1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Respiration of Nitrate and Nitrite

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Jeffrey A. Cole1, and David J. Richardson2
  • Editor: Valley Stewart3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; 2: Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; 3: University of California, Davis, Davis, CA
  • Received 03 April 2008 Accepted 09 June 2008 Published 18 August 2008
  • Address correspondence to Jeffrey A. Cole j.a.cole@bham.ac.uk and David J. Richardson d.richardson@uea.ac.uk
image of Respiration of Nitrate and Nitrite
    Preview this reference work article:
    Zoom in
    Zoomout

    Respiration of Nitrate and Nitrite, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/3_2_5_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/3_2_5_module-2.gif
  • Abstract:

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in and, where relevant detail is available, also in and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of and in which oxygen is limited but nitrate is available to support respiration. In , nitrate reduction in the periplasm involves the products of two seven-gene operons, , encoding the periplasmic nitrate reductase, and , encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  • Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5

Key Concept Ranking

DNA Repair Enzyme
0.420324
Nitrates and Nitrites
0.38340452
Bacterial Cytoplasmic Membrane Proteins
0.3820511
Acyl Coenzyme A
0.35376346
0.420324

References

1. Cole JA, Brown CM. 1980. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiol Lett 7:65–72. [CrossRef]
2. Forsythe SJ, Dolby JM, Webster ADB, Cole JA. 1988. Nitrate and nitrite-reducing bacteria in the achlorhydric stomach. J Med Microbiol 25:253–259. [PubMed][CrossRef]
3. Sorensen J. 1978. Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment. Appl Environ Microbiol 35:301–305.[PubMed]
4. Zopfi J, Kjaer T, Nielsen LP, Jorgensen BB. 2001. Ecology of Thioploca spp.: nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle. Appl Environ Microbiol 67:5530–5537. [PubMed][CrossRef]
5. Richardson DJ. 2007. Structural and functional flexibility of bacterial respiromes, p 97–128. In El-Sharoud W (ed), Bacterial Physiology: a Molecular Approach. Springer, New York, NY.
6. Tyson K, Busby S, Cole J. 1997. Catabolite regulation of two Escherichia coli operons encoding nitrite reductase: role of the Cra protein. Arch Microbiol 168:240–244. [PubMed][CrossRef]
7. Tyson KL, Bell AI, Cole JA, Busby S. 1993. Definition of the nitrite and nitrate response elements at the anaerobically inducible Escherichia coli nirB promoter: interactions between FNR and NarL. Mol Microbiol 7:151–157. [PubMed][CrossRef]
8. Rabin RS, Stewart V. 1993. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol 175:3259–3268.[PubMed]
9. Stewart V, Lu Y, Darwin AJ. 2002. Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12. J Bacteriol 184:1314–1323. [PubMed][CrossRef]
10. Clegg S, Feng Y, Griffiths L, Cole JA. 2002. The roles of the polytopic membrane proteins, NarK, NarU and NirC, in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol Microbiol 44:143–155. [PubMed][CrossRef]
11. DeMoss JA, Hsu P-Y. 1991. NarK enhances nitrate uptake and nitrite excretion in Escherichia coli. J Bacteriol 173:3303–3310.[PubMed]
12. Rowe JJ, Ubbink-Kok T, Molenaar D, Konings WN, Driessen AJM. 1994. NarK is a nitrite extrusion system involved in anaerobic nitrate respiration by Escherichia coli. Mol Microbiol 12:579–586. [PubMed][CrossRef]
13. Wang H, Tseng CP, Gunsalus RP. 1999. The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite. J Bacteriol 181:5303–5308. [PubMed]
14. Wang H, Gunsalus RP. 2000. The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite. J Bacteriol 182:5813–5822. [PubMed][CrossRef]
15. Chang L, Wei I-C, Audia JP, Morton RA, Schellhorn HE. 1999. Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor. Mol Microbiol 34:756–766. [CrossRef]
