1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 2: Cell Architecture and Growth

Fimbriae: Classification and Biochemistry

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: David G. Thanassi1, Sean-Paul Nuccio2, Stephane Shu Kin So, and Andreas J. Bäumler
  • Editors: Michael S. Donnenberg3, Andreas J. Bäumler4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5120; 2: Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645; 3: University of Maryland, School of Medicine, Baltimore, MD; 4: University of California, Davis, Davis, CA
  • Received 26 March 2007 Accepted 28 May 2007 Published 23 August 2007
  • Address correspondence to Andreas J. Bäumler ajbaumler@ucdavis.edu
image of Fimbriae: Classification and Biochemistry
    Preview this reference work article:
    Zoom in
    Zoomout

    Fimbriae: Classification and Biochemistry, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/2/2_4_2_1_module-1.gif /docserver/preview/fulltext/ecosalplus/2/2/2_4_2_1_module-2.gif
  • Abstract:

    Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among and isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.

  • Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1

Key Concept Ranking

Type IV Secretion Systems
0.42692864
Type II Secretion System
0.41245744
Type 1 Fimbriae
0.4022024
Class 2 Fimbriae
0.37688944
Type 3 Fimbriae
0.36607683
Type 1 Pili
0.36397293
0.42692864

References

1. Holmgren A, Brändén C. 1989. Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342:248–251. [PubMed][CrossRef]
2. Duguid JP, Campbell I. 1969. Antigens of the type-1 fimbriae of salmonellae and other enterobacteria. J Med Microbiol 2:535–553. [PubMed][CrossRef]
3. Duguid JP, Anderson ES, Campbell I. 1966. Fimbriae and adhesive properties in salmonellae. J Pathol Bacteriol 92:107–138. [PubMed][CrossRef]
4. Boylan M, Smyth CJ, Scott JR. 1988. Nucleotide sequence of the gene encoding the major subunit of CS3 fimbriae of enterotoxigenic Escherichia coli. Infect Immun 56:3297–3300.[PubMed]
5. Brinton CC, Jr. 1959. Non-flagellar appendages of bacteria. Nature 183:782–786. [PubMed][CrossRef]
6. Ørskov I, F Ørskov. 1990. Serologic classification of fimbriae. Curr Top Microbiol Immunol 151:71–90.[PubMed]
7. Bradley DE. 1980. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol 26:146–154.[PubMed]
8. Duguid JP. 1959. Fimbriae and adhesive properties in Klebsiella strains. J Gen Microbiol 21:271–286. [PubMed][CrossRef]
9. Donnenberg MS, Giron JA, Nataro JP, Kaper JB. 1992. A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol 6:3427–3437. [PubMed][CrossRef]
10. Kisiela D, Sapeta A, Kuczkowski M, Stefaniak T, Wieliczko A, Ugorski M. 2005. Characterization of FimH adhesins expressed by Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum: reconstitution of mannose-binding properties by single amino acid substitution. Infect Immun 73:6187–6190. [PubMed][CrossRef]
11. Pugsley A. 1993. The complete general secretory pathway in Gram negative bacteria. Microbiol Rev 57:50–108.[PubMed]
12. Jones CH, Pinkner JS, Nicholes AV, Slonim LN, Abraham SN, Hultgren SJ. 1993. FimC is a periplasmic PapD-like chaperone that directs assembly of type 1 pili in bacteria. Proc Natl Acad Sci USA 90:8397–8401. [PubMed][CrossRef]
13. Labigne-Roussel AF, Lark D, Schoolnik G, Falkow S. 1984. Cloning and expression of an afimbrial adhesin (AFA-I) responsible for P blood group-independent, mannose-resistant hemagglutination from a pyelonephritic Escherichia coli strain. Infect Immun 46:251–259.[PubMed]
14. Norgren M, Baga M, Tennent JM, Normark S. 1987. Nucleotide sequence, regulation and functional analysis of the papC gene required for cell surface localization of Pap pili of uropathogenic Escherichia coli. Mol Microbiol 1:169–178. [PubMed][CrossRef]
15. Normark S, Lark D, Hull R, Norgren M, Baga M, O'Hanley P, Schoolnik G, Falkow S. 1983. Genetics of digalactoside-binding adhesin from a uropathogenic Escherichia coli strain. Infect Immun 41:942–949.[PubMed]
16. Knutton S, McConnell MM, Rowe B, McNeish AS. 1989. Adhesion and ultrastructural properties of human enterotoxigenic Escherichia coli producing colonization factor antigens III and IV. Infect Immun 57:3364–3371.[PubMed]
17. Pallen MJ, Wren BW. 1997. The HtrA family of serine proteases. Mol Microbiol 26:209–221. [PubMed][CrossRef]
18. Okamoto S, Ohmori M. 2002. The cyanobacterial PilT protein responsible for cell motility and transformation hydrolyzes ATP. Plant Cell Physiol 43:1127–1136. [PubMed][CrossRef]
19. Karch H, Heesemann J, Laufs R, O'Brien AD, Tacket CO, Levine MM. 1987. A plasmid of enterohemorrhagic Escherichia coli O157:H7 is required for expression of a new fimbrial antigen and for adhesion to epithelial cells. Infect Immun 55:455–461.[PubMed]
20. Torres AG, Kanack KJ, Tutt CB, Popov V, Kaper JB. 2004. Characterization of the second long polar (LP) fimbriae of Escherichia coli O157:H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol Lett 238:333–344. [PubMed][CrossRef]
21. Roosendaal E, Boots M, de Graaf FK. 1987. Two novel genes, fanA and fanB, involved in the biogenesis of K99 fimbriae. Nucleic Acids Res 15:5973–5984. [PubMed][CrossRef]
22. Jacob-Dubuisson F, Pinkner J, Xu Z, Striker R, Padmanhaban A, Hultgren SJ. 1994. PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proc Natl Acad Sci USA 91:11552–11556. [PubMed][CrossRef]
23. Qadri F, Svennerholm AM, Faruque AS, Sack RB. 2005. Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18:465–483. [PubMed][CrossRef]
24. Loferer H, Hammar M, Normark S. 1997. Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26:11–23. [PubMed][CrossRef]
25. Grund S, Seiler A. 1993. Electron microscopic studies of fimbriae and lectin phagocytosis of Salmonella typhimurium variety copenhagen (STMVC). Zentbl Veterinarmed B 40:105–112. (In German.)
26. Sauer FG, Remaut H, Hultgren SJ, Waksman G. 2004. Fiber assembly by the chaperone-usher pathway. Biochim Biophys Acta 1694:259–267. [PubMed][CrossRef]
27. Bieber D, Ramer SW, Wu CY, Murray WJ, Tobe T, Fernandez R, Schoolnik GK. 1998. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280:2114–2118. [PubMed][CrossRef]
28. Tukel C, Raffatellu M, Humphries AD, Wilson RP, Andrews-Polymenis HL, Gull T, Figueiredo JF, Wong MH, Michelsen KS, Akcelik M, Adams LG, Baumler AJ. 2005. CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol Microbiol 58:289–304. [PubMed][CrossRef]
29. Horiuchi T, Komano T. 1998. Mutational analysis of plasmid R64 thin pilus prepilin: the entire prepilin sequence is required for processing by type IV prepilin peptidase. J Bacteriol 180:4613–4620.[PubMed]
30. Strom MS, Lory S. 1992. Kinetics and sequence specificity of processing of prepilin by PilD, the type IV leader peptidase of Pseudomonas aeruginosa. J Bacteriol 174:7345–7351.[PubMed]
31. Torres AG, Giron JA, Perna NT, Burland V, Blattner FR, Avelino-Flores F, Kaper JB. 2002. Identification and characterization of lpfABCC'DE, a fimbrial operon of enterohemorrhagic Escherichia coli O157:H7. Infect Immun 70:5416–5427. [PubMed][CrossRef]
32. Kuehn MJ, Heuser J, Normark S, Hultgren SJ. 1992. P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356:252–255. [PubMed][CrossRef]
33. Khan AS, Kniep B, Oelschlaeger TA, Van Die I, Korhonen T, Hacker J. 2000. Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect Immun 68:3541–3547. [PubMed][CrossRef]
34. Bitter W, Koster M, Latijnhouwers M, de Cock H, Tommassen J. 1998. Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 27:209–219. [PubMed][CrossRef]
35. Martin C, Rousset E, De Greve H. 1997. Human uropathogenic and bovine septicaemic Escherichia coli strains carry an identical F17-related adhesin. Res Microbiol 148:55–64. [PubMed][CrossRef]
36. Donnenberg MS, Zhang HZ, Stone KD. 1997. Biogenesis of the bundle-forming pilus of enteropathogenic Escherichia coli: reconstitution of fimbriae in recombinant E. coli and role of DsbA in pilin stability: a review. Gene 192:33–38. [PubMed][CrossRef]
37. Vetsch M, Puorger C, Spirig T, Grauschopf U, Weber-Ban EU, Glockshuber R. 2004. Pilus chaperones represent a new type of protein-folding catalyst. Nature 431:329–333. [PubMed][CrossRef]
38. Froehlich BJ, Karakashian A, Sakellaris H, Scott JR. 1995. Genes for CS2 pili of enterotoxigenic Escherichia coli and their interchangeability with those for CS1 pili. Infect Immun 63:4849–4856.[PubMed]
39. Duguid JP. 1968. The function of bacterial fimbriae. Arch Immunol Ther Exp (Warsz) 16:173–188.[PubMed]
40. Nowicki B, Hart A, Coyne KE, Lublin DM, Nowicki S. 1993. Short consensus repeat-3 domain of recombinant decay-accelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cell-cell interaction. J Exp Med 178:2115–2121. [PubMed][CrossRef]
41. Kuehn MJ, Normark S, Hultgren SJ. 1991. Immunoglobulin-like PapD chaperone caps and uncaps interactive surfaces of nascently translocated pilus subunits. Proc Natl Acad Sci USA 88:10586–10590. [PubMed][CrossRef]
