1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 2: Cell Architecture and Growth

Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00
Add to My Favorites
  • Authors: Hans Bremer1, and Patrick P. Dennis2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688; 2: Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
  • Received 01 January 2008 Accepted 30 March 2008 Published 07 October 2008
  • Address correspondence to Hans Bremer bremer3@attglobal.net and Patrick P. Dennis pdennis@nsf.gov
image of Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates
    Preview this:
    Zoom in
    Zoomout

    Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/5_2_3_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/5_2_3_module-2.gif
  • Abstract:

    This review begins by briefly presenting the history of research on the chemical composition and other parameters of cells of E. coli and S. enterica at different exponential growth rates. Studies have allowed us to determine the in vivo strength of promoters and have allowed us to distinguish between factor-dependent transcriptional control of the promoter and changes in promoter activity due to changes in the concentration of free functional RNA polymerase associated with different growth conditions. The total, or bulk, amounts of RNA and protein are linked to the growth rate, because most bacterial RNA is ribosomal RNA (rRNA). Since ribosomes are required for protein synthesis, their number and their rate of function determine the rate of protein synthesis and cytoplasmic mass accumulation. Many mRNAs made in the presence of amino acids have strong ribosome binding sites whose presence reduces the expression of all other active genes. This implies that there can be profound differences in the spectrum of gene activities in cultures grown in different media that produce the same growth rate. Five classes of growth-related parameters that are generally useful in describing or establishing the macromolecular composition of bacterial cultures are described in detail in this review. A number of equations have been reported that describe the macromolecular composition of an average cell in an exponential culture as a function of the culture doubling time and five additional parameters: the C- and D-periods, protein per origin (PO), ribosome activity, and peptide chain elongation rate.

  • Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3

Key Concept Ranking

RNA Polymerase beta Subunit
0.56163466
Periplasmic Space
0.44102415
DNA Synthesis
0.42261174
Protein Synthesis RNAs
0.4205765
0.56163466

