, XerC, and XerD binding sites are shown in color, and the central regions are boxed. Blue capital letters indicate the most important conserved nucleotides in the ARG box. The downward pointing arrowhead shows the conserved T nucleotide that is substituted by a C in several Xer site-specific recombination sites ( 64 , 81 , 88 ). doi:10.1128/microbiolspec.PLAS-0016-2013.f1

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Comparison of pFPTB1 and pJHCMW1. The black lines, which represent regions of homology (coordinates 473 to 3361 in pJHCMW1), are drawn to scale. The Tn-like transposons, Tn and Tn/DeltaTn, as well as the dots indicating and the Xer target sites, are shown at the correct locations but are not drawn to scale. The replication regions (REP) share 97% homology. The numbers indicate the coordinates in the GenBank database (pJHCMW1, accession number AF479774; pFPTB1, accession number AJ634602). The location of the similar but not identical Xer site-specific recombination sites ( 81 ) is indicated. doi:10.1128/microbiolspec.PLAS-0016-2013.f2

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Effect of changes in osmolarity of the culture medium on Xer site-specific recombination at . Schematic representation of the possible chain of events that lead to a higher efficiency of Xer site-specific recombination at the plasmid pJHCMW1 site . A decrease in the NaCl concentration in the growth medium (L broth containing 0.5% NaCl added to no NaCl added) is correlated with an increase in supercoiling density, which facilitates interaction of ArgR with the substandard ARG box leading to a more efficient formation of a productive synaptic complex and Holliday junction ( 66 ). Molecular models of the interwrapped synaptic complex are available in references 147 149 . The two strands are shown only in the core recombination site (red and green lines); blue lines represent the accessory sequences. doi:10.1128/microbiolspec.PLAS-0016-2013.f3

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Genetic maps comparing the pIP843 and the pE66An. The shadowed areas show regions of homology (6681/6701 identities and six gaps in the region with 99% homology). The ColE1-type replication region is schematically shown on top of the pIP843 map. The semicircle in pE66An represents the region encompassing nucleotides 6697 to 79713. doi:10.1128/microbiolspec.PLAS-0016-2013.f4

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Multiple alignment of pLVPK, pK2044, and pKCTC2242. The nucleotide sequences of pLVPK (accession number AY378100.1) ( 112 ), pK2044 (accession number AP006726.1) ( 116 ), and pKCTC2242 (accession number CP002911.1) ( 117 ) were compared using the MAUVE aligner version 2.3.1 ( 150 ). Different colors represent local LCBs. Inside each block there is a similarity profile of the sequence; the height corresponds to the average level of conservation. Completely white areas are not aligned and probably contain sequences specific to the particular molecule. In pKCTC2242 the LCBs drawn below the black line are inverted with respect to their homologs in pLVPK and pK2044. Some genes or clusters present in these blocks are identified by name. The gene has been reported as “truncated” ( 112 ). The truncation is a consequence of an extra T in the sequence that could also be a sequencing error. The genes are sufficient for the tellurite resistance phenotype (Te). The cluster is also responsible for the phage inhibition (Phi) and colicin resistance (PacB) phenotypes ( 151 ). Copper (), silver (), lead (), and tellurite () resistance related genes; IUS, iron uptake system. doi:10.1128/microbiolspec.PLAS-0016-2013.f5

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view

FIGURE 6

Multiple alignment of pNDM-MAR, pTR3/4, pNDM-HN380, pNDM-KN, and pNDM10469. The nucleotide sequences of pNDM-MAR (accession number JN420336) ( 77 ), pTR3/4 (accession number JQ349086) ( 152 ), pNDM-HN380 (accession number JX104760) ( 153 ), pNDM-KN (accession number JN157804) ( 154 ), and pNDM10469 (accession number JN861072) were compared using the MAUVE aligner version 2.3.1 ( 150 ). The gene is represented in red; genes MBL and are represented in light blue and light brown, respectively. Plasmids pTR3 and pTR4, originally thought to be similar but not identical were later proved to be identical and were renamed pTR3/4 ( 152 ). The comparison of the complete nucleotide sequence is shown with LCBs represented in blocks of different colors. Zoom-in of the region including the gene. doi:10.1128/microbiolspec.PLAS-0016-2013.f6

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

Click to view

FIGURE 7

Genetic map of the Tn: :Tn region in the plasmid pBK15692. doi:10.1128/microbiolspec.PLAS-0016-2013.f7

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Completely sequenced ColE1-type plasmids of

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0016-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error