42. Old DC, Payne SB. 1971. Antigens of the type-2 fimbriae of salmonellae: “cross-reacting material” (CRM) of type-1 fimbriae. J Med Microbiol 4:215–225. [PubMed][CrossRef]
43. Townsend SM, Kramer NE, Edwards R, Baker S, Hamlin N, Simmonds M, Stevens K, Maloy S, Parkhill J, Dougan G, Baumler AJ. 2001. Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69:2894–2901. [PubMed][CrossRef]
44. Lee YM, DiGiuseppe PA, Silhavy TJ, Hultgren SJ. 2004. P pilus assembly motif necessary for activation of the CpxRA pathway by PapE in Escherichia coli. J Bacteriol 186:4326–4237. [PubMed][CrossRef]
45. Manting EH, Driessen AJ. 2000. Escherichia coli translocase: the unravelling of a molecular machine. Mol Microbiol 37:226–238. [PubMed][CrossRef]
46. Low D, Braaten B, van der Woude M. 1996. Fimbriae, p 146–157. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
47. Lund B, Lindberg F, Marklund BI, Normark S. 1987. The PapG protein is the alpha-D-galactopyranosyl-(1→4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 84:5898–5902. [PubMed][CrossRef]
48. Ramboarina S, Fernandes PJ, Daniell S, Islam S, Simpson P, Frankel G, Booy F, Donnenberg MS, Matthews S. 2005. Structure of the bundle-forming pilus from enteropathogenic Escherichia coli. J Biol Chem 280:40252–40260. [PubMed][CrossRef]
49. Jacob-Dubuisson F, Heuser J, Dodson K, Normark S, Hultgren SJ. 1993. Initiation of assembly and association of the structural elements of a bacterial pilus depend on two specialized tip proteins. EMBO J 12:837–847.[PubMed]
50. Evans DG, Evans DJ, Jr, Clegg S, Pauley JA. 1979. Purification and characterization of the CFA/I antigen of enterotoxigenic Escherichia coli. Infect Immun 25:738–748.[PubMed]
51. Mooi FR, de Graaf FK, van Embden JD. 1979. Cloning, mapping and expression of the genetic determinant that encodes for the K88ab antigen. Nucleic Acids Res 6:849–665. [PubMed][CrossRef]
52. Wolfgang M, Park HS, Hayes SF, van Putten JP, Koomey M. 1998. Suppression of an absolute defect in type IV pilus biogenesis by loss-of-function mutations in pilT, a twitching motility gene in Neisseria gonorrhoeae. Proc Natl Acad Sci USA 95:14973–14978. [PubMed][CrossRef]
53. Evans DG, Evans DJ, Jr. 1978. New surface-associated heat-labile colonization factor antigen (CFA/II) produced by enterotoxigenic Escherichia coli of serogroups O6 and O8. Infect Immun 21:638–647.[PubMed]
54. Kim SH, Kim YH. 2004. Escherichia coli O157:H7 adherence to HEp-2 cells is implicated with curli expression and outer membrane integrity. J Vet Sci 5:119–124.[PubMed]
55. Voegele K, Sakellaris H, Scott JR. 1997. CooB plays a chaperone-like role for the proteins involved in formation of CS1 pili of enterotoxigenic Escherichia coli. Proc Natl Acad Sci USA 94:13257–13261. [PubMed][CrossRef]
56. Boedeker EC. 2005. Vaccines for enterotoxigenic Escherichia coli: current status. Curr Opin Gastroenterol 21:15–19.[PubMed]
57. Bonci A, Chiesurin A, Muscas P, Rossolini GM. 1997. Relatedness and phylogeny within the family of periplasmic chaperones involved in the assembly of pili or capsule-like structures of gram-negative bacteria. J Mol Evol 44:299–309. [PubMed][CrossRef]
58. Durno C, Soni R, Sherman P. 1989. Adherence of vero cytotoxin-producing Escherichia coli serotype O157:H7 to isolated epithelial cells and brush border membranes in vitro: role of type 1 fimbriae (pili) as a bacterial adhesin expressed by strain CL-49. Clin Investig Med 12:194–200.
59. Maier B, Koomey M, Sheetz MP. 2004. A force-dependent switch reverses type IV pilus retraction. Proc Natl Acad Sci USA 101:10961–10966.[PubMed][CrossRef]
60. Parkkinen J, Rogers GN, Korhonen T, Dahr W, Finne J. 1986. Identification of the O-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fimbriated Escherichia coli. Infect Immun 54:37–42.[PubMed]
61. Kallenius G, Mollby R, Winberg J. 1980. In vitro adhesion of uropathogenic Escherichia coli to human periurethral cells. Infect Immun 28:972–980.[PubMed]
62. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856. [PubMed][CrossRef]
63. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856. [PubMed][CrossRef]
64. Merckel MC, Tanskanen J, Edelman S, Westerlund-Wikstrom B, Korhonen TK, Goldman A. 2003. The structural basis of receptor-binding by Escherichia coli associated with diarrhea and septicemia. J Mol Biol 331:897–905. [PubMed][CrossRef]
65. Merz AJ, So M, Sheetz MP. 2000. Pilus retraction powers bacterial twitching motility. Nature 407:98–102. [PubMed][CrossRef]
66. Olsen A, Jonsson A, Normark S. 1989. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655. [PubMed][CrossRef]
67. Schifferli DM, Beachey EH, Taylor RK. 1990. The 987P fimbrial gene cluster of enterotoxigenic Escherichia coli is plasmid encoded. Infect Immun 58:149–156.[PubMed]
68. Crowther LJ, Yamagata A, Craig L, Tainer JA, Donnenberg MS. 2005. The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J Biol Chem 280:24839–24848. [PubMed][CrossRef]
69. Olsen A, Arnqvist A, Hammar M, Sukupoli S, Normark S. 1993. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene for fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536. [PubMed][CrossRef]
70. Rippinger P, Bertschinger HU, Imberechts H, Nagy B, Sorg I, Stamm M, Wild P, Wittig W. 1995. Designations F18ab and F18ac for the related fimbrial types F107, 2134P and 8813 of Escherichia coli isolated from porcine postweaning diarrhoea and from oedema disease. Vet Microbiol 45:281–295. [PubMed][CrossRef]
71. Roberts JA, Marklund B-I, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Mollby R, Winberg J, Normark S. 1994. The Gal(α1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91:11889–11893. [PubMed][CrossRef]
72. Tsolis RM, Townsend SM, Miao EA, Miller SI, Ficht TA, Adams LG, Baumler AJ. 1999. Identification of a putative Salmonella enterica serotype typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect Immun 67:6385–6393.[PubMed]
73. Mooi FR, Harms N, Bakker D, de Graaf FK. 1981. Organization and expression of genes involved in the production of the K88ab antigen. Infect Immun 32:1155–1163.[PubMed]
74. Mullany P, Field AM, McConnell MM, Scotland SM, Smith HR, Rowe B. 1983. Expression of plasmids coding for colonization factor antigen II (CFA/II) and enterotoxin production in Escherichia coli. J Gen Microbiol 129:3591–3601.[PubMed]
75. Sauer FG, Pinkner JS, Waksman G, Hultgren SJ. 2002. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111:543–551. [PubMed][CrossRef]
76. Hazes B, Sastry PA, Hayakawa K, Read RJ, Irvin RT. 2000. Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 299:1005–1017. [PubMed][CrossRef]
77. Houwink AL, van Iterson W. 1950. Electron microscopical observations on bacterial cytology; a study on flagellation. Biochim Biophys Acta 5:10–44. [PubMed][CrossRef]
78. Jordan DM, Cornick N, Torres AG, Dean-Nystrom EA, Kaper JB, Moon HW. 2004. Long polar fimbriae contribute to colonization by Escherichia coli O157:H7 in vivo. Infect Immun 72:6168–6171. [PubMed][CrossRef]
79. Nagy B, Fekete PZ. 1999. Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet Res 30:259–284.[PubMed]
80. Baumler AJ, Tsolis RM, Heffron F. 1996. The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer’s patches. Proc Natl Acad Sci USA 93:279–283. [PubMed][CrossRef]
81. Macdonald DL, Pasloske BL, Paranchych W. 1993. Mutations in the fifth-position glutamate in Pseudomonas aeruginosa pilin affect the transmethylation of the N-terminal phenylalanine. Can J Microbiol 39:500–505.[PubMed]
82. Hung DL, Raivio TL, Jones CH, Silhavy TJ, Hultgren SJ. 2001. Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J 20:1508–1518. [PubMed][CrossRef]
83. Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM, Baumler AJ. 2005. The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 73:3358–3366. [PubMed][CrossRef]
84. Farinha MA, Conway BD, Glasier LM, Ellert NW, Irvin RT, Sherburne R, Paranchych W. 1994. Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect Immun 62:4118–4123.[PubMed]
85. Mu XQ, Jiang ZG, Bullitt E. 2005. Localization of a critical interface for helical rod formation of bacterial adhesion P-pili. J Mol Biol 346:13–20. [PubMed][CrossRef]
86. Crowther LJ, Anantha RP, Donnenberg MS. 2004. The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol Microbiol 52:67–79. [PubMed][CrossRef]
87. Dziva F, van Diemen PM, Stevens MP, Smith AJ, Wallis TS. 2004. Identification of Escherichia coli O157:H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150:3631–3645. [PubMed][CrossRef]
88. Klemm P. 1982. Primary structure of the CFA1 fimbrial protein from human enterotoxigenic Escherichia coli strains. Eur J Biochem 124:339–348.[PubMed]
89. Lawn AM, Meynell E. 1970. Serotypes of sex pili. J Hyg (London) 68:683–694. [PubMed][CrossRef]
90. Morris JA, Thorns CJ, Sojka WJ. 1980. Evidence for two adhesive antigens on the K99 reference strain Escherichia coli B41. J Gen Microbiol 118:107–113.[PubMed]