16. Clegg S, Jia W, Cole JA. 2006. Role of the Escherichia coli nitrate transport protein, NarU, in survival during severe nutrient starvation and slow growth. Microbiology 152:2091–2100. [PubMed][CrossRef]
17. Spector MP, Garcia del Portillo F, Bearson SMD, Mahmud A, Magut M, Finlay BB, Dougan G, Foster JW, Pallen MJ. 1999. The rpoS-dependent starvation-stress response locus sti encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Mol Microbiol 45:3035–3045.
18. Pommier J, Mandrand MA, Holt SE, Boxer DH, Giordano G. 1992. A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in Escherichia coli. Biochim Biophys Acta 1107:305–313. [CrossRef]
19. Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC. 2003. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Biol 10:681–687. [PubMed][CrossRef]
20. Jormakka M, Richardson DJ, Byrne B, Iwata S. 2004. The architecture of NarGH reveals a structural classification of MGD enzymes. Structure 12:95–104. [PubMed][CrossRef]
21. Anderson L, Richardson DJ, Butt JN. 2001. Protein film electrochemistry of the membrane-bound nitrate reductase. Biochemistry 40:11294–11307. [PubMed][CrossRef]
22. Butler CS, Charnock JM, Bennett B, Sears HJ, Reilly AJ, Ferguson SJ, Garner CD, Lowe DJ, Thomson AJ, Berks BC, Richardson DJ. 1999. Models for molybdenum co-ordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Biochemistry 38:9000–9012. [PubMed][CrossRef]
23. Elliott SJ, Hoke KR, Heffron K, Palak M, Rothery RA, Weiner JH, Armstrong FA. 2004. Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site. Biochemistry 43:799–807. [PubMed][CrossRef]
24. Cartron ML, Roldán D, Ferguson SJ, Berks BC, Richardson DJ. 2002. Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases. Biochem J 368:425–432. [PubMed][CrossRef]
25. Gilberthorpe NJ, Poole RK. 2008. Nitric oxide homeostasis in Salmonella Typhimurium: roles of respiratory nitrate reductase and flavohemoglobin. J Biol Chem 283:11146–11154. [PubMed][CrossRef]
26. Smith MS. 1983. Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity. Appl Environ Microbiol 45:1545–1547.[PubMed]
27. Jepson BJN, Mohan S, Clarke TA, Gates AJ, Cole JA, Butler CS, Butt JN, Hemmings AM, Richardson DJ. 2007. Spectrophotometric and structural analysis of the periplasmic nitrate reductase from Escherichia coli. J Biol Chem 282:6425–6437. [PubMed][CrossRef]
28. Bertero MG, Rothery RA, Boroumand N, Palak M, Blasco F, Ginet N, Weiner JH, Strynadka NC. 2005. Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A. J Biol Chem 280:14836–14843. [PubMed][CrossRef]
29. Richardson DJ, Sawers G. 2002. PMF through the redox loop. Science 295:1842–1843. [PubMed][CrossRef]
30. Sazanov LA, Hinchliffe P. 2006. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436. [PubMed][CrossRef]
31. Jormakka M, Tornroth S, Bytne B, Iwata S. 2002. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295:1863–1868. [PubMed][CrossRef]
32. Brondijk THC, Nilavongse A, Filenko N, Richardson DJ, Cole JA. 2004. The NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology, and physiological roles in quinol oxidation and redox balancing. Biochem J 379:47–55. [PubMed][CrossRef]
33. de Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ. 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357.[PubMed]
34. Björklöf K, Zickermann V, Finel M. 2000. Purification of the 45 kDa, membrane bound NADH dehydrogenase of Escherichia coli (NDH-2) and analysis of its interaction with ubiquinone analogues. FEBS Lett 467:105–110. [PubMed][CrossRef]
35. Constantinidou CC, Hobman JL, Patel MD, Penn CW, Cole JA, Overton TW. 2006. A reassessment of the fumarate and nitrate reduction regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL and NarQP as Escherichia coli adapts from aerobic to anaerobic growth. J Biol Chem 281:4802–4808. [PubMed][CrossRef]
