1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

ATP Synthesis by Oxidative Phosphorylation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: Steven B. Vik1
  • Editor: Valley Stewart2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376; 2: University of California, Davis, Davis, CA
  • Received 30 May 2007 Accepted 06 August 2007 Published 19 October 2007
  • Address correspondence to Steven B. Vik svik@mail.smu.edu
image of ATP Synthesis by Oxidative Phosphorylation
    Preview this reference work article:
    Zoom in
    Zoomout

    ATP Synthesis by Oxidative Phosphorylation, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/2/3_2_3_module-1.gif /docserver/preview/fulltext/ecosalplus/2/2/3_2_3_module-2.gif
  • Abstract:

    The FF-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of αβγδε . Traditionally they were divided into two physically separable units: an F that catalyzes ATP hydrolysis (αβγδε) and a membrane-bound F sector that transports protons ( ). In terms of rotary function, the subunits can be divided into rotor subunits (γε ) and stator subunits (αβδ ). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and subunits, and part of the proton channel in subunit . Among the rotor subunits, the subunits form a ring in the membrane, and interact with subunit to form the proton channel. Subunits γ and ε bind to the -ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.

  • Citation: Vik S. 2007. ATP Synthesis by Oxidative Phosphorylation, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.3

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.45218
Transcription Start Site
0.3760468
Bacterial Secretion Systems
0.37227654
Ribosome Binding Site
0.33056253
Integral Membrane Proteins
0.3298436
0.45218

References

1. Weber J. 2006. ATP synthase: subunit-subunit interactions in the stator stalk. Biochim Biophys Acta 1757:1162–1170. [PubMed][CrossRef]
2. Allison WS. 1998. F1-ATPase: a molecular motor that hydrolyzes ATP with sequential opening and closing of catalytic sites coupled to rotation of its γ subunit. Acc Chem Res 31:819–826. [CrossRef]
3. Cross RL. 1981. The mechanism and regulation of ATP synthesis by F1-ATPases. Annu Rev Biochem 50:681–714. [PubMed][CrossRef]
4. Kinosita K, Adachi K, Itoh H. 2004. Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu Rev Biophys Biomol Struct 33:245–268. [PubMed][CrossRef]
5. Weber J, Senior AE. 1997. Catalytic mechanism of F1-ATPase. Biochim Biophys Acta 1319:19–58. [PubMed][CrossRef]
6. Hatefi Y. 1993. ATP synthesis in mitochondria. Eur J Biochem 218:759–767. [PubMed][CrossRef]
7. Senior AE. 1988. ATP synthesis by oxidative phosphorylation. Physiol Rev 68:177–231. [PubMed]
8. Deckers-Hebestreit G, Altendorf K. 1996. The FoF1-type ATP synthases of bacteria: structure and function of the Fo complex. Annu Rev Microbiol 50:791–824. [PubMed][CrossRef]
9. Hoppe J, Sebald W. 1984. The proton conducting Fo-part of bacterial ATP synthases. Biochim Biophys Acta 768:1–27. [PubMed]
10. Boyer PD. 1997. The ATP synthase—a splendid molecular machine. Annu Rev Biochem 66:717–749. [PubMed][CrossRef]
11. Capaldi RA, Aggeler R. 2002. Mechanism of the F1Fo-type ATP synthase, a biological rotary motor. Trends Biochem Sci 27:154–160. [PubMed][CrossRef]
12. Dimroth P, von Ballmoos C, Meier T. 2006. Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series. EMBO Rep 7:276–282. [PubMed][CrossRef]
13. Downie JA, Gibson F, Cox GB. 1979. Membrane adenosine triphosphatases of prokaryotic cells. Annu Rev Biochem 48:103–131. [PubMed][CrossRef]
14. Engelbrecht S, Junge W. 1997. ATP synthase: a tentative structural model. FEBS Lett 414:485–491. [PubMed][CrossRef]
15. Fillingame RH. 1990. Molecular mechanics of ATP synthesis by F1Fo-type H+-translocating ATP synthasesho, p 345–391. In Krulwich TA (ed), The Bacteria, vol. 12. Academic Press, New York, NY.