91. Taniguchi T, Fujino Y, Yamamoto K, Miwatani T, Honda T. 1995. Sequencing of the gene encoding the major pilin of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli and evidence that CFA/III is related to type IV pili. Infect Immun 63:724–728.[PubMed]
92. Buts L, Bouckaert J, De Genst E, Loris R, Oscarson S, Lahmann M, Messens J, Brosens E, Wyns L, De Greve H. 2003. The fimbrial adhesin F17-G of enterotoxigenic Escherichia coli has an immunoglobulin-like lectin domain that binds N-acetylglucosamine. Mol Microbiol 49:705–715. [PubMed][CrossRef]
93. Perna NT, Plunkett G, III, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533. [PubMed][CrossRef]
94. Lintermans P, Pohl P, Deboeck F, Bertels A, Schlicker C, Vandekerckhove J, Van Damme J, Van Montagu M, De Greve H. 1988. Isolation and nucleotide sequence of the F17-A gene encoding the structural protein of the F17 fimbriae in bovine enterotoxigenic Escherichia coli. Infect Immun 56:1475–1484.[PubMed]
95. Altboum Z, Levine MM, Galen JE, Barry EM. 2003. Genetic characterization and immunogenicity of coli surface antigen 4 from enterotoxigenic Escherichia coli when it is expressed in a Shigella live-vector strain. Infect Immun 71:1352–1360. [PubMed][CrossRef]
96. Anantha RP, McVeigh AL, Lee LH, Agnew MK, Cassels FJ, Scott DA, Whittam TS, Savarino SJ. 2004. Evolutionary and functional relationships of colonization factor antigen I and other class 5 adhesive fimbriae of enterotoxigenic Escherichia coli. Infect Immun 72:7190–7201. [PubMed][CrossRef]
97. Fein JE. 1981. Screening of uropathogenic Escherichia coli for expression of mannose-selective adhesins: importance of culture conditions. J Clin Microbiol 13:1088–1095.[PubMed]
98. Forest KT, Dunham SA, Koomey M, Tainer JA. 1999. Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol Microbiol 31:743–752. [PubMed][CrossRef]
99. Friedrich MJ, Kinsey NE, Vila J, Kadner RJ. 1993. Nucleotide sequence of a 13.9 kb segment of the 90 kb virulence plasmid of Salmonella typhimurium: the presence of fimbrial biosynthetic genes. Mol Microbiol 8:543–558. [PubMed][CrossRef]
100. Hacker J, Schmidt G, Hughes C, Knapp S, Marget M, Goebel W. 1985. Cloning and characterization of genes involved in production of mannose-resistant, neuraminidase-susceptible (X) fimbriae from a uropathogenic O6:K15:H31 Escherichia coli strain. Infect Immun 47:434–440.[PubMed]
101. Humphries AD, Raffatellu M, Winter S, Weening EH, Kingsley RA, Droleskey R, Zhang S, Figueiredo J, Khare S, Nunes J, Adams LG, Tsolis RM, Baumler AJ. 2003. The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol 48:1357–1376. [PubMed][CrossRef]
102. Xu XF, Tan YW, Lam L, Hackett J, Zhang M, Mok YK. 2004. NMR structure of a type IVb pilin from Salmonella typhi and its assembly into pilus. J Biol Chem 279:31599–31605. [PubMed][CrossRef]
103. Bock K, Breimer ME, Brignole A, Hansson GC, Karlsson K-A, Larson G, Leffler H, Samuelsson BE, Strömberg N, Svanborg-Edén C, Thurin J. 1985. Specificity of binding of a strain of uropathogenic Escherichia coli to Galα1→4Gal-containing glycosphingolipids. J Biol Chem 260:8545–8551.[PubMed]
104. Hamers AM, Pel HJ, Willshaw GA, Kusters JG, van der Zeijst BA, Gaastra W. 1989. The nucleotide sequence of the first two genes of the CFA/I fimbrial operon of human enterotoxigenic Escherichia coli. Microb Pathog 6:297–309. [PubMed][CrossRef]
105. Nowicki B, Moulds J, Hull R, Hull S. 1988. A hemagglutinin of uropathogenic Escherichia coli recognizes the Dr blood group antigen. Infect Immun 56:1057–1060.[PubMed]
106. Gong M, Makowski L. 1992. Helical structure of P pili from Escherichia coli. Evidence from X-ray fiber diffraction and scanning transmission electron microscopy. J Mol Biol 228:735–742. [PubMed][CrossRef]
107. Sokurenko EV, Courtney HS, Ohman DE, Klemm P, Hasty DL. 1994. FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J Bacteriol 176:748–755.[PubMed]
108. Collins RF, Frye SA, Kitmitto A, Ford RC, Tonjum T, Derrick JP. 2004. Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 Á resolution. J Biol Chem 279:39750–39756. [PubMed][CrossRef]
109. Collinson SK, Clouthier SC, Doran JL, Banser PA, Kay WW. 1996. Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178:662–667.[PubMed]
110. Clark CA, Heuzenroeder MW, Manning PA. 1992. Colonization factor antigen CFA/IV (PCF8775) of human enterotoxigenic Escherichia coli: nucleotide sequence of the CS5 determinant. Infect Immun 60:1254–1257.[PubMed]
111. Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Haner M, Taschner N, Burkhard P, Aebi U, Muller SA. 2002. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 323:845–857. [PubMed][CrossRef]
112. Rhen M, Vaisanen-Rhen V, Saraste M, Korhonen TK. 1986. Organization of genes expressing the blood-group-M-specific hemagglutinin of Escherichia coli: identification and nucleotide sequence of the M-agglutinin subunit gene. Gene 49:351–360. [PubMed][CrossRef]
113. Ben Nasr A, Olsen A, Sjobring U, Muller-Esterl W, Bjorck L. 1996. Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli. Mol Microbiol 20:927–935. [PubMed][CrossRef]
114. Bian Z, Brauner A, Li Y, Normark S. 2000. Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis 181:602–612. [PubMed][CrossRef]
115. Tonjum T, Koomey M. 1997. The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships: a review. Gene 192:155–163. [PubMed][CrossRef]
116. Bian Z, Normark S. 1997. Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J 16:5827–5836. [PubMed][CrossRef]
117. Boylan M, Coleman DC, Smyth CJ. 1987. Molecular cloning and characterization of the genetic determinant encoding CS3 fimbriae of enterotoxigenic Escherichia coli. Microb Pathog 2:195–209. [PubMed][CrossRef]
118. Dodson KW, Pinkner JS, Rose T, Magnusson G, Hultgren SJ, Waksman GJ. 2001. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743. [PubMed][CrossRef]
119. Hobbs M, Mattick JS. 1993. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 10:233–243. [PubMed][CrossRef]
120. Yoshida T, Furuya N, Ishikura M, Isobe T, Haino-Fukushima K, Ogawa T, Komano T. 1998. Purification and characterization of thin pili of IncI1 plasmids ColIb-P9 and R64: formation of PilV-specific cell aggregates by type IV pili. J Bacteriol 180:2842–2848.[PubMed]
121. Zhang HZ, Lory S, Donnenberg MS. 1994. A plasmid-encoded prepilin peptidase gene from enteropathogenic Escherichia coli. J Bacteriol 176:6885–6891.[PubMed]
122. Low AS, Holden N, Rosser T, Roe AJ, Constantinidou C, Hobman JL, Smith DG, Low JC, Gally DL. 2006. Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environ Microbiol 8:1033–1047. [PubMed][CrossRef]
123. McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, Meyer R, Bieri T, Ozersky P, McLellan M, Harkins CR, Wang C, Nguyen C, Berghoff A, Elliott G, Kohlberg S, Strong C, Du F, Carter J, Kremizki C, Layman D, Leonard S, Sun H, Fulton L, Nash W, Miner T, Minx P, Delehaunty K, Fronick C, Magrini V, Nhan M, Warren W, Florea L, Spieth J, Wilson RK. 2004. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36:1268–1274. [PubMed][CrossRef]
124. Nouwen N, Stahlberg H, Pugsley AP, Engel A. 2000. Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J 19:2229–2236. [PubMed][CrossRef]
125. Weiss RL. 1971. The structure and occurrence of pili (fimbriae) on Pseudomonas aeruginosa. J Gen Microbiol 67:135–143.[PubMed]
126. White AP, Collinson SK, Banser PA, Gibson DL, Paetzel M, Strynadka NC, Kay WW. 2001. Structure and characterization of AgfB from Salmonella enteritidis thin aggregative fimbriae. J Mol Biol 311:735–749. [PubMed][CrossRef]
127. Willshaw GA, Smith HR, McConnell MM, Rowe B. 1985. Expression of cloned plasmid regions encoding colonization factor antigen I (CFA/I) in Escherichia coli. Plasmid 13:8–16. [PubMed][CrossRef]
128. Yoshida T, Kim SR, Komano T. 1999. Twelve pil genes are required for biogenesis of the R64 thin pilus. J Bacteriol 181:2038–2043.[PubMed]
129. Zavialov AV, Berglund J, Pudney AF, Fooks LJ, Ibrahim TM, MacIntyre S, Knight SD. 2003. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113:587–596. [PubMed][CrossRef]
130. Zhang XL, Morris C, Hackett J. 1997. Molecular cloning, nucleotide sequence, and function of a site-specific recombinase encoded in the major “pathogenicity island” of Salmonella typhi. Gene 202:139–146. [PubMed][CrossRef]
131. Zhang XL, Tsui IS, Yip CM, Fung AW, Wong DK, Dai X, Yang Y, Hackett J, Morris C. 2000. Salmonella enterica serovar Typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun 68:3067–3073. [PubMed][CrossRef]
132. Hwang J, Bieber D, Ramer SW, Wu CY, Schoolnik GK. 2003. Structural and topographical studies of the type IV bundle-forming pilus assembly complex of enteropathogenic Escherichia coli. J Bacteriol 185:6695–6701. [PubMed][CrossRef]
133. Wolfgang M, van Putten JP, Hayes SF, Dorward D, Koomey M. 2000. Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J 19:6408–6418. [PubMed][CrossRef]