36. Green J, Guest JR. 1994. Regulation of transcription at the ndh promoter of Escherichia coli by FNR and novel factors. Mol Microbiol 12:433–444. [PubMed][CrossRef]
37. Iuchi S, Lin ECC. 1988. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA 85:1888–1892. [PubMed][CrossRef]
38. Park S-J, Tseng C-P, Gunsalus RP. 1995. Regulation of succinate dehydrogenase (sucCDAB) operon expression in Escherichia coli response to carbon supply and anaerobiosis: role of ArcA and FNR. Mol Microbiol 15:473–482. [PubMed][CrossRef]
39. Campbell JW, Morgan-Kiss RM, Cronan JE, Jr. 2003. New Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic β-oxidation pathway. Mol Microbiol 47:793–805. [PubMed][CrossRef]
40. Harborne NR, Griffiths L, Busby SJW, Cole JA. 1992. Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon. Mol Microbiol 6:2805–2813. [PubMed][CrossRef]
41. Jackson R, Cornish-Bowden A, Cole JA. 1981. Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12. Biochem J 193:861–867.[PubMed]
42. Siegel LM, Murphy MJ, Kamin H. 1973. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups. J Biol Chem 248:251–264.[PubMed]
43. Moir JW, Wood NJ. 2001. Nitrate and nitrite transport in bacteria. Cell Mol Life Sci 58:215–224. [PubMed][CrossRef]
44. Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan SB, Wootton J, Nicolson R, Cole JA. 1990. Nucleotide sequence organisation and structural analysis of the products of the nirB to cysG region of the Escherichia coli chromosome. Eur J Biochem 191:315–323. [PubMed][CrossRef]
45. Gott P, Boos W. 1988. The transmembrane topology of the sn-glycerol-3-phosphate permease of Escherichia coli analysed by phoA and lacZ protein fusions. Mol Microbiol 2:655–663. [PubMed][CrossRef]
46. Huang Y, Lemieux MJ, Song Y, Auer M, Wang DN. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620. [PubMed][CrossRef]
47. Wood NJ, Alizadeh T, Richardson DJ, Ferguson SJ, Moir JW. 2002. Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Mol Microbiol 44:157–170. [PubMed][CrossRef]
48. Noji S, Nohno T, Saito T, Taniguchi S. 1989. The narK gene product participates in nitrate transport induced in Escherichia coli nitrate-respiring cells. FEBS Lett 252:139–143. [PubMed][CrossRef]
49. Browning DF, Cole JA, Busby SJW. 2004. Transcription activation by remodelling of a nucleoprotein assembly: the role of NarL at the FNR-dependent Escherichia coli nir promoter. Mol Microbiol 53:203–215. [PubMed][CrossRef]
50. Poock SR, Leach ER, Moir JWB, Cole JA, Richardson DJ. 2002. Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J Biol Chem 277:23664–23669. [PubMed][CrossRef]
51. Filenko N, Spiro S, Browning D, Squire D, Overton T, Cole J, Constantinidou C. 2007. The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol 189:4410–4417. [CrossRef]
52. Mills P, Rowley G, Spiro S, Hinton J, Richardson DJ. 2008. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology 154:1218–1228. [PubMed][CrossRef]
53. Bamford V, Angove H, Seward H, Butt JN, Cole JA, Thomson AJ, Hemmings AH, Richardson DJ. 2002. The structure and spectroscopy of the cytochrome c nitrite reductase of Escherichia coli. Biochemistry 41:2921–2931. [PubMed][CrossRef]
54. Angove H, Cole JA, Richardson DJ, Butt JN. 2002. Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome c nitrite reductase. J Biol Chem 277:23374–23381. [PubMed][CrossRef]
55. Gwyer JD, Richardson DJ, Butt JN. 2005. Diode or tunnel-diode characteristics? Resolving the catalytic consequences of proton coupled electron transfer in a multi-centered oxidoreductase. J Am Chem Soc 127:14964–14965. [PubMed][CrossRef]
56. van Wonderen J, Burlat B, Richardson DJ, Cheeseman MR, Butt JN. 2008. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J Biol Chem 283:9587–9594. [PubMed][CrossRef]
57. Potter LC, Cole JA. 1999. Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J 344:69–76. [PubMed][CrossRef]