16. Futai M, Noumi T, Maeda M. 1989. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem 58:111–136. [PubMed][CrossRef]
17. Nakamoto RK, Ketchum CJ, al-Shawi MK. 1999. Rotational coupling in the FoF1 ATP synthase. Annu Rev Biophys Biomol Struct 28:205–234. [PubMed][CrossRef]
18. Senior AE. 1990. The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Biophys Chem 19:7–41. [PubMed][CrossRef]
19. Yoshida M, Muneyuki E, Hisabori T. 2001. ATP synthase—a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677. [PubMed][CrossRef]
20. Berlyn MK. 1998. Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814–984. [PubMed]
21. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474. [PubMed][CrossRef]
22. Gunsalus RP, Brusilow WS, Simoni RD. 1982. Gene order and gene-polypeptide relationships of the proton-translocating ATPase operon (unc) of Escherichia coli. Proc Natl Acad Sci USA 79:320–324. [PubMed][CrossRef]
23. Curtis SE. 1987. Genes encoding the β and ε subunits of the proton-translocating ATPase from Anabaena sp. strain PCC 7120. J Bacteriol 169:80–86. [PubMed]
24. McCarn DF, Whitaker RA, Alam J, Vrba JM, Curtis SE. 1988. Genes encoding the α, γ, δ, and four Fo subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 170:3448–3458. [PubMed]
25. Falk G, Hampe A, Walker JE. 1985. Nucleotide sequence of the Rhodospirillum rubrum atp operon. Biochem J 228:391–407. [PubMed]
26. Falk G, Walker JE. 1988. DNA sequence of a gene cluster coding for subunits of the Fo membrane sector of ATP synthase in Rhodospirillum rubrum. Support for modular evolution of the F1 and Fo sectors. Biochem J 254:109–122. [PubMed]
27. Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glockner FO, Lupas AN, Amann R, Klenk HP. 2004. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902. [PubMed][CrossRef]
28. Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen J, Seshadri R, Ren Q, Wu M, Utterback TR, Smith S, Lewis M, Khouri H, Zhang C, Niu H, Lin Q, Ohashi N, Zhi N, Nelson W, Brinkac LM, Dodson RJ, Rosovitz MJ, Sundaram J, Daugherty SC, Davidsen T, Durkin AS, Gwinn M, Haft DH, Selengut JD, Sullivan SA, Zafar N, Zhou L, Benahmed F, Forberger H, Halpin R, Mulligan S, Robinson J, White O, Rikihisa Y, Tettelin H. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2:e21. [CrossRef]
29. Jeong H, Yim JH, Lee C, Choi SH, Park YK, Yoon SH, Hur CG, Kang HY, Kim D, Lee HH, Park KH, Park SH, Park HS, Lee HK, Oh TK, Kim JF. 2005. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res 33:7066–7073. [PubMed][CrossRef]
30. Kuhnert WL, Quivey RG, Jr. 2003. Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904. J Bacteriol 185:1525–1533. [PubMed][CrossRef]
31. Walker JE, Saraste M, Gay NJ. 1984. The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. Biochim Biophys Acta 768:164–200. [PubMed]
32. Bulygin VV, Duncan TM, Cross RL. 1998. Rotation of the ε subunit during catalysis by Escherichia coli FoF1-ATP synthase. J Biol Chem 273:31765–31769. [PubMed][CrossRef]
33. Jones PC, Fillingame RH. 1998. Genetic fusions of subunit c in the Fo sector of H+-transporting ATP synthase. Functional dimers and trimers and determination of stoichiometry by cross-linking analysis. J Biol Chem 273:29701–29705. [PubMed][CrossRef]