References

1. Schaechter E, Maaløe O, Kjeldgaard NO. 1958. Dependence on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol 19:592606.[PubMed]
2. Maaløe O, Kjeldgaard NO. 1966. Control of Macromolecular Synthesis. W. A. Benjamin, New York, NY.
3. Cooper S, Helmstetter C. 1968. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31:519540.[PubMed][CrossRef]
4. Donachie W. 1968. Relationships between cell size and time of initiation of DNA replication. Nature (London) 219:10771079.[PubMed][CrossRef]
5. Schleif R. 1967. Control of the production of ribosomal protein. J Mol Biol 27:4155.[PubMed][CrossRef]
6. Maaløe O. 1969. An analysis of bacterial growth. Dev Biol 3(Suppl.):3358.
7. Churchward G, Bremer H, Young R. 1982. Macromolecular composition of bacteria. J Theor Biol 84:651670.[CrossRef]
8. Dennis PP, Ehrenberg M, Bremer H. 2004. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol Mol Biol Rev 68:639668.[PubMed][CrossRef]
9. Bremer H. 1975. Parameters affecting the rate of synthesis of ribosomes and RNA polymerase in bacteria. J Theor Biol 53:115124.[PubMed][CrossRef]
10. Shen V, Bremer H. 1977. Chloramphenicol-induced changes in the synthesis of ribosomal, transfer and messenger ribonucleic acids in Escherichia coli B/r. J Bacteriol 130:10981108.[PubMed]
11. Zhang X, Liang S, Bremer H. 2006. Feedback control of ribosome synthesis in Escherichia coli is dependent on eight critical amino acids. Biochimie 88:11451155.[PubMed][CrossRef]
12. Bipatnath M, Dennis PP, Bremer H. 1998. Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12. J Bacteriol 180:265273. [PubMed]
13. Bachmann, B. 1990. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev 54:130197.[PubMed]
14. Noller HF. 1984. Structure of ribosomal RNA. Annu Rev Biochem 53:119162.[PubMed][CrossRef]
15. Wittmann HG. 1982. Components of the bacterial ribosome. Annu Rev Biochem 51:155183.[PubMed][CrossRef]
16. Gauss D, Sprinzl M. 1983. Compilation of tRNA sequences. Nucleic Acids Res 11:r1r53.[PubMed]
17. Ovchinnikov Y, Lipkin V, Modzanov N, Chestov O, Smirnov Y. 1977. Primary structure of the α subunit of DNA dependent RNA polymerase from Escherichia coli. FEBS Lett 76:108111.[PubMed][CrossRef]
18. Ovchinnikov I, Monastyrskaia G, Gubanov U, Guriev S, Chertov O, Modisnov N, Grinkevich V, Makarova I, Marchenko T, Polovnikova I, Lipkin V, Sverdlov E. 1980. Primary structure of RNA polymerase of Escherichia coli: nucleotide sequence of gene rpoB and amino acid sequence of β-subparticle. Dokl Akad Nauk SSSR 253:994999.[PubMed]
19. Ovchinnikov I, Monastyrskaia G, Gubanov U, Guriev S, Salomatina I. 1981. Primary structure of RNA polymerase of Escherichia coli: nucleotide sequence of gene rpoC and amino acid sequence of β'-subparticle. Dokl Akad Nauk SSSR 261:763768.[PubMed]
20. Baracchini E, Bremer H. 1987. Determination of synthesis rate and lifetime of bacterial mRNAs. Anal Biochem 167:245260.[PubMed][CrossRef]
21. Kennel D. 1968. Titration of the gene sites on DNA by DNA-RNA hybridization. II. The Escherichia coli chromosome. J Mol Biol 34:85103.[PubMed][CrossRef]
22. Dennis PP. 1972. Regulation of ribosomal and transfer ribonucleic acid synthesis in Escherichia coli B/r. J Biol Chem 247:28422845.[PubMed]
23. Rosset R, Julian J, Morier R. 1966. Ribonucleic acid composition of bacteria as a function of growth rate. J Mol Biol 18:308320.[PubMed][CrossRef]
24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265275.[PubMed]
25. Liang S, Xu Y-C, Dennis PP, Bremer H. 2000. mRNA composition and the control of bacterial gene expression. J Bacteriol 182:30373044.[PubMed][CrossRef]
26. Spahr PR. 1962. Amino acid composition of ribosomes from Escherichia coli. J Mol Biol 4:395406.[PubMed][CrossRef]
27. Bremer H, Churchward G. 1977. An examination of the Cooper-Helmstetter theory of DNA replication and its underlying assumptions. J Theor Biol 69:645654.[PubMed][CrossRef]
28. Brunschede H, Dove TL, Bremer H. 1977. Establishment of exponential growth after a nutritional shift-up in Escherichia coli B/r: accumulation of deoxyribonucleic acid, ribonucleic acid, and protein. J Bacteriol 129:10201033.[PubMed]
29. Bremer H. 1982. Variation in the generation times in Escherichia coli populations: its cause and implications. J Gen Microbiol 128:28652876.[PubMed]
30. Baracchini E, Bremer H. 1988. Stringent and growth control of rRNA synthesis in Escherichia coli are both mediated by ppGpp. J Biol Chem 263:25972602.[PubMed]
31. Ryals J, Little R, Bremer H. 1982. Control of rRNA and tRNA synthesis in Escherichia coli by guanosine tetraphosphate. J Bacteriol 151:12611268.[PubMed]
32. Condon C, French S, Squires C, Squires CL. 1993. Depletion of functional ribosomal RNA operons in Escherichia coli causes increased expression of the remaining intact copies. EMBO J 12:43054315.[PubMed]
33. Molin S. 1976. Ribosomal RNA chain elongation rates in Escherichia coli. Alfred Benzon Symp 9:333339.
34. Ryals J, Little R, Bremer H. 1982. Temperature dependence of RNA synthesis parameters in Escherichia coli. J Bacteriol 151:879887.[PubMed]
35. Shen V, Bremer H. 1977. Rate of ribosomal ribonucleic acid chain elongation in Escherichia coli B/r during chloramphenicol treatment. J Bacteriol 130:11091116.[PubMed]
36. Vogel U, Jensen KF. 1994. The RNA chain elongation rate in Escherichia coli depends on the growth rate. J Bacteriol 176:28072813.[PubMed]
37. Bremer H, Yuan D. 1968. RNA chain growth rates in Escherichia coli. J Mol Biol 38:163180.[PubMed][CrossRef]
38. Liang S, Ehrenberg M, Dennis PP, Bremer H. 1999. Decay of rplN and lacZ mRNA in Escherichia coli. J Mol Biol 288:521538. [PubMed][CrossRef]
39. Little R, Bremer H. 1984. Transcription of ribosomal component genes and lac in a relA+/relA pair of Escherichia coli strains. J Bacteriol 159:863869.[PubMed]
40. Forchhammer J, Lindahl L. 1971. Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of Escherichia coli 15. J Mol Biol 55:563568.[PubMed][CrossRef]
41. Young R, Bremer H. 1976. Polypeptide chain elongation rate in Escherichia coli B/r as a function of growth rate. Biochem J 160:185194.[PubMed]
42. Helmstetter C, Cooper S. 1968. DNA synthesis during the division cycle of rapidly growing E. coli B/r. J Mol Biol 31:507518.[PubMed][CrossRef]
43. Bremer H, Chuang L. 1981. The cell cycle in Escherichia coli B/r. J Theor Biol 88:4781.[PubMed][CrossRef]
44. Michelsen O, Teixeira de Mattos MJ, Jensen PR, Hansen FG. 2003. Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r. Microbiology 149:10011010.[PubMed][CrossRef]
45. Skarstad K, Boye E, Steen HB. 1986. Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J 5:17111717.[PubMed]
46. Bremer H, Chuang L. 1981. Cell division after inhibition of chromosome replication in Escherichia coli. J Theor Biol 93:909926.[PubMed][CrossRef]
47. Skarstad K, Steen H, Boye E. 1985. Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations. J Bacteriol 163:661668.[PubMed]
48. Dennis PP, Bremer H. 1974. Differential rate of ribosomal protein synthesis in Escherichia coli B/r. J Mol Biol 84:407422.[PubMed][CrossRef]
49. Chandler MG, Pritchard RH. 1975. The effect of gene concentration and relative gene dosage on gene output in Escherichia coli. Mol Gen Genet 138:127141.[PubMed][CrossRef]
50. Bremer H, Churchward G, Young R. 1979. Relation between growth and replication in bacteria. J Theor Biol 81:533545.[PubMed][CrossRef]
51. Shepherd NS, Churchward G, Bremer H. 1980. Synthesis and function of ribonucleic acid polymerase and ribosomes in Escherichia coli B/r after a nutritional shift-up. J Bacteriol 143:13321344.[PubMed]
52. Åkerlund T, Nordström K, Bernander R. 1995. Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J Bacteriol 177:67916797.[PubMed]
53. Dong H, Nilsson L, Kurland CG. 1996. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260:649663.[PubMed][CrossRef]
54. Gausing K. 1977. Regulation of ribosome production in Escherichia coli: synthesis and stability of ribosomal RNA and ribosomal protein mRNA at different growth rates. J Mol Biol 115:335354.[PubMed][CrossRef]
55. Jinks-Robertson S, Gourse R, Nomura M. 1983. Expression of rRNA and tRNA genes in Escherichia coli: evidence for feedback regulation by products of rRNA operons. Cell 33:865876.[PubMed][CrossRef]
56. Dennis PP. 1976. Effects of chloramphenicol on the transcriptional activities of ribosomal RNA and ribosomal protein genes in Escherichia coli. J Mol Biol 108:535546.[PubMed][CrossRef]
57. Cashel M, Gentry DR, Hernandez VJ, Vinella VJ. 1996. The stringent response, p 14581496. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, DC.