58. Marietou A, Richardson D, Cole J, Mohan S. 2005. Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase that lacks NapB, but includes a unique tetraheme c-type cytochrome, NapM. FEMS Microbiol Lett 248:217–225. [PubMed][CrossRef]
59. Ueda K, Yamashita A, Ishikawa J, Shimada M, Watsuji TO, Morimura K, Ikeda H, Hattori M, Beppu T. 2004. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalisms. Nucleic Acids Res 32:4937–4944. [PubMed][CrossRef]
60. Simon J. 2002. Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26:285–309. [PubMed][CrossRef]
61. Brondijk THC, Fiegen D, Richardson DJ, Cole JA. 2002. Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Mol Microbiol 44:245–255. [PubMed][CrossRef]
62. Potter L, Angove H, Richardson DJ, Cole JA. 2001. Nitrate reduction in the periplasm of Gram negative bacteria. Adv Microb Physiol 45:52–102.
63. Dementin S, Arnoux P, Frangioni B, Grosse S, Leger C, Burlat B, Guigliarelli B, Sabaty M, Pignol D. 2007. Access to the active site of periplasmic nitrate reductase: insights from site-directed mutagenesis and zinc inhibition studies. Biochemistry 46:9713–9721. [PubMed][CrossRef]
64. Simon J, Pisa R, Stein T, Eichler R, Klimmek O, Gross R. 2001. The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes. FEBS J 268:5776–5782.
65. Eaves DJ, Grove J, Staudenmann W, James P, Poole RK, White SA, Griffiths L, Cole J. 1998. Involvement of products of the nrfEFG genes in the covalent attachment of haem c to a novel cysteine-lysine motif in the cytochrome c552 nitrite reductase of Escherichia coli. Mol Microbiol 28:205–216. [PubMed][CrossRef]
66. Clarke TA, Kemp G, van Wonderen J, Doyle R, Butt JN, Cheesman MR, Richardson DJ, Hemmings AM. 2007. The role of a conserved glutamine residue in tuning the catalytic activity of Escherichia coli cytochrome c nitrite reductase. Biochemistry 47:3789–3799. [CrossRef]
67. Clarke TA, Hemmings AM, Burlat B, Butt JN, Cole JA, Richardson DJ. 2006. Comparison of the structural and kinetic properties of the cytochrome c nitrite reductases from Escherichia coli, Wolinella succinogenes, Sulfurospirillum deleyianum and Desulfovibrio desulfuricans. Biochem Soc Trans 34:143–145. [PubMed][CrossRef]
68. Clarke TC, Cole JA, Richardson DJ, Hemmings AM. 2007. The structure of the pentaheme c-type cytochrome NrfB and characterisation of its solution-state interaction with the pentaheme nitrite reductase, NrfA. Biochem J 406:19–30. [PubMed][CrossRef]
69. Rodriques ML, Oliveira TF, Pereira IAC, Archer M. 2006. X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. EMBO J 25:5951–5960. [PubMed][CrossRef]
70. Cruz-Ramos H, Crack J, Wu G, Hughes MN, Scott C, Thompson AJ, Green J, Poole RK. 2002. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohemeoglobin, Hmp. EMBO J 21:3235–3244. [PubMed][CrossRef]
71. Gardner AM, Helmick RA, Gardner PR. 2002. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J Biol Chem 277:8172–8177. [PubMed][CrossRef]
72. Gardner AM, Gessner CR, Gardner PR. 2003. Regulation of the nitric oxide reduction operon (norRVW) in Escherichia coli. Role of NorR and sigma54 in the nitric oxide stress response. J Biol Chem 278:10081–10086. [PubMed][CrossRef]
73. Gardner PR, Gardner AM, Martin LA, Saltzman AL. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci USA 95:10378–10383. [PubMed][CrossRef]
74. Kim SO, Orii Y, Lloyd D, Hughes MN, Poole RK. 1999. Anoxic function for the Escherichia coli flavohemeoglobin (Hmp): reversible binding of nitric oxide and reduction to nitrous oxide. FEBS Lett 445:389–394. [PubMed][CrossRef]
75. Einsle O, Stach P, Messersmidt A, Simon J, A Kröger, Huber R, Kroneck PMH. 2000. Cytochrome c nitrite reductase from Wolinella sucinogenes: structure at 1.6 Å resolution, inhibitor binding, and heme packing motifs. J Biol Chem 275:39608–39616. [PubMed][CrossRef]
76. Roldán MD, Sears HJ, Cheesman MR, Ferguson SJ, Thomson AJ, Berks BC, Richardson DJ. 1998. Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. J Biol Chem 273:28785–28790. [PubMed][CrossRef]