134. Wu SS, Wu J, Cheng YL, Kaiser D. 1998. The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol Microbiol 29:1249–1261. [PubMed][CrossRef]
135. Sohel I, Puente JL, Murray WJ, Vuopio-Varkila J, Schnoolnik GK. 1993. Cloning and characterization of the bundle–forming pilin gene of enteropathogenic Escherichia coli and its distributin in Salmonella serotypes. Mol Microbiol 7:563–575. [PubMed][CrossRef]
136. Soto GE, Dodson KW, Ogg D, Liu C, Heuser J, Knight S, Kihlberg J, Jones CH, Hultgren SJ. 1998. Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus. EMBO J 17:6155–6167. [PubMed][CrossRef]
137. Gillies RR, Duguid JP. 1958. The fimbrial antigens of Shigella flexneri. J Hyg (London) 56:303–318. [PubMed][CrossRef]
138. Giron JA, Ho ASY, Schoolnik GK. 1991. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254:710–713. [PubMed][CrossRef]
139. Scaletsky IC, Milani SR, Trabulsi LR, Travassos LR. 1988. Isolation and characterization of the localized adherence factor of enteropathogenic Escherichia coli. Infect Immun 56:2979–2983.[PubMed]
140. Strom MS, Lory S. 1993. Structure-function and biogenesis of type IV pili. Annu Rev Microbiol 47:565–596. [PubMed][CrossRef]
141. Stromberg N, Marklund BI, Lund B, Ilver D, Hamers A, Gaastra W, Karlsson KA, Normark S. 1990. Host-specificity of uropathogenic Escherichia coli depends on differences in binding specificity to Galα 1-4Gal-containing isoreceptors. EMBO J 9:2001–2010.[PubMed]
142. Stromberg N, Nyholm P-G, Pascher I, Normark S. 1991. Saccharide orientation at the cell surface affects glycolipid receptor function. Proc Natl Acad Sci USA 88:9340–9344. [PubMed][CrossRef]
143. Bian Z, Yan ZQ, Hansson GK, Thoren P, Normark S. 2001. Activation of inducible nitric oxide synthase/nitric oxide by curli fibers leads to a fall in blood pressure during systemic Escherichia coli infection in mice. J Infect Dis 183:612–619. [PubMed][CrossRef]
144. Cherny I, Rockah L, Levy-Nissenbaum O, Gophna U, Ron EZ, Gazit E. 2005. The formation of Escherichia coli curli amyloid fibrils is mediated by prion-like peptide repeats. J Mol Biol 352:245–252. [PubMed][CrossRef]
145. Pepe JC, Lory S. 1998. Amino acid substitutions in PilD, a bifunctional enzyme of Pseudomonas aeruginosa. Effect on leader peptidase and N-methyltransferase activities in vitro and in vivo. J Biol Chem 273:19120–19129. [PubMed][CrossRef]
146. Schmoll T, Hoschutzky H, Morschhauser J, Lottspeich F, Jann K, Hacker J. 1989. Analysis of genes coding for the sialic acid-binding adhesin and two other minor fimbrial subunits of the S-fimbrial adhesin determinant of Escherichia coli. Mol Microbiol 3:1735–1744. [PubMed][CrossRef]
147. Brinton CC, Jr. 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci 27:1003–1054.[PubMed]
148. Fairbrother JM, Lariviere S, Lallier R. 1986. New fimbrial antigen F165 from Escherichia coli serogroup O115 strains isolated from piglets with diarrhea. Infect Immun 51:10–15.[PubMed]
149. Jones CH, Pinkner JS, Roth R, Heuser J, Nicholes AV, Abraham SN, Hultgren SJ. 1995. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA 92:2081–2085. [PubMed][CrossRef]
150. Klemm P, Ørskov I, Ørskov F. 1982. F7 and type 1-like fimbriae from three Escherichia coli strains isolated from urinary tract infections: protein chemical and immunological aspects. Infect Immun 36:462–468.[PubMed]
151. Morrissey PM, Dougan G. 1986. Expression of a cloned 987P adhesion-antigen fimbrial determinant in Escherichia coli K-12 strain HB101. Gene 43:79–84. [PubMed][CrossRef]
152. Nougayrede JP, Fernandes PJ, Donnenberg MS. 2003. Adhesion of enteropathogenic Escherichia coli to host cells. Cell Microbiol 5:359–372. [PubMed][CrossRef]
153. Duguid JP, Smith IW, Dempster G, Edmunds PN. 1955. Non-flagellar filamentous appendages (fimbriae) in Bacterium coli. J Pathol Bacteriol 70:335–348. [PubMed][CrossRef]
154. Saulino ET, Thanassi DG, Pinkner JS, Hultgren SJ. 1998. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J 17:2177–2185. [PubMed][CrossRef]
155. Kehoe M, Sellwood R, Shipley P, Dougan G. 1981. Genetic analysis of K88-mediated adhesion of enterotoxigenic Escherichia coli. Nature 291:122–126. [PubMed][CrossRef]
156. Brinton CC, Jr, Gemski P, Jr, Carnahan J. 1964. A new type of bacterial pilus genetically controlled by the fertility factor of E. coli K 12 and its role in chromosome transfer. Proc Natl Acad Sci USA 52:776–783. [PubMed][CrossRef]
157. Kallenius G, Mollby R, Svenson SB, Winberg J, Hultberg H. 1980. Identification of a carbohydrate receptor recognized by uropathogenic Escherichia coli. Infection 8(Suppl. 3):288–293. [CrossRef]
158. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S. 1995. Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670. [PubMed][CrossRef]
159. Pasloske BL, Scraba DG, Paranchych W. 1989. Assembly of mutant pilins in Pseudomonas aeruginosa: formation of pili composed of heterologous subunits. J Bacteriol 171:2142–2147.[PubMed]
160. Li H, Qian L, Chen Z, Thahbot D, Liu G, Liu T, Thanassi DG. 2004. The outer membrane usher forms a twin-pore secretion complex. J Mol Biol 344:1397–1407. [PubMed][CrossRef]
161. Durand E, Bernadac A, Ball G, Lazdunski A, Sturgis JN, Filloux A. 2003. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J Bacteriol 185:2749–2758. [PubMed][CrossRef]
162. Jones CH, Dexter P, Evans AK, Liu C, Hultgren SJ, Hruby DE. 2002. Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J Bacteriol 184:5762–5771. [PubMed][CrossRef]
163. Levine MM, Ristaino P, Marley G, Smyth C, Knutton S, Boedeker E, Black R, Young C, Clements ML, Cheney C, et al. 1984. Coli surface antigens 1 and 3 of colonization factor antigen II-positive enterotoxigenic Escherichia coli: morphology, purification, and immune responses in humans. Infect Immun 44:409–420.[PubMed]
164. Thanassi DG, Saulino ET, Lombardo M-J, Roth R, Heuser J, Hultgren SJ. 1998. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc Natl Acad Sci USA 95:3146–3151. [PubMed][CrossRef]
165. Thomas LV, McConnell MM, Rowe B, Field AM. 1985. The possession of three novel coli surface antigens by enterotoxigenic Escherichia coli strains positive for the putative colonization factor PCF8775. J Gen Microbiol 131:2319–2326.[PubMed]
166. Humphries A, Deridder S, Baumler AJ. 2005. Salmonella enterica serotype Typhimurium fimbrial proteins serve as antigens during infection of mice. Infect Immun 73:5329–5338. [PubMed][CrossRef]
167. Rhen M, Klemm P, Korhonen TK. 1986. Identification of two new hemagglutinins of Escherichia coli, N-acetyl-D-glucosamine-specific fimbriae and a blood group M-specific agglutinin, by cloning the corresponding genes in Escherichia coli K-12. J Bacteriol 168:1234–1242.[PubMed]
168. Gomez-Duarte OG, Ruiz-Tagle A, Gomez DC, Viboud GI, Jarvis KG, Kaper JB, Giron JA. 1999. Identification of lngA, the structural gene of longus type IV pilus of enterotoxigenic Escherichia coli. Microbiology 145(Pt. 7):1809–1816.
169. Hull RA, Gill RE, Hsu P, Minshew BH, Falkow S. 1981. Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun 33:933–938.[PubMed]
170. Hudault S, Spiller OB, Morgan BP, Servin AL. 2004. Human diffusely adhering Escherichia coli expressing Afa/Dr adhesins that use human CD55 (decay-accelerating factor) as a receptor does not bind the rodent and pig analogues of CD55. Infect Immun 72:4859–4863. [PubMed][CrossRef]
171. Barnhart MM, Lynem J, Chapman MR. 2006. GlcNAc-6P levels modulate the expression of curli fibers by Escherichia coli. J Bacteriol 188:5212–5219 [CrossRef]
172. Baumler AJ, Heffron F. 1995. Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium. J Bacteriol 177:2087–2097.[PubMed]
173. Tobe T, Sasakawa C. 2002. Species-specific cell adhesion of enteropathogenic Escherichia coli is mediated by type IV bundle-forming pili. Cell Microbiol 4:29–42. [PubMed][CrossRef]
174. Vanmaele RP, Heerze LD, Armstrong GD. 1999. Role of lactosyl glycan sequences in inhibiting enteropathogenic Escherichia coli attachment. Infect Immun 67:3302–3307.[PubMed]
175. Marron MB, Smyth CJ. 1995. Molecular analysis of the cso operon of enterotoxigenic Escherichia coli reveals that CsoA is the adhesin of CS1 fimbriae and that the accessory genes are interchangeable with those of the cfa operon. Microbiology 141(Pt. 11):2849–2859. [CrossRef]
176. Ottow JC. 1975. Ecology, physiology, and genetics of fimbriae and pili. Annu Rev Microbiol 29:79–108. [PubMed][CrossRef]
177. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV. 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109:913–923. [PubMed][CrossRef]
178. Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P. 1998. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449.[PubMed]
179. Bardwell JCA. 1994. Building bridges: disulphide bond formation in the cell. Mol Microbiol 14:199–205. [PubMed][CrossRef]
180. Darfeuille A, Lafeuille B, Joly B, Cluzel R. 1983. A new colonization factor antigen (CFA/III) produced by enteropathogenic Escherichia coli O128:B12. Ann Microbiol (Paris) 134A:53–64.