34. Dmitriev O, Jones PC, Jiang W, Fillingame RH. 1999. Structure of the membrane domain of subunit b of the Escherichia coli FoF1 ATP synthase. J Biol Chem 274:15598–15604. [PubMed][CrossRef]
35. Ma J, Flynn TC, Cui Q, Leslie AG, Walker JE, Karplus M. 2002. A dynamic analysis of the rotation mechanism for conformational change in F1-ATPase. Structure 10:921–931. [PubMed][CrossRef]
36. Girvin ME, Hermolin J, Pottorf R, Fillingame RH. 1989. Organization of the Fo sector of Escherichia coli H+-ATPase: the polar loop region of subunit c extends from the cytoplasmic face of the membrane. Biochemistry 28:4340–4343. [PubMed][CrossRef]
37. Hicks DB, Wang Z, Wei Y, Kent R, Guffanti AA, Banciu H, Bechhofer DH, Krulwich TA. 2003. A tenth atp gene and the conserved atpI gene of a Bacillus atp operon have a role in Mg2+ uptake. Proc Natl Acad Sci USA 100:10213–10218. [PubMed][CrossRef]
38. Gresser MJ, Myers JA, Boyer PD. 1982. Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model. J Biol Chem 257:12030–12038. [PubMed]
39. Brusilow WS, Porter AC, Simoni RD. 1983. Cloning and expression of uncI, the first gene of the unc operon of Escherichia coli. J Bacteriol 155:1265–1270. [PubMed]
40. Schneppe B, Deckers-Hebestreit G, Altendorf K. 1991. Detection and localization of the i protein in Escherichia coli cells using antibodies. FEBS Lett 292:145–147. [PubMed][CrossRef]
41. Gay NJ. 1984. Construction and characterization of an Escherichia coli strain with a uncI mutation. J Bacteriol 158:820–825. [PubMed]
42. Schneppe B, Deckers-Hebestreit G, McCarthy JE, Altendorf K. 1991. Translation of the first gene of the Escherichia coli unc operon. Selection of the start codon and control of initiation efficiency. J Biol Chem 266:21090–21098. [PubMed]
43. Gay NJ, Walker JE. 1981. The atp operon: nucleotide sequence of the promoter and the genes for the membrane proteins, and the δ subunit of Escherichia coli ATP-synthase. Nucleic Acids Res 9:3919–3926. [PubMed][CrossRef]
44. Kanazawa H, Mabuchi K, Futai M. 1982. Nucleotide sequence of the promoter region of the gene cluster for proton-translocating ATPase from Escherichia coli and identification of the active promotor. Biochem Biophys Res Commun 107:568–575. [PubMed][CrossRef]
45. Nielsen J, Jorgensen BB, van Meyenburg KV, Hansen FG. 1984. The promoters of the atp operon of Escherichia coli K12. Mol Gen Genet 193:64–71. [PubMed][CrossRef]
46. Porter AC, Brusilow WS, Simoni RD. 1983. Promoter for the unc operon of Escherichia coli. J Bacteriol 155:1271–1278. [PubMed]
47. von Meyenburg K, Jorgensen BB, Nielsen J, Hansen FG. 1982. Promoters of the atp operon coding for the membrane-bound ATP synthase of Escherichia coli mapped by Tn10 insertion mutations. Mol Gen Genet 188:240–248. [PubMed][CrossRef]
48. Kasimoglu E, Park SJ, Malek J, Tseng CP, Gunsalus RP. 1996. Transcriptional regulation of the proton-translocating ATPase (atpIBEFHAGDC) operon of Escherichia coli: control by cell growth rate. J Bacteriol 178:5563–5567. [PubMed]
49. Brusilow WS, Klionsky DJ, Simoni RD. 1982. Differential polypeptide synthesis of the proton-translocating ATPase of Escherichia coli. J Bacteriol 151:1363–1371. [PubMed]
50. McCarthy JE. 1988. Expression of the unc genes in Escherichia coli. J Bioenerg Biomembr 20:19–39. [PubMed][CrossRef]