58. Emilsson V, Kurland CG. 1990. Growth rate dependence of transfer RNA abundance in Escherichia coli. EMBO J 9:43594366.[PubMed]
59. Chatterji D, Fujita N, Ishihama A. 1998. The mediator for stringent control, ppGpp, binds to the β-subunit of Escherichia coli RNA polymerase. Genes to Cells 3:279287.[PubMed][CrossRef]
60. Bremer H, Dennis PP, Ehrenberg M. 2003. Free RNA polymerase and modeling global transcription in Escherichia coli. Biochimie 85:597609.[PubMed][CrossRef]
61. Dennis PP, Bremer H. 1974. Macromolecular composition during steady-state growth of Escherichia coli B/r. J Bacteriol 119:270281.[PubMed]
62. Churchward G, Bremer H, Young R. 1982. Transcription in bacteria at different DNA concentrations. J Bacteriol 150:572581.[PubMed]
63. Bremer, H. 1986. A stochastic process determines the time at which cell division begins in Escherichia coli. J Theor Biol 118:35l365.[CrossRef]
64. Churchward G, Estiva E, Bremer H. 1981. Growth rate-dependent control of chromosome replication initiation in Escherichia coli. J Bacteriol 145:12321238.[PubMed]
65. Beg QK, Vasquez A, Ernst J, de Menezes MA, Bar-Joseph Z, Barabázi A-L, Oltavai ZN. 2007. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc Natl Acad Sci USA 104:1266312668.[CrossRef]
66. Müller K, Bremer H. 1968. Rate of synthesis of messenger ribonucleic acid in Escherichia coli. J Mol Biol 38:329353. [PubMed][CrossRef]
67. Helmstetter CE, Cummings DJ. 1964. An improved method for the selection of bacterial cells at division. Biochim Biophys Acta 82:608610.[PubMed]
68. Barry G, Squires CL, Squires C. 1979. Control features within the rplJL-rpoBC transcription unit of Escherichia coli. Proc Natl Acad Sci USA 76:49224926.[PubMed][CrossRef]
69. Hernandez VJ, Bremer H. 1993. Characterization of Escherichia coli devoid of ppGpp. J Biol Chem 268:1085110862.[PubMed]
70. Skarstad K, Steen HB, Stokke T, Boye E. 1994. The initiation mass of Escherichia coli K-12 is dependent on growth rate. EMBO J 13:20972102.[PubMed]
71. Wold S, Skarstad K, Steen HB, Stocke T, Boye E. 1994. The initiation mass for DNA replication in Escherichia coli is dependent on growth rate. EMBO J 13:20972102.[PubMed]
72. Koppes L, Nordstrom K. 1986. Insertion of an R1 plasmid into the origin of replication of the E. coli chromosome: random timing of replication of the hybrid chromosome. Cell 44:117124.[PubMed][CrossRef]
73. Bremer H, Churchward G. 1991. Control of cyclic chromosome replication in Escherichia coli. Microbiol Rev 55:459475.[PubMed]
74. Dennis PP. 1974. In vivo stability, maturation and relative differential synthesis rates of individual ribosomal proteins in Escherichia coli. J Mol Biol 88:2441.[CrossRef]
75. Shepherd NS, Churchward G, Bremer H. 1980. Synthesis and activity of ribonucleic acid polymerase in Escherichia coli. J Bacteriol 141:10981108.[PubMed]
76. Mathew R, Chatterji D. 2006. The evolving story of the omega subunit of bacterial RNA polymerase. Trends Microbiol 14:450455.[PubMed][CrossRef]
77. Subramanian R. 1975. Copies of protein L7 and L12 and heterogeneity of the large subunit of Escherichia coli ribosomes. J Mol Biol 95:18.[PubMed][CrossRef]
78. Pedersen S, Bloch P, Reeh S, Neidhardt F. 1978. Patterns of protein synthesis in E. coli: a catalogue of the amount of 140 individual proteins at different growth rates. Cell 14:179190.[PubMed][CrossRef]
79. Howe J, Hershey J. 1983. Initiation factor and ribosome levels are coordinately controlled in Escherichia coli growing at different rates. J Biol Chem 258:19541959.[PubMed]
80. Grigorova IL, Phleger NJ, Mutalik VK, Gross CA. 2006. Insights into transcriptional regulation and competition from an equilibrium model of RNA polymerase binding to DNA. Proc Natl Acad Sci USA 103:53325337.[PubMed][CrossRef]
81. Barry G, Squires C, Squires CL. 1980. Attenuation and processing of RNA from the rplJLrpoBC transcription unit of Escherichia coli. Proc Natl Acad Sci USA 77:33313335.[PubMed][CrossRef]
82. Chow J, Dennis PP. 1994. Coupling between mRNA synthesis and mRNA stability in Escherichia coli. Mol Microbiol 11:919932.[PubMed][CrossRef]
83. Delcuve G, Dennis PP. 1981. An amber mutation in a ribosomal protein gene: ineffective suppression stimulates operon-specific transcription. J Bacteriol 147:9971001.[PubMed]
84. Dennis PP. 1977. Regulation of the synthesis and activity of a mutant RNA polymerase in Escherichia coli. Proc Natl Acad Sci USA 74:54165420. [PubMed][CrossRef]
85. Dennis PP. 1977. Transcription patterns of adjacent segments of Escherichia coli containing genes coding for four 50S ribosomal proteins and the βand β'subunits of RNA polymerase. J Mol Biol 115:603625.[PubMed][CrossRef]
86. Downing W, Dennis PP. 1991. RNA polymerase activity may regulate transcription initiation and attenuation in the rplKAJL rpoBC operon in E. coli. J Biol Chem 266:13041311.[PubMed]
87. Dennis PP. 1977. Influence of the stringent control system on the transcription of ribosomal ribonucleic acid and ribosomal protein genes in Escherichia coli. J Bacteriol 129:580588.[PubMed]
88. Dennis PP, Nomura M. 1974. Stringent control of ribosomal protein gene expression in Escherichia coli. Proc Natl Acad Sci USA 71:38193823.[PubMed][CrossRef]
89. Dennis PP, Nomura M. 1975. Stringent control of the transcriptional activities of ribosomal protein genes in E. coli. Nature (London) 255:460465.[PubMed][CrossRef]
90. Johnsen M, Christiansen T, Dennis P, Fiil N. 1982. Autogenous control: ribosomal protein L10-L12 complex binds to the leader region of its mRNA. EMBO J 1:9991004.[PubMed]
91. Liang S, Dennis PP, Bremer H. 1998. Expression of lacZ from the promoter of the Escherichia coli spc operon cloned into vectors carrying the W205 trp-lac fusion. J Bacteriol 180:60906100.[PubMed]
92. Liang S, Bipatnath M, Xu Y-C, Chen S-L, Dennis PP, Ehrenberg M, Bremer H. 1999. Activities of constitutive promoters in Escherichia coli. J Mol Biol 292:1937.[PubMed][CrossRef]
93. Keener J, Nomura M. 1996. Regulation of ribosome synthesis, p 14171431. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed., ASM Press, Washington, DC.
94. Maher D, Dennis P. 1977. In vivo transcription of E. coli genes coding for rRNA, ribosomal proteins and subunits of RNA polymerase: influence of the stringent control system. Mol Gen Genet 155:203211.[PubMed][CrossRef]
95. Dennis PP. 1984. Site specific deletion of regulatory sequences in a ribosomal protein-RNA polymerase operon in E. coli: effects on βand β'gene expression. J Biol Chem 259:32033209.
96. Dennis PP, Fiil N. 1979. Transcriptional and post-transcriptional control of RNA polymerase and ribosomal protein genes cloned on composite ColE1 plasmids in the bacterium Escherichia coli. J Biol Chem 254:75407547.[PubMed]
97. Dennis PP, Nene V, Glass RE. 1985. Autogenous post-transcriptional regulation of RNA polymerase βand β'subunit synthesis in Escherichia coli. J Bacteriol 161:803806.[PubMed]
98. Dykxhoorn DM, St. Pierre R, Linn T. 1996. Synthesis of the beta and beta' subunits of Escherichia coli RNA polymerase is autogenously regulated in vivo by both transcriptional and translational mechanisms. Mol Microbiol 19:483493.[PubMed][CrossRef]
99. Shepherd NS, Dennis PP, Bremer H. 2001. Cytoplasmic RNA polymerase in Escherichia coli. J Bacteriol 183:25272534. [PubMed][CrossRef]
100. Chamberlin MJ. 1976. Interactions of RNA polymerase with the DNA template, p 159191. In Losick R and Chamberlin M (ed), RNA Polymerase. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
101. Kingston R, Nierman W, Chamberlin M. 1981. A direct effect of guanosine tetraphosphate on pausing of Escherichia coli RNA polymerase during RNA chain elongation. J Biol Chem 256:27872797.[PubMed]
102. Müller K, Bremer H. 1969. Heterogeneous initiation and termination of enzymatically synthesized ribonucleic acid. J Mol Biol 43:89107.[PubMed][CrossRef]
103. Greenblatt J. 1984. Regulation of transcription termination in E. coli. Can J Biochem 62:7988.
104. Pato ML, von Meyenburg K. 1970. Residual RNA synthesis in Escherichia coli after inhibition of initiation of transcription by rifampicin. Cold Spring Harbor Symp Quant Biol 35:497504.
105. Bremer H, Berry L, Dennis PP. 1973. Regulation of ribonucleic acid synthesis in Escherichia coli B/r: An analysis of a shift-up. J Mol Biol 75:161179.[PubMed][CrossRef]
106. Dennis PP, Bremer H. 1973. A method for determination of the synthesis rate of stable and unstable ribonucleic acid in Escherichia coli. Anal Biochem 56:489501.[CrossRef]