181. Folkhard W, Marvin DA, Watts TH, Parenchych W. 1981. Structure of polar pili from Pseudomonas aeruginosa strain K and O. J Mol Biol 149:79–93. [PubMed][CrossRef]
182. Mattick JS. 2002. Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314. [PubMed][CrossRef]
183. Sakellaris H, Balding DP, Scott JR. 1996. Assembly proteins of CS1 pili of enterotoxigenic Escherichia coli. Mol Microbiol 21:529–541. [PubMed][CrossRef]
184. Swanson TN, Bilge SS, Nowicki B, Moseley SL. 1991. Molecular structure of the Dr adhesin: nucleotide sequence and mapping of receptor-binding domain by use of fusion constructs. Infect Immun 59:261–268.[PubMed]
185. Abraham SN, Sun D, Dale JB, Beachey EH. 1988. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336:682–684. [PubMed][CrossRef]
186. Maiti SN, DesGroseillers L, Fairbrother JM, Harel J. 1994. Analysis of genes coding for the major and minor fimbrial subunits of the Prs-like fimbriae F165(1) of porcine septicemic Escherichia coli strain 4787. Microb Pathog 16:15–25. [PubMed][CrossRef]
187. Blank TE, Donnenberg MS. 2001. Novel topology of BfpE, a cytoplasmic membrane protein required for type IV fimbrial biogenesis in enteropathogenic Escherichia coli. J Bacteriol 183:4435–4450. [PubMed][CrossRef]
188. Ramer SW, Bieber D, Schoolnik GK. 1996. BfpB, an outer membrane lipoprotein required for the biogenesis of bundle-forming pili in enteropathogenic Escherichia coli. J Bacteriol 178:6555–6563.[PubMed]
189. Slonim LN, Pinkner JS, Branden CI, Hultgren SJ. 1992. Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly. EMBO J 11:4747–4756.[PubMed]
190. Baddour LM, Christensen GD, Simpson WA, Beachey EH. 1990. Microbial adherence, p 9–25. In Douglas GL Mandell RG, Jr., and Bennet JE (ed), Principles and Practice of Infectious Disease, 3rd ed., vol. 2. Churchill Livingston, New York, NY.
191. Mu XQ, Bullitt E. 2006. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci USA 103:9861–9866. [PubMed][CrossRef]
192. Silva RM, Giraldi R, Keller R, Campos LC, Guth BE. 1996. Diffuse adherence, ST-I enterotoxin and CFA/IV colonization factor are encoded by the same plasmid in the Escherichia coli O29:H21 strain. Braz J Med Biol Res 29:969–976.[PubMed]
193. Brunder W, Khan AS, Hacker J, Karch H. 2001. Novel type of fimbriae encoded by the large plasmid of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H. Infect Immun 69:4447–4457. [PubMed][CrossRef]
194. Knutton S, Shaw RK, Anantha RP, Donnenberg MS, Zorgani AA. 1999. The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal. Mol Microbiol 33:499–509. [PubMed][CrossRef]
195. Hyland RM, Griener TP, Mulvey GL, Kitov PI, Srivastava OP, Marcato P, Armstrong GD. 2006. Basis for N-acetyllactosamine-mediated inhibition of enteropathogenic Escherichia coli localized adherence. J Med Microbiol 55:669–675. [PubMed][CrossRef]
196. Mooi FR, van Buuren M, Koopman G, Roosendaal B, de Graaf FK. 1984. K88ab gene of Escherichia coli encodes a fimbria-like protein distinct from the K88ab fimbrial adhesin. J Bacteriol 159:482–487.[PubMed]
197. Baga M, Norgren M, Normark S. 1987. Biogenesis of E. coli Pap pili: PapH, a minor pilin subunit involved in cell anchoring and length modulation. Cell 49:241–251. [PubMed][CrossRef]
198. Jokinen M, Ehnholm C, Vaisanen-Rhen V, Korhonen T, Pipkorn R, Kalkkinen N, Gahmberg CG. 1985. Identification of the major human sialoglycoprotein from red cells, glycophorin AM, as the receptor for Escherichia coli IH 11165 and characterization of the receptor site. Eur J Biochem 147:47–52. [PubMed][CrossRef]
199. Grund S, Weber A. 1988. A new type of fimbriae on Salmonella typhimurium. Zentbl Veterinarmed B 35:779–782.
200. Romling U, Bian Z, Hammar M, Sierralta WD, Normark S. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731.[PubMed]
201. Sakellaris H, Munson GP, Scott JR. 1999. A conserved residue in the tip proteins of CS1 and CFA/I pili of enterotoxigenic Escherichia coli that is essential for adherence. Proc Natl Acad Sci USA 96:12828–12832. [PubMed][CrossRef]
202. Taniguchi T, Yasuda Y, Tochikubo K, Yamamoto K, Honda T. 1999. The gene encoding the prepilin peptidase involved in biosynthesis of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli. Microbiol Immunol 43:853–861.[PubMed]
203. de Graaf FK, Krenn BE, Klaasen P. 1984. Organization and expression of genes involved in the biosynthesis of K99 fimbriae. Infect Immun 43:508–514.[PubMed]
204. Johnson JR, Stell AL, Scheutz F, O'Bryan TT, Russo TA, Carlino UB, Fasching C, Kavle J, Van Dijk L, Gaastra W. 2000. Analysis of the F antigen-specific papA alleles of extraintestinal pathogenic Escherichia coli using a novel multiplex PCR-based assay. Infect Immun 68:1587–1599. [PubMed][CrossRef]
205. Kirn TJ, Bose N, Taylor RK. 2003. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 49:81–92. [PubMed][CrossRef]
206. Korhonen TK, Vaisanen V, Saxen H, Hultberg H, Svenson SB. 1982. P-antigen-recognizing fimbriae from human uropathogenic Escherichia coli strains. Infect Immun 37:286–291.[PubMed]
207. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497. [PubMed][CrossRef]
208. Mainil JG, Gerardin J, Jacquemin E. 2000. Identification of the F17 fimbrial subunit- and adhesion-encoding (f17A and f17G) gene variants in necrotoxigenic Escherichia coli from cattle, pigs and humans. Vet Microbiol 73:327–335. [PubMed][CrossRef]
209. Perez-Casal J, Swartley JS, Scott JR. 1990. Gene encoding the major subunit of CS1 pili of human enterotoxigenic Escherichia coli. Infect Immun 58:3594–3600.[PubMed]
210. Jagannatha HM, Sharma UK, Ramaseshan T, Surolia A, Balganesh TS. 1991. Identification of carbohydrate structures as receptors for localised adherent enteropathogenic Escherichia coli. Microb Pathog 11:259–268. [PubMed][CrossRef]
211. Ørskov I, Ørskov F, Smith HW, Sojka WJ. 1975. The establishment of K99, a thermolabile, transmissible Escherichia coli K antigen, previously called “Kco,” possessed by calf and lamb enteropathogenic strains. Acta Pathol Microbiol Scand B 83:31–36.[PubMed]
212. Sherman P, Soni R, Petric M, Karmali M. 1987. Surface properties of the Vero cytotoxin-producing Escherichia coli O157:H7. Infect Immun 55:1824–1829.[PubMed]
213. van Die I, van Geffen B, Hoekstra W, Bergmans H. 1985. Type 1C fimbriae of a uropathogenic Escherichia coli strain: cloning and characterization of the genes involved in the expression of the 1C antigen and nucleotide sequence of the subunit gene. Gene 34:187–196. [PubMed][CrossRef]
214. Bann JG, Pinkner JS, Frieden C, Hultgren SJ. 2004. Catalysis of protein folding by chaperones in pathogenic bacteria. Proc Natl Acad Sci USA 101:17389–17393. [PubMed][CrossRef]
215. Imberechts H, De Greve H, Schlicker C, Bouchet H, Pohl P, Charlier G, Bertschinger H, Wild P, Vandekerckhove J, Van Damme J, et al. 1992. Characterization of F107 fimbriae of Escherichia coli 107/86, which causes edema disease in pigs, and nucleotide sequence of the F107 major fimbrial subunit gene, fedA. Infect Immun 60:1963–1971.[PubMed]
216. Taniguchi T, Akeda Y, Haba A, Yasuda Y, Yamamoto K, Honda T, Tochikubo K. 2001. Gene cluster for assembly of pilus colonization factor antigen III of enterotoxigenic Escherichia coli. Infect Immun 69:5864–5873. [PubMed][CrossRef]
217. Sakellaris H, Scott JR. 1998. New tools in an old trade: CS1 pilus morphogenesis. Mol Microbiol 30:681–687. [PubMed][CrossRef]
218. Lee KK, Sheth HB, Wong WY, Sherburne R, Paranchych W, Hodges RS, Lingwood CA, Krivan H, Irvin RT. 1994. The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol 11:705–713. [PubMed][CrossRef]
219. Giron JA, Levine MM, Kaper JB. 1994. Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli. Mol Microbiol 12:71–82. [PubMed][CrossRef]
220. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. [PubMed][CrossRef]
221. Saarela S, Taira S, Nurmiaho-Lassila EL, Makkonen A, Rhen M. 1995. The Escherichia coli G-fimbrial lectin protein participates both in fimbrial biogenesis and in recognition of the receptor N-acetyl-D-glucosamine. J Bacteriol 177:1477–1484.[PubMed]
222. High NJ, Hales BA, Jann K, Boulnois GJ. 1988. A block of urovirulence genes encoding multiple fimbriae and hemolysin in Escherichia coli O4:K12:H. Infect Immun 56:513–517.[PubMed]
223. Sjobring U, Pohl G, Olsen A. 1994. Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Mol Microbiol 14:443–452. [PubMed][CrossRef]
224. Korhonen TK, Vaisanen-Rhen V, Rhen M, Pere A, Parkkinen J, Finne J. 1984. Escherichia coli fimbriae recognizing sialyl galactosides. J Bacteriol 159:762–766.[PubMed]
225. Sajjan US, Sun L, Goldstein R, Forstner JF. 1995. Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J Bacteriol 177:1030–1038.[PubMed]
226. Wu SS, Wu J, Kaiser D. 1997. The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23:109–121. [PubMed][CrossRef]