51. McCarthy JE. 1990. Post-transcriptional control in the polycistronic operon environment: studies of the atp operon of Escherichia coli. Mol Microbiol 4:1233–1240. [PubMed][CrossRef]
52. Jones HM, Brajkovich CM, Gunsalus RP. 1983. In vivo 5′ terminus and length of the mRNA for the proton-translocating ATPase (unc) operon of Escherichia coli. J Bacteriol 155:1279–1287. [PubMed]
53. Patel AM, Dunn SD. 1992. RNase E-dependent cleavages in the 5′ and 3′ regions of the Escherichia coli unc mRNA. J Bacteriol 174:3541–3548. [PubMed]
54. Schaefer EM, Hartz D, Gold L, Simoni RD. 1989. Ribosome-binding sites and RNA-processing sites in the transcript of the Escherichia coli unc operon. J Bacteriol 171:3901–3908. [PubMed]
55. McCarthy JE, Gerstel B, Surin B, Wiedemann U, Ziemke P. 1991. Differential gene expression from the Escherichia coli atp operon mediated by segmental differences in mRNA stability. Mol Microbiol 5:2447–2458. [PubMed][CrossRef]
56. Lagoni OR, von Meyenburg K, Michelsen O. 1993. Limited differential mRNA inactivation in the atp (unc) operon of Escherichia coli. J Bacteriol 175:5791–5797. [PubMed]
57. Schramm H-C, Schneppe B, Birkenhager R, McCarthy JEG. 1996. The promoter-proximal, unstable IB region of the atp mRNA of Escherichia coli: an independently degraded region that can act as a destabilizing element. Biochim Biophys Acta 1307:162–170. [PubMed]
58. Patel AM, Dunn SD. 1995. Degradation of Escherichia coli uncB mRNA by multiple endonucleolytic cleavages. J Bacteriol 177:3917–3922. [PubMed]
59. Patel AM, Dallmann HG, Skakoon EN, Kapala TD, Dunn SD. 1990. The Escherichia coli unc transcription terminator enhances expression of uncC, encoding the ε subunit of F1-ATPase, from plasmids by stabilizing the transcript. Mol Microbiol 4:1941–1946. [PubMed][CrossRef]
60. Ziemke P, McCarthy JE. 1992. The control of mRNA stability in Escherichia coli: manipulation of the degradation pathway of the polycistronic atp mRNA. Biochim Biophys Acta 1130:297–306. [PubMed]
61. McCarthy JE, Schairer HU, Sebald W. 1985. Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation. EMBO J 4:519–526. [PubMed]
62. McCarthy JE, Sebald W, Gross G, Lammers R. 1986. Enhancement of translational efficiency by the Escherichia coli atpE translational initiation region: its fusion with two human genes. Gene 41:201–206. [PubMed][CrossRef]
63. Lang V, Gualerzi C, McCarthy JE. 1989. Ribosomal affinity and translational initiation in Escherichia coli. In vitro investigations using translational initiation regions of differing efficiencies from the atp operon. J Mol Biol 210:659–663. [PubMed][CrossRef]
64. Gerstel B, McCarthy JE. 1989. Independent and coupled translational initiation of atp genes in Escherichia coli: experiments using chromosomal and plasmid-borne lacZ fusions. Mol Microbiol 3:851–859. [PubMed][CrossRef]
65. Hellmuth K, Rex G, Surin B, Zinck R, McCarthy JE. 1991. Translational coupling varying in efficiency between different pairs of genes in the central region of the atp operon of Escherichia coli. Mol Microbiol 5:813–824. [PubMed][CrossRef]
66. Rex G, Surin B, Besse G, Schneppe B, McCarthy JE. 1994. The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes. J Biol Chem 269:18118–18127. [PubMed]