77. Berks BC, Ferguson SJ, Moir JWB, Richardson DJ. 1995. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232:97–173. [PubMed][CrossRef]
78. Grove J, Tanapongpipat S, Thomas G, Griffiths L, Crooke H, Cole J. 1996. Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol 19:476–481. [CrossRef]
79. Sellars NJ, Hall SJ, Kelly DJ. 2002. Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184:4187–4196. [CrossRef]
80. Nilavongse A, Brondijk THC, Overton TW, Richardson DJ, Leach E, Cole JA. 2006. The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA. Microbiology 152:3227–3237. [PubMed][CrossRef]
81. Wunsch P, Zumft WG. 2005. Functional domains of NosR, a novel transmembrane iron-sulfur flavoprotein necessary for nitrous oxide respiration. J Bacteriol 187:1992–2001. [PubMed][CrossRef]
82. Hussain H, Grove J, Griffiths L, Busby S, Cole J. 1994. A seven gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol 12:153–163. [PubMed][CrossRef]
83. Dietrich W, Klimmek O. 2002. The function of methyl-menaquinone-6 and polysulfide reductase membrane anchor (PsrC) in polysulfide respiration of Wolinella succinogenes. Eur J Biochem 269:1086–1095. [PubMed][CrossRef]
84. Krafft T, Gross R, Kröger A. 1995. The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor. Eur J Biochem 230:601–606. [PubMed][CrossRef]
85. Hinsley AP, Berks BC. 2002. Specificity of respiratory pathways involved in the reduction of sulfur compounds by Salmonella enterica. Microbiology 148:3631–3640.[PubMed]
86. Clarke T, Dennison V, Seward H, Burlat B, Cole JA, Hemmings A, Richardson DJ. 2004. Purification and spectropotentiometric characterization of Escherichia coli NrfB, a decaheme homodimer that transfers electrons to the decaheme periplasmic nitrite reductase complex. J Biol Chem 279:41333–41339. [PubMed][CrossRef]
87. Ellington MJK, Bakoo KK, Sawers G, Richardson DJ, Ferguson SJ. 2002. Hierarchy of carbon source selection in Paracoccus pantotrophus: strict correlation between reduction state of the carbon substrate and aerobic expression of the nap operon. J Bacteriol 184:4767–4774. [PubMed][CrossRef]
88. Sears HJ, Sawers G, Berks BC, Ferguson SJ, Richardson DJ. 2000. Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Microbiology 146:2977–2985.[PubMed]
89. Potter L, Millington P, Thomas G, Cole J. 1999. Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Biochem J 344:77–84. [PubMed][CrossRef]
90. Stewart V. 1993. Nitrate regulation of anaerobic gene expression in Escherichia coli. Mol Microbiol 9:425–434. [PubMed][CrossRef]
91. Darwin AJ, Tyson KL, Busby SJW, Stewart V. 1997. Differential regulation by the homologous response regulators NarL and NarP of Escherichia coli K-12 depends on DNA binding site arrangement. Mol Microbiol 25:583–595. [PubMed][CrossRef]
92. Browning DF, Cole JA, Busby SJW. 2000. Suppression of FNR-dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H-NS: modulation of transcription initiation by a complex nucleo-protein assembly. Mol Microbiol 37:1258–1269. [PubMed][CrossRef]
93. Browning DF, Beatty CM, Wolfe AJ, Cole JA, Busby SJW. 2002. Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleo-protein assembly at a shared regulatory region. Mol Microbiol 43:687–701. [PubMed][CrossRef]
94. Browning DF, Grainger DC, Beatty CM, Wolfe AJ, Cole JA, Busby SJW. 2006. The Escherichia coli K-12 NarL and NarP proteins insulate the nrf promoter from the effects of integration host factor. J Bacteriol 188:7449–7456. [PubMed][CrossRef]
95. Tyson KL, Cole JA, Busby SJW. 1994. Nitrite and nitrate regulation at the promoters of two Escherichia coli operons encoding nitrite reductase. Mol Microbiol 13:1045–1055. [PubMed][CrossRef]
96. Lee AI, Delgado A, Gunsalus RP. 1999. Signal-dependent phosphorylation of the membrane-bound NarX two-component sensor-transmitter protein of Escherichia coli: nitrate elicits a superior anion ligand response compared to nitrite. J Bacteriol 181:5309–5316.[PubMed]