227. Mooi FR, Wouters C, Wijfjes A, de Graaf FK. 1982. Construction and characterization of mutants impaired in the biosynthesis of the K88ab antigen. J Bacteriol 150:512–521.[PubMed]
228. Deng W, Liou SR, Plunkett G, III, Mayhew GF, Rose DJ, Burland V, Kodoyianni V, Schwartz DC, Blattner FR. 2003. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 185:2330–2337. [PubMed][CrossRef]
229. Strom MS, Lory S. 1991. Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly. J Biol Chem 266:1656–1664.[PubMed]
230. Stolpe H, Grund S, Schroder W. 1994. Purification and partial characterization of type 3 fimbriae from Salmonella typhimurium var. copenhagen. Zentbl Bakteriol 281:8–15.
231. Stone KD, Zhang HZ, Carlson LK, Donnenberg MS. 1996. A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol Microbiol 20:325–337. [PubMed][CrossRef]
232. Anderson KL, Billington J, Pettigrew D, Cota E, Simpson P, Roversi P, Chen HA, Urvil P, du Merle L, Barlow PN, Medof ME, Smith RA, Nowicki B, Le Bouguenec C, Lea SM, Matthews S. 2004. An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol Cell 15:647–657. [PubMed][CrossRef]
233. Bullitt E, Makowski L. 1995. Structural polymorphism of bacterial adhesion pili. Nature 373:164–167. [PubMed][CrossRef]
234. Mattick JS, Whitchurch CB, Alm RA. 1996. The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa: a review. Gene 179:147–155. [PubMed][CrossRef]
235. Peabody CR, Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP, Saier MH, Jr. 2003. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149:3051–3072. [PubMed][CrossRef]
236. Froehlich BJ, Karakashian A, Melsen LR, Wakefield JC, Scott JR. 1994. CooC and CooD are required for assembly of CS1 pili. Mol Microbiol 12:387–401. [PubMed][CrossRef]
237. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Colladovides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474. [PubMed][CrossRef]
238. Russell PW, Orndorff PE. 1992. Lesions in two Escherichia coli type 1 pilus genes alter pilus number and length without affecting receptor binding. J Bacteriol 174:5923–5935.[PubMed]
239. Roosendaal E, Jacobs AA, Rathman P, Sondermeyer C, Stegehuis F, Oudega B, de Graaf FK. 1987. Primary structure and subcellular localization of two fimbrial subunit-like proteins involved in the biosynthesis of K99 fibrillae. Mol Microbiol 1:211–217. [PubMed][CrossRef]
240. Burrows LL. 2005. Weapons of mass retraction. Mol Microbiol 57:878–888.[PubMed][CrossRef]
241. Rudel T, Scheuerpflug I, Meyer TF. 1995. Neisseria PilC protein identified as type 4 pilus tip-located adhesin. Nature 373:357–359. [PubMed][CrossRef]
242. Brooks HJ, O'Grady F, McSherry MA, Cattell WR. 1980. Uropathogenic properties of Escherichia coli in recurrent urinary-tract infection. J Med Microbiol 13:57–68. [PubMed][CrossRef]
243. Manning PA, Timmis KN, Stevenson G. 1985. Colonization factor antigen II (CFA/II) of enterotoxigenic Escherichia coli: molecular cloning of the CS3 determinant. Mol Gen Genet 200:322–327. [PubMed][CrossRef]
244. Russel M. 1998. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 279:485–499. [PubMed][CrossRef]
245. Van Loy CP, Sokurenko EV, Moseley SL. 2002. The major structural subunits of Dr and F1845 fimbriae are adhesins. Infect Immun 70:1694–1702. [PubMed][CrossRef]
246. Sohel I, Puente JL, Ramer SW, Bieber D, Wu CY, Schoolnik GK. 1996. Enteropathogenic Escherichia coli: identification of a gene cluster coding for bundle-forming pilus morphogenesis. J Bacteriol 178:2613–2628.[PubMed]
247. Zav'yalov VP, Chernovskaya TV, Navolotskaya EV, Karlyshev AV, MacIntyre S, Vasiliev AM, Abramov VM. 1995. Specific high affinity binding of human interleukin 1 beta by Caf1A usher protein of Yersinia pestis. FEBS Lett 371:65–68. [PubMed][CrossRef]
248. Zogaj X, Bokranz W, Nimtz M, Romling U. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158. [PubMed][CrossRef]
249. Austin JW, Sanders G, Kay WW, Collinson SK. 1998. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301. [PubMed][CrossRef]
250. Baumler AJ, Tsolis RM, Bowe FA, Kusters JG, Hoffmann S, Heffron F. 1996. The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun 64:61–68.[PubMed]
251. Seifert HS, Ajioka RS, Marchal C, Sparling PF, So M. 1988. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae pilin variation. Nature 336:392–395. [PubMed][CrossRef]
252. Van Die I, Van Megen I, Zuidweg E, Hoekstra W, De Ree H, Van den Bosch H, Bergmans H. 1986. Functional relationship among the gene clusters encoding F7(1), F7(2), F9, and F11 fimbriae of human uropathogenic Escherichia coli. J Bacteriol 167:407–410.[PubMed]
253. Caron J, Coffield LM, Scott JR. 1989. A plasmid-encoded regulatory gene, rns, required for expression of the CS1 and CS2 adhesins of enterotoxigenic Escherichia coli. Proc Natl Acad Sci USA 86:963–967. [PubMed][CrossRef]
254. Berthiaume F, Crost C, Labrie V, Martin C, Newman EB, Harel J. 2004. Influence of L-leucine and L-alanine on Lrp regulation of foo, coding for F1651, a Pap homologue. J Bacteriol 186:8537–8541. [PubMed][CrossRef]
255. Vignon G, Kohler R, Larquet E, Giroux S, Prevost MC, Roux P, Pugsley AP. 2003. Type IV-like pili formed by the type II secretion: specificity, composition, bundling, polar localization, and surface presentation of peptides. J Bacteriol 185:3416–3428. [PubMed][CrossRef]
256. Nowicki B, Labigne A, Moseley S, Hull R, Hull S, Moulds J. 1990. The Dr hemagglutinin, afimbrial adhesins AFA-I and AFA-III, and F1845 fimbriae of uropathogenic and diarrhea-associated Escherichia coli belong to a family of hemagglutinins with Dr receptor recognition. Infect Immun 58:279–281.[PubMed]
257. Leffler H, Svanborg-Eden C. 1981. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun 34:920–929.[PubMed]
258. Ramer SW, Schoolnik GK, Wu CY, Hwang J, Schmidt SA, Bieber D. 2002. The type IV pilus assembly complex: biogenic interactions among the bundle-forming pilus proteins of enteropathogenic Escherichia coli. J Bacteriol 184:3457–3465. [PubMed][CrossRef]
259. Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW. 1991. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173:4773–4781.[PubMed]
260. Cassels FJ, Wolf MK. 1995. Colonization factors of diarrheagenic E. coli and their intestinal receptors. J Ind Microbiol 15:214–226. [PubMed][CrossRef]
261. Dodson KW, Jacob-Dubuisson F, Striker RT, Hultgren SJ. 1993. Outer membrane PapC usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc Natl Acad Sci USA 90:3670–3674. [PubMed][CrossRef]
262. Keizer DW, Slupsky CM, Kalisiak M, Campbell AP, Crump MP, Sastry PA, Hazes B, Irvin RT, Sykes BD. 2001. Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J Biol Chem 276:24186–24193. [PubMed][CrossRef]
263. O'Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304. [PubMed][CrossRef]
264. Orndorff PE, Falkow S. 1984. Organization and expression of genes responsible for type 1 piliation in Escherichia coli. J Bacteriol 159:736–744.[PubMed]
265. Saulino ET, Bullitt E, Hultgren SJ. 2000. Snapshots of usher-mediated protein secretion and ordered pilus assembly. Proc Natl Acad Sci USA 97:9240–9245. [PubMed][CrossRef]
266. Buhler T, Hoschutzky H, Jann K. 1991. Analysis of colonization factor antigen I, an adhesin of enterotoxigenic Escherichia coli O78:H11: fimbrial morphology and location of the receptor-binding site. Infect Immun 59:3876–3882.[PubMed]
267. Marceau M, Forest K, Beretti JL, Tainer J, Nassif X. 1998. Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol Microbiol 27:705–715. [PubMed][CrossRef]
268. Evans DG, Silver RP, Evans DJ, Jr, Chase DG, Gorbach SL. 1975. Plasmid-controlled colonization factor associated with virulence in Escherichia coli enterotoxigenic for humans. Infect Immun 12:656–667.[PubMed]
269. Gaastra W, Svennerholm AM. 1996. Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 4:444–452. [PubMed][CrossRef]
270. Mulvey MA. 2002. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4:257–271. [PubMed][CrossRef]
271. Klemm P, Christiansen G. 1990. The fimD gene required for cell surface localization of Escherichia coli type 1 fimbriae. Mol Gen Genet 220:334–338. [PubMed][CrossRef]
272. Craig L, Pique ME, Tainer JA. 2004. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378. [PubMed][CrossRef]
273. Hung DL, Knight SD, Woods RM, Pinkner JS, Hultgren SJ. 1996. Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J 15:3792–3805.[PubMed]
274. Ishiwa A, Komano T. 2003. Thin pilus PilV adhesins of plasmid R64 recognize specific structures of the lipopolysaccharide molecules of recipient cells. J Bacteriol 185:5192–5199. [PubMed][CrossRef]
275. Sauer FG, Fütterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G. 1999. Structural basis of chaperone function and pilus biogenesis. Science 285:1058–1061. [PubMed][CrossRef]
276. Vaisanen-Rhen V. 1984. Fimbria-like hemagglutinin of Escherichia coli O75 strains. Infect Immun 46:401–407.[PubMed]