67. Angov E, Brusilow WS. 1994. Effects of deletions in the uncA-uncG intergenic regions on expression of uncG, the gene for the γ subunit of the Escherichia coli F1Fo-ATPase. Biochim Biophys Acta 1183:499–503. [PubMed][CrossRef]
68. Pati S, DiSilvestre D, Brusilow WS. 1992. Regulation of the Escherichia coli uncH gene by mRNA secondary structure and translational coupling. Mol Microbiol 6:3559–3566. [PubMed][CrossRef]
69. Dallmann HG, Dunn SD. 1994. Translation through an uncDC mRNA secondary structure governs the level of uncC expression in Escherichia coli. J Bacteriol 176:1242–1250. [PubMed]
70. Dunn SD, Dallmann HG. 1990. An upstream uncD sequence modulates translation of Escherichia coli uncC. J Bacteriol 172:2782–2784. [PubMed]
71. Klionsky DJ, Skalnik DG, Simoni RD. 1986. Differential translation of the genes encoding the proton-translocating ATPase of Escherichia coli. J Biol Chem 261:8096–8099. [PubMed]
72. McCarthy JE, Schauder B, Ziemke P. 1988. Post-transcriptional control in Escherichia coli: translation and degradation of the atp operon mRNA. Gene 72:131–139. [PubMed][CrossRef]
73. Akiyama Y, Kihara A, Ito K. 1996. Subunit a of proton ATPase Fo sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett 399:26–28. [PubMed][CrossRef]
74. Kanazawa H, Kiyasu T, Noumi T, Futai M. 1984. Overproduction of subunit a of the Fo component of proton-translocating ATPase inhibits growth of Escherichia coli cells. J Bacteriol 158:300–306. [PubMed]
75. von Meyenburg K, Jorgensen BB, Michelsen O, Sorensen L, McCarthy JE. 1985. Proton conduction by subunit a of the membrane-bound ATP synthase of Escherichia coli revealed after induced overproduction. EMBO J 4:2357–2363. [PubMed]
76. Eya S, Maeda M, Tomochika K, Kanemasa Y, Futai M. 1989. Overproduction of truncated subunit a of H+-ATPase causes growth inhibition of Escherichia coli. J Bacteriol 171:6853–6858. [PubMed]
77. von Meyenburg K, Jorgensen BB, van Deurs B. 1984. Physiological and morphological effects of overproduction of membrane-bound ATP synthase in Escherichia coli K-12. EMBO J 3:1791–1797. [PubMed]
78. Miroux B, Walker JE. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298. [PubMed][CrossRef]
79. Matten SR, Schneider TD, Ringquist S, Brusilow WS. 1998. Identification of an intragenic ribosome binding site that affects expression of the uncB gene of the Escherichia coli proton-translocating ATPase (unc) operon. J Bacteriol 180:3940–3945. [PubMed]
80. Arechaga I, Miroux B, Runswick MJ, Walker JE. 2003. Over-expression of Escherichia coli F1Fo-ATPase subunit a is inhibited by instability of the uncB gene transcript. FEBS Lett 547:97–100. [PubMed][CrossRef]
81. Brusilow WS. 1993. Assembly of the Escherichia coli F1Fo ATPase, a large multimeric membrane-bound enzyme. Mol Microbiol 9:419–424. [PubMed][CrossRef]
82. Klionsky DJ, Simoni RD. 1985. Assembly of a functional F1 of the proton-translocating ATPase of Escherichia coli. J Biol Chem 260:11200–11206. [PubMed]
83. Dunn SD, Futai M. 1980. Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli F1 ATPase. J Biol Chem 255:113–118. [PubMed]
84. Smith JB, Sternweis PC. 1977. Purification of membrane attachment and inhibitory subunits of the proton translocating adenosine triphosphatase from Escherichia coli. Biochemistry 16:306–311. [PubMed][CrossRef]