97. Chiang RC, Cavicchioli R, Gunsalus RP. 1992. Identification and characterisation of narQ, a second nitrate sensor for nitrate-dependent gene regulation in Escherichia coli. Mol Microbiol 6:1913–1923. [PubMed][CrossRef]
98. Rabin RS, Stewart V. 1992. Either of two functionally redundant sensor proteins, NarX and NarQ, is sufficient for nitrate regulation in Escherichia coli K12. Proc Natl Acad Sci USA 89:8419–8423. [PubMed][CrossRef]
99. Schröder I, Wolin CD, Cavicchioli R, Gunsalus RP. 1994. Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli. J Bacteriol 176:4985–4902.[PubMed]
100. Williams SB, Stewart V. 1997. Discrimination between structurally related ligands nitrate and nitrite controls autokinase activity of the NarX transmembrane signal transducer of Escherichia coli K-12. Mol Microbiol 26:911–925. [PubMed][CrossRef]
101. Goh EB, Bledsoe PJ, Chen LL, Gyaneshwar P, Stewart V, Igo MM. 2005. Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system. J Bacteriol 187:4890–4899. [PubMed][CrossRef]
102. Stewart V. 1982. Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12. J Bacteriol 151:1320–1325.[PubMed]
103. Rabin RS, Collins LA, Stewart V. 1992. In vivo requirement of integration host factor for nar (nitrate reductase) operon expression in Escherichia coli K-12. Proc Natl Acad Sci USA 89:8701–8705. [PubMed][CrossRef]
104. Zhang X, DeMoss JA. 1996. Structure modification induced in the narG promoter by binding of integration host factor and NARL-P. J Bacteriol 176:3971–3973.
105. Jayaraman P-S, Gaston KL, Cole JA, Busby SJW. 1988. The nirB promoter of Escherichia coli: location of nucleotide sequences essential for regulation by oxygen, the FNR protein and nitrite. Mol Microbiol 2:527–530. [PubMed][CrossRef]
106. Darwin AJ, Stewart V. 1995. Nitrate and nitrite regulation of the Fnr-dependent aeg-46.5 promoter of Escherichia coli K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site. J Mol Biol 251:15–29. [PubMed][CrossRef]
107. McNicholas PM, Gunsalus RP. 2002. The molybdate-responsive Escherichia coli ModE transcriptional regulator coordinates periplasmic nitrate reductase (napFDAGHBC) operon expression with nitrate and molybdate availability. J Bacteriol 184:3253–3259. [PubMed][CrossRef]
108. Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ. 2006. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol 60:1058–1075. [PubMed][CrossRef]
109. Sargent F. 2007. Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology 153:633–651. [PubMed][CrossRef]
110. Maillard J, Spronk C, Buchanan G, Lyall V, Richardson DJ, Palmer T, Vuister GW, Sargent F. 2007. Structural diversity in twin-arginine signal peptide-binding proteins. Proc Natl Acad Sci USA 104:15641–15646. [PubMed][CrossRef]
111. Olmo-Mira F, Richardson DJ, Castillo F, Moreno-Vivian C, Roldan D. 2004. NapF is a cytoplasmic iron-sulfur protein required for Fe-S cluster assembly in the periplasmic nitrate. J Biol Chem 279:49727–49735. [PubMed][CrossRef]
112. Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G. 1998. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol Microbiol 28:435–47. [PubMed][CrossRef]
113. Lanciano P, Vergnes A, Grimaldi S, Guigliarelli B, Megalon A. 2007. Biogenesis of a respiratory complex is orchestrated by a single accessory protein. J Biol Chem 282:17468–17474. [PubMed][CrossRef]
114. Vergnes A, Pommier J, Toci R, Blasco F, Giordano G, Megalon A. 2006. NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to coordinate molybdenum cofactor insertion and assembly. J Biol Chem 281:2170–2176. [PubMed][CrossRef]
115. Corker H, Poole RK. 2003. Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator, Fnr, and the flavohemoglobin Hmp. J Biol Chem 278:31584–31592. [PubMed][CrossRef]
116. Poole RK, Hughes MN. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36:775–783. [PubMed][CrossRef]