277. Thanassi DG. 2002. Ushers and secretins: channels for the secretion of folded proteins across the bacterial outer membrane. J Mol Microbiol Biotechnol 4:11–20.[PubMed]
278. Nagy B, Moon HW, Isaacson RE. 1977. Colonization of porcine intestine by enterotoxigenic Escherichia coli: selection of piliated forms in vivo, adhesion of piliated forms to epithelial cells in vitro, and incidence of a pilus antigen among porcine enteropathogenic E. coli. Infect Immun 16:344–352.[PubMed]
279. Shipley PL, Dougan G, Falkow S. 1981. Identification and cloning of the genetic determinant that encodes for the K88ac adherence antigen. J Bacteriol 145:920–925.[PubMed]
280. Marklund BI, Tennent JM, Garcia E, Hamers A, Baga M, Lindberg F, Gaastra W, Normark S. 1992. Horizontal gene transfer of the Escherichia coli pap and prs pili operons as a mechanism for the development of tissue-specific adhesive properties. Mol Microbiol 6:2225–2242. [PubMed][CrossRef]
281. Thanassi DG, Saulino ET, Hultgren SJ. 1998. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1:223–231. [PubMed][CrossRef]
282. Collinson SK, Parker JM, Hodges RS, Kay WW. 1999. Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. J Mol Biol 290:741–756. [PubMed][CrossRef]
283. Fidock DA, McNicholas PA, Lehrbach PR. 1989. Nucleotide sequence of the F41 fimbriae subunit gene in Escherichia coli B41. Nucleic Acids Res 17:2849. [CrossRef]
284. Pettigrew D, Anderson KL, Billington J, Cota E, Simpson P, Urvil P, Rabuzin F, Roversi P, Nowicki B, du Merle L, Le Bouguenec C, Matthews S, Lea SM. 2004. High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J Biol Chem 279:46851–46857. [PubMed][CrossRef]
285. Collinson SK, Emody L, Trust TJ, Kay WW. 1992. Thin aggregative fimbriae from diarrheagenic Escherichia coli. J Bacteriol 174:4490–4495.[PubMed]
286. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22. [PubMed][CrossRef]
287. Park HS, Wolfgang M, van Putten JP, Dorward D, Hayes SF, Koomey M. 2001. Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behaviour and adherence to host tissue. Mol Microbiol 42:293–307. [PubMed][CrossRef]
288. Roe AJ, Currie C, Smith DG, Gally DL. 2001. Analysis of type 1 fimbriae expression in verotoxigenic Escherichia coli: a comparison between serotypes O157 and O26. Microbiology 147:145–152.[PubMed]
289. Duguid JP, Gillies RR. 1958. Fimbriae and haemagglutinating activity in Salmonella, Klebsiella, Proteus, and Chromobacterium. J Pathol Bacteriol 75:519–520.
290. van Embden JD, de Graaf FK, Schouls LM, Teppema JS. 1980. Cloning and expression of a deoxyribonucleic acid fragment that encodes for the adhesive antigen K99. Infect Immun 29:1125–1133.[PubMed]
291. Srimanote P, Paton AW, Paton JC. 2002. Characterization of a novel type IV pilus locus encoded on the large plasmid of locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun 70:3094–3100. [PubMed][CrossRef]
292. Yano T, Leite Dda S, de Camargo IJ, Pestana de Castro AF. 1986. A probable new adhesive factor (F42) produced by enterotoxigenic Escherichia coli isolated from pigs. Microbiol Immunol 30:495–508.[PubMed]
293. Zhang HZ, Donnenberg MS. 1996. DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli. Mol Microbiol 21:787–97. [PubMed][CrossRef]
294. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Krogh A, Larsen TS, Leather S, Moule S, O'Gaora P, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852. [PubMed][CrossRef]
295. Starks AM, Froehlich BJ, Jones TN, Scott JR. 2006. Assembly of CS1 pili: the role of specific residues of the major pilin, CooA. J Bacteriol 188:231–239. [PubMed][CrossRef]
296. Doig P, Sastry PA, Hodges RS, Lee KK, Paranchych W, Irvin RT. 1990. Inhibition of pilus-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili. Infect Immun 58:124–130.[PubMed]
297. Folkesson A, Advani A, Sukupolvi S, Pfeifer JD, Normark S, Lofdahl S. 1999. Multiple insertions of fimbrial operons correlate with the evolution of Salmonella serovars responsible for human disease. Mol Microbiol 33:612–622. [PubMed][CrossRef]
298. Mainil JG, Jacquemin E, Pohl P, Fairbrother JM, Ansuini A, Le Bouguenec C, Ball HJ, De Rycke J, Oswald E. 1999. Comparison of necrotoxigenic Escherichia coli isolates from farm animals and from humans. Vet Microbiol 70:123–135. [PubMed][CrossRef]
299. Ørskov I, Ørskov F, Sojka WJ, Leach JM. 1961. Simultaneous occurrence of E. coli B and L antigens in strains from diseased swine Influence of cultivation temperature Two new E coli K antigens: K 87 and K 88. Acta Pathol Microbiol Scand 53:404–422.[PubMed]
300. Sung MA, Fleming K, Chen HA, Matthews S. 2001. The solution structure of PapGII from uropathogenic Escherichia coli and its recognition of glycolipid receptors. EMBO Rep 2:621–627. [PubMed][CrossRef]
301. Weissman SJ, Chattopadhyay S, Aprikian P, Obata-Yasuoka M, Yarova-Yarovaya Y, Stapleton A, Ba-Thein W, Dykhuizen D, Johnson JR, Sokurenko EV. 2006. Clonal analysis reveals high rate of structural mutations in fimbrial adhesins of extraintestinal pathogenic Escherichia coli. Mol Microbiol 59:975–988. [PubMed][CrossRef]
302. Anantha RP, Stone KD, Donnenberg MS. 2000. Effects of bfp mutations on biogenesis of functional enteropathogenic Escherichia coli type IV pili. J Bacteriol 182:2498–2506. [PubMed][CrossRef]
303. Hung CS, Bouckaert J, Hung D, Pinkner J, Widberg C, DeFusco A, Auguste CG, Strouse R, Langermann S, Waksman G, Hultgren SJ. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44:903–915. [PubMed][CrossRef]
304. Poole ST, McVeigh AL, Anantha RP, Lee LH, Akay YM, Pontzer EA, Scott DA, Bullitt E, Savarino SJ. 2007. Donor strand complementation governs intersubunit interaction of fimbriae of the alternate chaperone pathway. Mol Microbiol 63:1372–1384. [PubMed][CrossRef]
305. Shinagawa H, Taniguchi T, Yamaguchi O, Yamamoto K, Honda T. 1993. Cloning of the genes that control formation of the fimbrial colonization factor antigen III (CFA/III) from an enterotoxigenic Escherichia coli. Microbiol Immunol 37:689–694.[PubMed]
306. Cravioto A, Tello A, Villafan H, Ruiz J, del Vedovo S, Neeser JR. 1991. Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J Infect Dis 163:1247–1255.[PubMed]
307. Bilge SS, Clausen CR, Lau W, Moseley SL. 1989. Molecular characterization of a fimbrial adhesin, F1845, mediating diffuse adherence of diarrhea-associated Escherichia coli to HEp-2 cells. J Bacteriol 171:4281–4289.[PubMed]
308. Craig L, Taylor RK, Pique ME, Adair BD, Arvai AS, Singh M, Lloyd SJ, Shin DS, Getzoff ED, Yeager M, Forest KT, Tainer JA. 2003. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11:1139–1150. [PubMed][CrossRef]
309. Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487–1492. [PubMed][CrossRef]
310. Pichel MG, Binsztein N, Qadri F, Giron JA. 2002. Type IV longus pilus of enterotoxigenic Escherichia coli: occurrence and association with toxin types and colonization factors among strains isolated in Argentina. J Clin Microbiol 40:694–697. [PubMed][CrossRef]
311. Bilge SS, Apostol JM, Jr, Fullner KJ, Moseley SL. 1993. Transcriptional organization of the F1845 fimbrial adhesin determinant of Escherichia coli. Mol Microbiol 7:993–1006. [PubMed][CrossRef]
312. Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066. [PubMed][CrossRef]
313. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201.[PubMed]
314. Low AS, Dziva F, Torres AG, Martinez JL, Rosser T, Naylor S, Spears K, Holden N, Mahajan A, Findlay J, Sales J, Smith DG, Low JC, Stevens MP, Gally DL. 2006. Cloning, expression, and characterization of fimbrial operon F9 from enterohemorrhagic Escherichia coli O157:H7. Infect Immun 74:2233–2244. [PubMed][CrossRef]
315. Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA. 1995. Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature 378:32–38. [PubMed][CrossRef]
316. Soto GE, Hultgren SJ. 1999. Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181:1059–1071.[PubMed]
317. Hammar M, Bian Z, Normark S. 1996. Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci USA 93:6562–6566. [PubMed][CrossRef]
318. Kallenius G, Svenson S, Mollby R, Cedergren B, Hultberg H, Winberg J. 1981. Structure of carbohydrate part of receptor on human uroepithelial cells for pyelonephritogenic Escherichia coli. Lancet ii:604–606. [CrossRef]
319. Wittig W, Prager R, Stamm M, Streckel W, Tschape H. 1994. Expression and plasmid transfer of genes coding for the fimbrial antigen F107 in porcine Escherichia coli strains. Zentbl Bakteriol 281:130–139.
320. Kuehn MJ, Ogg DJ, Kihlberg J, Slonim LN, Flemmer K, Bergfors T, Hultgren SJ. 1993. Structural basis of pilus subunit recognition by the PapD chaperone. Science 262:1234–1241. [PubMed][CrossRef]
321. Robinson LS, Ashman EM, Hultgren SJ, Chapman MR. 2006. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59:870–881. [PubMed][CrossRef]
ecosalplus.2.4.2.1.citations
ecosalplus/2/2
content/journal/ecosalplus/10.1128/ecosalplus.2.4.2.1
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.2.4.2.1
2007-08-23
2017-09-26