107. Dennis PP, Bremer H. 1974. Regulation of ribonucleic acid synthesis in Escherichia coli B/r: an analysis of a shift up. III. Stable RNA synthesis rate and ribosomal RNA chain growth rate following a shift up. J Mol Biol 89:233239.[CrossRef]
108. Zhang X, Bremer H. 1996. Effects of Fis on ribosome synthesis and activity and on rRNA promoter activities in E. coli. J Mol Biol 259:2740.[PubMed][CrossRef]
109. Baracchini E, Bremer H. 1991. Control of rRNA synthesis in Escherchia coli at increased rrn gene dosage. J Biol Chem 266:1175311760.[PubMed]
110. Vogel U, Jensen F. 1995. Effects of the antiterminator BoxA on transcription elongation kinetics and ppGpp inhibition of transcription elongation in Escherichia coli. J Biol Chem 270:1833518340.[PubMed][CrossRef]
111. Vogel U, Jensen F. 1994. Effects of guanosine 3',5'-bisdiphosphate (ppGpp) on rate of transcription elongation in isoleucine-starved Escherichia coli. J Biol Chem 269:1623616241.[PubMed]
112. Albrechtsen B, Squires CL, Li S, Squires C. 1990. Antitermination of characterized transcription terminators by the Escherichia coli rrnG leader region. J Mol Biol 213:123134.[PubMed][CrossRef]
113. Li S, Squires CL, Squires C. 1984. Antitermination of E. coli rRNA transcription is caused by a control region segment containing a nut-like sequence. Cell 38:851860.[PubMed][CrossRef]
114. Nodell JR, Greenblatt J. 1993. Recognition of box A antitermination RNA by E. coli antitermination factor NusB and ribosomal protein S10. Cell 72:261268.[PubMed][CrossRef]
115. Aksoy S, Squires CL, Squires C. 1984. Evidence for antitermination in Escherichia coli rRNA transcription. J Bacteriol 159:260264.[PubMed]
116. Siehnel RJ, Morgan EA. 1983. Efficient read-through of Tn9 and IS1 by RNA polymerase molecules that initiate at rRNA promoters. J Bacteriol 153:672684.[PubMed]
117. Cole JR, Olsson CL, Hershey JWB, Grunberg-Monago M, Nomura M. 1987. Feedback regulation of rRNA synthesis in Escherichia coli. Requirement for initiation factor IF2. J Mol Biol 198:383392.[PubMed][CrossRef]
118. Nomura M, Gourse R, Baughman G. 1984. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53:75117.[PubMed][CrossRef]
119. Travers A. 1976. Modulation of RNA polymerase specificity by ppGpp. Mol Gen Genet 147:225232.[PubMed][CrossRef]
120. van Ooyen A, Gruber M, Jorgensen P. 1976. The mechanism of action of ppGpp on rRNA synthesis in vitro. Cell 8:123128.[PubMed][CrossRef]
121. Hernandez VJ, Bremer H. 1990. Guanosine tetraphosphate (ppGpp) dependence of the growth rate control of rrnB P1 promoter activity in Escherichia coli. J Biol Chem 265:1160511614.[PubMed]
122. Haseltine W, Block R, Gilbert W, Weber K. 1972. MSI and MSII made on ribosomes in the idling step of protein synthesis. Nature (London) 238:381384.[PubMed][CrossRef]
123. Lagosky P, Chang FN. 1980. Influence of amino acid starvation on guanosine 5'-diphosphate 3'-diphosphate basal level synthesis in Escherichia coli. J Bacteriol 144:499508.[PubMed]
124. Atherly A. 1979. Deletion of relA and relX has no effect on basal or carbon-downshift ppGpp synthesis, p 5366. In Koch G and Richter D (ed), Regulation of Macromolecular Synthesis by Low Molecular Weight Mediators. Academic Press, Inc., New York, NY.
125. Fehr S, Richter D. 1981. Stringent response of Bacillus stearothermophilus: evidence for the existence of two distinct guanosine 3',5'-polyphosphate synthetases. J Bacteriol 145:6873.[PubMed]
126. Richter D. 1979. Synthesis and degradation of the pleiotropic effector guanosine 3,5'-bis(diphosphate) in bacteria, p 8594. In Koch G and Richter D (ed), Regulation of Macromolecular Synthesis by Low Molecular Weight Mediators. Academic Press, Inc., New York, NY.
127. Hernandez VJ, Bremer H. 1991. Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem 266:59915999.[PubMed]
128. Murray D, Bremer H. 1996. Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J Mol Biol 259:4157.[CrossRef]
129. Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. 1991. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spot null mutations. J Biol Chem 266:59805990.[PubMed]
130. Wout P, Pu K, Sullivan, SM, Reese V, Zhou S, Lin B, Maddock JR. 2004. The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J Bacteriol 186:52495257.[PubMed][CrossRef]
131. Battesti A, Bouveret E. 2006. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 62:10481063.[CrossRef]
132. Norris T, Koch A. 1972. Effect of growth rates on the relative rates of messenger, ribosomal and transfer RNA in Escherichia coli. J Mol Biol 64:633649.[PubMed][CrossRef]
133. Fallon AM, Jinks CS, Yamamoto M, Nomura M. 1979. Expression of ribosomal protein genes cloned in a hybrid plasmid in Escherichia coli: gene dosage effects on synthesis of ribosomal proteins and ribosomal protein messenger ribonucleic acid. J Bacteriol 138:383396.[PubMed]
134. Lindahl L, Archer R, Zengel J. 1983. Transcription of the S10 ribosomal protein operon is regulated by an attenuator in the leader. Cell 33:241248.[PubMed][CrossRef]
135. Zacharias M, Göringer HU, Wagner R. 1989. Influence of the GCGC discriminator motif introduced into the ribosomal RNA P2- and lac promoter on growth-rate control and stringent sensitivity. EMBO J 8:33573363.[PubMed]
136. Zacharias M, Theissen G, Bradaczek C, Wagner R. 1991. Analysis of sequence elements important for the synthesis and control of ribosomal RNA in E. coli. Biochimie 73:699712.[PubMed][CrossRef]
137. Reddy PS, Raghavan A, Chatterji D. 1995. Evidence for ppGpp binding site on E. coli RNA polymerase: Proximity relationship with the rifampicin binding domain. Mol Microbiol 15:255265.[PubMed][CrossRef]
138. Toulokhonov I, Shulgina I, Hernandez VJ. 2001. Binding of the transcription effector, ppGpp, to E. coli RNA polymerase is allosteric, modular, and occurs near the N-terminus of the β'-subunit. J Biol Chem 12:12201225. [CrossRef]
139. Artsimovitch I, Patlan V, Sekine S, Vassylyeva MN, Hosaka T, Ochi K, Yokoyama S, Vassylyev DG. 2004. Structural basis for transcription regulation by alarmone ppGpp. Cell 117:299310.[PubMed][CrossRef]
140. Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL. 2004. A critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118:311322.[PubMed][CrossRef]
141. Zhang X, Dennis P, Ehrenberg M, Bremer H. 2002. Kinetic properties of rrn promoters in E. coli. Biochimie 84:981996.[PubMed][CrossRef]
142. Yuan D, Shen V. 1975. Stability of ribosomal and transfer ribonucleic acid in Escherichia coli B/r after treatment with ethylenedinitrilotetraacetic acid and rifampin. J Bacteriol 122:425432.[PubMed]
143. Lindahl L. 1975. Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. J Mol Biol 92:1537.[PubMed][CrossRef]
144. Pedersen S. 1984. In Escherichia coli individual genes are translated with different rates in vivo. Alfred Benzon Symp 19:101107.
145. Dalbow D, Young R. 1975. Synthesis time of β-galactosidase in Escherichia coli B/r as a function of growth rate. Biochem J 150:1320.[PubMed]
146. Gausing K. 1972. Efficiency of protein and messenger RNA synthesis in bacteriophage T4 infected cells of Escherichia coli. J Mol Biol 71:529545.[PubMed][CrossRef]
147. Pedersen S. 1984. Escherichia coli ribosomes translate in vivo with variable rate. EMBO J 3:28952898.[PubMed]
148. Engbaek F, Kjeldgaard NO, Maaloe O. 1973. Chain growth rate of b-galactosidase during exponential growth and amino acid starvation. J Mol Biol 75:109118.[PubMed][CrossRef]
149. Blanchard CS, Gonzalez RL, Kim HD, Chu S, Puglisi JD. 2004. tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 11:10081014.[CrossRef]
150. Blanchard, CS, Kim HD, Gonzalez RL, Jr, Puglisi JD, Chu S. 2004. tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci USA 101:1289312898. [CrossRef]
151. Rojiani M, Jacubowski H, Goldman E. 1990. Relationship between protein synthesis and concentration of charged and uncharged tRNATrp in Escherichia coli. Proc Natl Acad Sci USA 87:15111515. [PubMed][CrossRef]
152. Elf J, Ehrenberg M. 2005. Near-critical behavior of aminoacyl-tRNA pools in E. coli at rate-limiting supply of amino acids. Biophys J 88:132146.[PubMed][CrossRef]
153. Broda P. 1971. Der Aminosäurepool von Escherichia coli bei Aminosäureaushungerung. Monatsh Chem 102:811823.[CrossRef]
154. Brunschede H, Bremer H. 1971. Synthesis and breakdown of proteins in Escherichia coli during amino acid starvation. J Mol Biol 57:3557.[CrossRef]
155. VanBogelen RA, Neidhardt FC. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87:55895593.[PubMed][CrossRef]
156. Ehrenberg M, Kurland C. 1984. Costs of accuracy determined by a maximal growth rate constraint. Q Rev Biophys 17:4582.[PubMed][CrossRef]