117. Sobko T, Huang L, Midtvedt T, Norin E, Gustafsson LE, Norman M, Jansson EA, Lundberg JO. 2006. Generation of NO by probiotic bacteria in the gastrointestinal tract. Free Radic Biol Med 41:985–991. [PubMed][CrossRef]
118. Weiss B. 2006. Evidence for mutagenesis by nitric oxide during nitrate metabolism in Escherichia coli. J Bacteriol 188:829–833. [PubMed][CrossRef]
119. Koppernol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS. 1982. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842. [CrossRef]
120. Spiro S. 2007. Regulators of bacterial responses to nitric oxide. FEMS Microbiol Rev 31:193–211. [PubMed][CrossRef]
121. Hausladen A, Gow A, Stamler JS. 1998. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc Natl Acad Sci USA 95:14100–14105. [PubMed][CrossRef]
122. Justino MC, Almeida CC, Goncalves VL, Teixeira M, Saraiva LM. 2005. Escherichia coli YtfE is a di-iron protein with an important function in assembly of iron-sulphur clusters. FEMS Microbiol Lett 257:278–284. [CrossRef]
123. Justino MC, Vicente JB, Teixeira M, Saraiva LM. 2006. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem 280:2636–2643. [CrossRef]
124. Pullan ST, Gidley MD, Jones RA, Barrett J, Stevanin TM, Read RC, Green J, Poole RK. 2007. Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J Bacteriol 189:1845–1855. [PubMed][CrossRef]
125. Bodenmiller DM, Spiro S. 2006. The yjbE (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol 188:874–881. [PubMed][CrossRef]
126. Membrillo-Hernández J, Coopamah MD, Channa A, Hughes MN, Poole RK. 1998. A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the ‘NO releaser,’ S-nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyA-hmp intergenic region. Mol Microbiol 29:1101–1112. [PubMed][CrossRef]
127. Poole RK, Anjum MF, Membrillo-Hernández J, Kim SO, Hughes MN, Stewart V. 1996. Nitric oxide, nitrite, and FNR regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol 178:5487–5492.[PubMed]
128. Hutchins MI, Mandhana N, Spiro S. 2002. The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J Bacteriol 184:4640–4643. [PubMed][CrossRef]
129. D’Autréaux BD, Tucker NP, Dixon R, Spiro S. 2005. A non-heme iron centre in the transcription factor NorR senses nitric oxide. Nature 437:769–772. [PubMed][CrossRef]
130. Studholm DJ, Dixon R. 2003. Domain architectures of σ54-dependent transcriptional activators. J Bacteriol 185:1757–1767. [PubMed][CrossRef]
131. Tucker NP, D’Autreaux B, Studholm DJ, Spiro S, Dixon R. 2004. DNA binding activity of the Escherichia coli nitric oxide sensor NorR suggests a conserved target sequence in proteobacteria. J Bacteriol 186:6656–6660. [PubMed][CrossRef]
132. Flatley J, Barrett J, Pullan ST, Hughes MN, Green J, Poole RK. 2005. Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J Biol Chem 280:10065–10072. [PubMed][CrossRef]
133. Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS. 2005. Dissimilatory metabolism of nitrogen oxides in Bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 1:e55.
134. Justino MC, Almeida CC, Teixeira M, Saraiva LM. 2007. Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J Biol Chem 282:10352–10359. [PubMed][CrossRef]
135. Wolfe MT, Heo J, Garavelli JS, Ludden PW. 2002. Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli. J Bacteriol 184:5898–5902. [PubMed][CrossRef]
136. Almeida CC, Romão CV, Lindley PF, Teixeira M, Saraiva LM. 2006. The role of the hybrid-cluster protein in oxidative stress. J Biol Chem 281:32445–32450. [PubMed][CrossRef]
137. Jones SA, Chowdhury FZ, Fabich AJ, Anderson A, Schreiner DM, House AL, Autieri SM, Leatham MP, Lins JJ, Jorgensen M, Cohen PS, Conway T. 2007. Respiration of Escherichia coli in the mouse intestine. Infect Immun 75:4891–4899. [PubMed][CrossRef]
ecosal.3.2.5.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosal.3.2.5
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosal.3.2.5
2008-08-18
2017-10-20