Abstract:

Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among and isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Type 1 fimbriae of serotype Typhimurium are encoded by a gene cluster (B) that is orthologous to genes encoding type 2 fimbriae of serotype Gallinarum (A) and a cryptic fimbrial operon () in (C). Type 1 fimbriae of are encoded by an operon (D) that is paralogous to the serotype Typhimurium operon.

Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Members can be subdivided into two families: the classical chaperone-usher family and the alternate chaperone-usher family. The classical chaperone-usher family can be further subdivided into subfamilies 1 through 6. Usher amino acid sequences were aligned with MacVector 7.2 ClustalW to generate an unrooted phenogram. Pairwise distancing, neighbor joining, and plotting were performed with the PROTDIST, NEIGHBOR, and DRAWTREE programs, respectively, of the PHYLIP 3.65 software package with default settings. STy, serotype Typhi; STm, serotype Typhimurium; K12, K-12; EAEC, enteroaggregative ; EHEC, enterohemorrhagic ; REPEC, rabbit enteropathogenic .

Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The operon encoding curli production in serotype Typhimurium is shown at the top ( 112 ). Numbers below indicate the percentages of amino acid sequence identity of proteins encoded by individual serotype Typhimurium genes to their counterparts in serotype Enteritidis, serotype Typhi, , K-12, and O157:H7.

Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Superscript letters indicate the following: a, pseudogenes are present in serotype Typhi (CT18 and/or TY2); b, pseudogenes are present in serotype Paratyphi A; c, pseudogenes are present in serotypes Typhi and Paratyphi A; d, pseudogenes are present in serotypes Typhi and Typhimurium.

Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

(A) Negatively stained electron micrograph of expressing P fimbriae. (B) Freeze-etch electron micrograph of a P pilus fiber showing the distal-tip fibrillum and the helical rod. To the right of the micrograph is a cartoon representation of the fiber and a topology diagram depicting the interaction of pilin subunits by donor strand exchange. Each subunit consists of an Ig-like fold and an N-terminal extension. The N-terminal extension completes the Ig fold of the preceding subunit. (C) Negatively stained electron micrograph of expressing CS1. (D) Negatively stained electron micrograph of expressing curli fimbriae. (E) Negatively stained electron micrograph of EPEC expressing BFP, indicated by the arrows, together with atomic-resolution models for the BFP fiber in ribbon and surface representations. In the ribbon representation, the bundlin subunits in each strand of the three-start helix are depicted in yellow, red, and blue. Each subunit consists of an extended N-terminal α-helix and a globular C-terminal head domain. In the surface representation, the hydrophobic N terminus that packs into the center of the fiber is depicted in gray, and the α-ß loop, the D-region, and the core of the C-terminal head domain are depicted in green, yellow, and blue, respectively. Panels A, B, C, D, and E were modified or reprinted from references 101 a, 194 and 320 a, 244 , 214 a, and 284 , respectively, with permission of the publishers.

Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Classification of fimbriae by hemagglutination

Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1
Generic image for table
Table 2

Serological classification of fimbriae

Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1
Generic image for table
Table 3

Type IV fimbriae present in and

Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1
Generic image for table
Table 4

Fimbrial antigens commonly expressed in vitro by clinical isolates of ETEC and UPEC

Citation: Thanassi D, Nuccio S, Shu Kin So S, Bäumler A. 2007. Fimbriae: Classification and Biochemistry, EcoSal Plus 2007; doi:10.1128/ecosalplus.2.4.2.1

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error