157. Lovmar M, Ehrenberg M. 2006. Rate, accuracy, and cost of ribosomes in bacterial cells. Biochimie 88:951961.[PubMed][CrossRef]
158. Kruger MK, Pedersen S, Hagervald TG, Sorensen MA. 1998. The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J Mol Biol 284:621631.[PubMed][CrossRef]
159. Yegian C, Stent GS, Martin EM. 1966. Intracellular condition of Escherichia coli transfer RNA. Proc Natl Acad Sci USA 55:839846.[PubMed][CrossRef]
160. Dix DB, Thompson RC. 1986. Elongation factor Tu.guanosine 3'-diphosphate 5'-diphosphate complex increases the fidelity of proofreading in protein biosynthesis: mechanism for reducing translational errors introduced by amino acid starvation. Proc Natl Acad Sci USA 83:20272031. [PubMed][CrossRef]
161. Little R, Ryals J, Bremer H. 1983. Physiological characterization of Escherichia coli rpoB mutants with abnormal control of ribosome synthesis. J Bacteriol 155:11621170.[PubMed]
162. Sorensen MA, Jensen FK, Pedersen S. 1994. High concentrations of ppGpp decrease the RNA chain growth rate. Implications for protein synthesis and translational fidelity during amino acid starvation in Escherichia coli. J Mol Biol 236:441454.[PubMed][CrossRef]
163. Post LE, Strycharz GD, Nomura M, Lewis H, Dennis PP. 1979. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit β in Escherichia coli. Proc Natl Acad Sci USA 76:16971701.[PubMed][CrossRef]
164. Sharp PM, Li W. 1986. Codon usage in regulatory genes in Escherichia coli does not reflect selection for rare codons. Nucleic Acids Res 14:77377749.[PubMed][CrossRef]
165. Varenne S, Bue J, Llouber R, Lazdunski C. 1984. Translation is a non-uniform process: effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 180:549576.[PubMed][CrossRef]
166. Ikemura T. 1981. Correlations between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its mRNA genes. J Mol Biol 146:121.[PubMed][CrossRef]
167. Sorensen MA, Kurland CG, Pedersen S. 1989. Codon usage determines translation rate in Escherichia. J Mol Biol 207:365377.[PubMed][CrossRef]
168. Sorensen MA, Pedersen S. 1991. Absolute in vivo translation rates of individual codons in Escherichia coli. Two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J Mol Biol 222:265280.[PubMed][CrossRef]
169. Dennis PP. 1971. Regulation of stable RNA synthesis in Escherichia coli. Nat New Biol 232:4347.[PubMed][CrossRef]
170. Nierlich DP. 1972. Regulation of ribonucleic acid synthesis in growing bacterial cells. II. Control over the composition of newly made RNA. J Mol Biol 7:765777.[CrossRef]
171. Hardy S. 1975. The stoichiometry of ribosomal proteins of Escherichia coli. Mol Gen Genet 140:253274.[PubMed][CrossRef]
172. Gausing K. 1974. Ribosomal protein in E. coli: rate of synthesis and pool size at different growth rates. Mol Gen Genet 129:6175.[CrossRef]
173. Chandler M, Bird R, Caro L. 1975. The replication time of Escherichia coli K12 chromosome as a function of the cell doubling time. J Mol Biol 94:127132.[PubMed][CrossRef]
174. Furano A. 1975. Content of elongation factor Tu. Proc Natl Acad Sci USA 72:47804784.[PubMed][CrossRef]
175. Gordon J. 1970. Regulation of the in vivo synthesis of polypeptide chain elongation factors in Escherichia coli. Biochemistry 9:912917.[PubMed][CrossRef]
176. Lindahl L, Zengel J. 1982. Expression of ribosomal genes in bacteria. Adv Genet 21:53121.[PubMed][CrossRef]
177. Moazed D, Noller H. 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature (London) 342:142148.[PubMed][CrossRef]
178. Rheinberger H-J, Sternbach H, Nierhaus K. 1981. Three tRNA bonding sites on Escherichia coli ribosomes. Proc Natl Acad Sci USA 78:53105314.[PubMed][CrossRef]
179. Blumenthal R, Lemaux P, Neidhardt F, Dennis P. 1976. The effects of the relA gene on the synthesis of amino acyl tRNA synthetase and other transcription-translation proteins in Escherichia coli B. Mol Gen Genet 149:291296.[PubMed][CrossRef]
180. Furano A, Wittel F. 1976. Syntheses of elongation factors Tu and G are under stringent control in Escherichia coli. J Biol Chem 251:898901.[PubMed]
181. Reeh S, Pedersen S, Friesen J. 1976. Biosynthetic regulation of individual proteins in relA + and relA strains of Escherichia coli during amino acid starvation. Mol Gen Genet 149:279289.[PubMed][CrossRef]
182. Berlyn M. 1998. Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814884.
183. Louarn J, Patte J, Louarn JM. 1979. Map position of the replication terminus on the Escherichia coli chromosome. Mol Gen Genet 172:711.[PubMed][CrossRef]
184. Bouché JP. 1982. Physical map of a 470 kbase-pair region flanking the terminus of DNA replication in the Escherichia coli K12 genome. J Mol Biol 154:120.[PubMed][CrossRef]
185. Bouché JP, Gelugne JP, Louarn J, Louarn JM, Kaiser K. 1982. Relationship between the physical and genetic maps of a 470 kbase-pair region around the terminus of K12 DNA replication. J Mol Biol 154:2132.[PubMed][CrossRef]
186. Meselson M, Stahl F. 1958. The replication of DNA in Escherichia coli. Proc Natl Acad Sci USA 44:671682.[PubMed][CrossRef]
187. Newman C, Kubitschek H. 1978. Variations in periodic replication of the chromosome in Escherichia coli B/r TT. J Mol Biol 121:461471.[CrossRef]
188. Churchward G, Bremer H. 1977. Determination of deoxyribonucleic acid replication time in exponentially growing Escherichia coli B/r. J Bacteriol 130:12061213.[PubMed]
189. Pritchard RH, Zaritsky Z. 1970. Effect of thymine concentration on the replication velocity of DNA in a thymineless mutant of E. coli. Nature (London) 226:126131.[PubMed][CrossRef]
190. Zaritsky A, Pritchard RH. 1971. Replication time of the chromosome in thymineless mutants of Escherichia coli. J Mol Biol 60:6574.[PubMed][CrossRef]
191. Jones NC, Donachie WD. 1973. Chromosome replication, transciption and control of cell division in Escherichia coli B/r. Nat New Biol 243:100103.[PubMed][CrossRef]
192. Choung K-K, Estiva E, Bremer H. 1981. Genetic and physiological characterization of a spontaneous mutant of Escherichia coli B/r with aberrant control of deoxyribonucleic acid replication. J Bacteriol 145:12391248.[PubMed]
193. Margolin W. 2005. FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6:862871.[PubMed][CrossRef]
194. Bremer H, Chuang L. 1983. Cell division in Escherichia coli after changes in the velocity of DNA replication. J Theor Biol 102:101120.[CrossRef]
195. Frey J, Chandler M, Caro L. 1981. The initiation of chromosome replication in a dnaAts46 and dnaA+ strain at various temperatures. Mol Gen Genet 182:364366.[PubMed][CrossRef]
196. Grossman AD, Erickson JW, Gross C. 1984. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383390.[PubMed][CrossRef]
197. Farewell A, Neidhardt FC. 1998 Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol 180:47044710.[PubMed]
198. Bremer H, Dennis PP. 1975. Transition period following a nutritional shift-up in the bacterium Escherichia coli B/r: stable RNA and protein synthesis. J Theor Biol 52:365382.[PubMed][CrossRef]
199. Maaløe O. 1979. Regulation of the protein synthesizing machinery—ribosomes, tRNA, factors and so on, p 487542. In Goldberger R (ed), Biological Regulation and Development, vol 1. Plenum Publishing Corp., New York, NY.
200. Sueoka N, Yoshikawa Y. 1965. The chromosome of Bacillus subtilis. I. The theory of marker frequency analysis. Genetics 52:747757.[PubMed]
201. Alberghina L, Mariani L. 1980. Analysis for a cell model for Escherichia coli. J Math Biol 9:389.
202. Bremer H, Churchward G. 1978. Age fractionation of bacteria by membrane elution: relation between age distribution and age profile. J Theor Biol 74:6981.[PubMed][CrossRef]
203. Koch A. 1970. Overall control on the biosynthesis of ribosomes in growing bacteria. J Theor Biol 28:203231.[CrossRef]
204. Daneo-Moore L, Schockman GD. 1976. The bacterial cell surface in growth and cell division, p 653715. In Poste G and Nicholson GL (ed), The Synthesis, Assembly and Turnover of Cell Surface Components. Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands.
205. Kjeldgaard NO, Maaloe O, Schaechter M. 1958. The transition between different physiological states during balanced growth of Salmonella typhimurium. J Gen Microbiol 19:607616.[PubMed]
206. Zhang X, Bremer H. 1995. Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem 270:1118111189.[CrossRef]
ecosal.5.2.3.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosal.5.2.3
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosal.5.2.3
2008-10-07
2015-08-29
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Fig. 1.
Fig. 1.