Abstract:

Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in and, where relevant detail is available, also in and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of and in which oxygen is limited but nitrate is available to support respiration. In , nitrate reduction in the periplasm involves the products of two seven-gene operons, , encoding the periplasmic nitrate reductase, and , encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The electron transport systems are shown with formate as an electron donor via the formate dehydrogenase (Fdh). Nar, membrane-bound nitrate reductase; Nap, periplasmic nitrate reductase; Nrf, periplasmic cytochrome nitrite reductase; MQ, menaquinone; MQH, menaquinol (reduced menaquinone). Adapted from ( 5 ) with permission of the publisher.

Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The numbers in parentheses are the midpoint redox potentials of each center. cyt-, cytochrome ; cyt-, cytochrome .

Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Letters identify loci.

Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The upper panel depicts the overall structure, with the blue arrow showing the direction of electron transfer from the iron-sulfur cluster to the Mo ion. The lower panel shows this pathway in more detail. Adapted from the ( 27 ) with permission of the publisher.

Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

(Top) Overall structure of the decaheme homodimer. (Bottom) Detail of the active site of one monomer showing the proximal Lys ligand of the active-site heme and other conserved residues involved in substrate binding and proton delivery.

Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

NrfA hemes, green; NrfB hemes, violet. Adapted from the ( 68 ) and ( 5 ) with permission of the publishers.

Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

MQH, menaquinol; UQH, ubiquinol; c, cytochrome c.

Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Transcription factors and environmental signals that regulate expression of genes for nitrate reduction to ammonia

Citation: Cole J, Richardson D. 2008. Respiration of Nitrate and Nitrite, EcoSal Plus 2008; doi:10.1128/ecosal.3.2.5

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error