Relationships between growth rate, cell size, chromosome replication, transcription, and macromolecular composition. (Left) Average cell size (mass per cell, Table 2 ) for B/r growing with a doubling time, , ranging from 100 to 20 min (growth rate, , ranging from 0.6 to 3.0 doublings/h) is depicted by the shaded ovals. An idealized cell cycle with the major cell cycle events, ranging from cell age 0.0 (a newborn daughter cell) to 1.0 (a dividing mother cell), is presented for each growth rate. The position of an average cell of age 0.41 (defined so that 50% of the cells in the population are younger and 50% are older) is indicated by A. The cell ages at initiation (I) and termination (T) of chromosome replication are also indicated. The dashed portion of the age axis indicates a period during which there is no DNA replication (no replication forks on the chromosome). The light line portions represent periods where there are two forks per chromosome structure, and the heavy line portions indicate the age periods during which there are six forks per chromosome structure. After termination, there are two chromosome structures per cell, which are segregated to the daughter cells at the subsequent cell division (at age 1.0). (Center) Average structure of the replicating chromosome or chromosomes in the culture. For 24- and 20-min cell cycles ( =24 or 20 min; bottom portion), the chromosome pattern indicates that replication has reinitiated and that each of these chromosome structures has multiple (six) replication forks. The amount of DNA in these structures in genome equivalents () is indicated (values from Table 2 ). The numbers of origins ( termini (), and forks () in this average genome are also indicated (from Table 2 ). (Right) The synthesis rates of rRNA (rR), tRNA (tR), r-protein mRNA (rpm), and other mRNA (om), expressed as a percent of total transcription, and the macromolecular composition are illustrated in bar graph form. The stable RNA fraction of the total transcription increases with increasing growth rate, the r-protein mRNA increases as a fraction of the total mRNA synthesis rate. Relative amounts of protein (P), DNA (D), RNA (R), and other components (O) as percent of the total cell mass are from the data in Table 2 .

Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Fig. 2.
Fig. 2.

Amounts and synthesis rates of molecular components in bacteria growing exponentially at rates between 0.6 and 2.5 doublings/h. The values of the RNA-to-protein (; panel a) and DNA-to protein (; panel b) ratios were calculated from lines 1, 2, and 3 in Table 2 . The ribosome efficiency (i.e., the protein synthesis rate per average ribosome; panel c, left ordinate) was calculated from the number of ribosomes per cell ( Table 3 ) and the rate of protein synthesis per cell. The latter was obtained fromthe amount of protein per cell ( Table 2 ) using the first-order rate equation. The peptide chain elongation rates (panel c, right ordinate) are 1.25-fold higher than the ribosome efficiency values and account for the fact that only about 80%of the ribosomes are active at any instant. The fraction of the total RNA synthesis rate that is stable RNA ormRNA ( or ; panel d) is from line 5, Table 3 . The rates of stable RNA and mRNA synthesis per amount of protein ( / or /; panel e) were calculated from the data in Table 3 , divided by the amount of protein per cell ( Table 2 ). The ppGpp per protein value (ppGpp/; panel f) is from Table 3 . The cell age at which chromosome replication is initiated at ( in fractions of a generation; panel g) is calculated from and ( Table 3 ) and equation 14 in Table 5 . The protein (or mass) per cell at replication initiation (panel h) was calculated from the initiation age ( ; panel g) and the cell mass immediately after cell division (age zero; i.e., = 0), using equation 17 in Table 5 . The latter was obtained from the average protein or mass content of cells (lines 10 or 13, respectively; Table 2 ), using equation 16 of Table 5 . The number of replication origins at the time of replication initiation ( ; panel i) was obtained from the values of and ( Table 3 ), using equation 15 of Table 5 . The initiation mass (panel j), given as protein (or mass) per replication origin at the time of replication initiation, was obtained as the quotient of the values for (or ) and shown in panels h and i.

Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Fig. 3.
Fig. 3.

Effect of varying gene concentration on the total rate of RNA synthesis, the rate of transcription per gene, and the concentration of free RNA polymerase (from reference 60 ). The relationships are derived from an idealized cell, where all promoters are identical and the transcription times of all genes are equal. The volume of the cell is one unit and concentrations are given as numbers of molecules per cell. The cell contains 2,000 RNA polymerase molecules, and the number of promoters per cell [ ] is varied between 0 and 400 (abscissa in all panels). is set at 30 initiations per minute per promoter, and is set at 200 RNA polymerase molecules per cell. All transcripts are 1,500 nucleotides long, and the RNA chain elongation rate is 50 nt/s. (a) The ordinate is the total steady-state rate of transcription, = · [ ], measured as transcripts/min per cell. (b) The ordinate is the steady state rate, , of transcription for one promoter measured as transcripts/min per promoter, calculated from equation 4 in reference 8 . (c) The ordinate is the free RNA polymerase concentration, [ ], calculated from equation 7 in reference 60 . For panels b and c the ordinates are shown in log scale to illustrate how and [ ] approach zero as [ ] increases and the total rate of transcription per cell, , approaches its plateau value.

Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 6

Basic parameters determining the bacterial growth rate

Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3
Generic image for table
Table 1

Parameters related to the growth and macromolecular composition of bacterial cells

Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3
Generic image for table
Table 2

Macromolecular composition of exponentially growing E. coli B/r as a function of growth rate at 37°C

Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3
Generic image for table
Table 3

Parameters pertaining to the macromolecular synthesis rates in exponentially growing B/r as a function of growth rate at 37°C

Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3
Generic image for table
Table 5

Equations relating the cell composition in exponential cultures to basic cell cycle parameters

Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3
Generic image for table
Table 4

Stoichiometric content of transcription-translation proteins in

Citation: Bremer, H, Dennis, P. 2008. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates, EcoSal Plus 2008; doi:10.1128/ecosal.5.2.3

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error