85. Sternweis PC. 1978. The ε subunit of Escherichia coli coupling factor 1 is required for its binding to the cytoplasmic membrane. J Biol Chem 253:3123–3128. [PubMed]
86. Cox GB, Downie JA, Langman L, Senior AE, Ash G, Fayle DR, Gibson F. 1981. Assembly of the adenosine triphosphatase complex in Escherichia coli: assembly of Fo is dependent on the formation of specific F1 subunits. J Bacteriol 148:30–42. [PubMed]
87. Klionsky DJ, Brusilow WS, Simoni RD. 1983. Assembly of a functional Fo of the proton-translocating ATPase of Escherichia coli. J Biol Chem 258:10136–10143. [PubMed]
88. Aris JP, Klionsky DJ, Simoni RD. 1985. The Fo subunits of the Escherichia coli F1Fo-ATP synthase are sufficient to form a functional proton pore. J Biol Chem 260:11207–11215. [PubMed]
89. Fillingame RH, Porter B, Hermolin J, White LK. 1986. Synthesis of a functional Fo sector of the Escherichia coli H+-ATPase does not require synthesis of the α or β subunits of F1. J Bacteriol 165:244–251. [PubMed]
90. Angov E, Ng TC, Brusilow WS. 1991. Effect of the δ subunit on assembly and proton permeability of the Fo proton channel of Escherichia coli F1Fo ATPase. J Bacteriol 173:407–411. [PubMed]
91. Monticello RA, Angov E, Brusilow WS. 1992. Effects of inducing expression of cloned genes for the Fo proton channel of the Escherichia coli F1Fo ATPase. J Bacteriol 174:3370–3376. [PubMed]
92. Monticello RA, Brusilow WS. 1994. Role of the δ subunit in enhancing proton conduction through the Fo of the Escherichia coli F1Fo ATPase. J Bacteriol 176:1383–1389. [PubMed]
93. Pati S, Brusilow WS, Deckers-Hebestreit G, Altendorf K. 1991. Assembly of the Fo proton channel of the Escherichia coli F1Fo ATPase: low proton conductance of reconstituted Fo sectors synthesized and assembled in the absence of F1. Biochemistry 30:4710–4714. [PubMed][CrossRef]
94. Schneider E, Altendorf K. 1985. All three subunits are required for the reconstitution of an active proton channel (Fo) of Escherichia coli ATP synthase (F1Fo). EMBO J 4:515–518. [PubMed]
95. Schneider E, Altendorf K. 1984. Subunit b of the membrane moiety (Fo) of ATP synthase (F1Fo) from Escherichia coli is indispensable for H+ translocation and binding of the water-soluble F1 moiety. Proc Natl Acad Sci USA 81:7279–7283. [PubMed][CrossRef]
96. Hermolin J, Fillingame RH. 1995. Assembly of Fo sector of Escherichia coli H+ ATP synthase. Interdependence of subunit insertion into the membrane. J Biol Chem 270:2815–2817. [PubMed][CrossRef]
97. Vik SB, Simoni RD. 1987. F1Fo-ATPase from Escherichia coli with mutant Fo subunits. Partial purification and immunoprecipitation of F1Fo complexes. J Biol Chem 262:8340–8346. [PubMed]
98. Ono S, Sone N, Yoshida M, Suzuki T. 2004. ATP synthase that lacks Fo a-subunit: isolation, properties, and indication of Fo b2-subunits as an anchor rail of a rotating c-ring. J Biol Chem 279:33409–33412. [PubMed][CrossRef]
99. Dunn SD, Chandler J. 1998. Characterization of a b2δ complex from Escherichia coli ATP synthase. J Biol Chem 273:8646–8651. [PubMed][CrossRef]
100. Rodgers AJ, Wilkens S, Aggeler R, Morris MB, Howitt SM, Capaldi RA. 1997. The subunit δ-subunit b domain of the Escherichia coli F1Fo ATPase. The b subunits interact with F1 as a dimer and through the δ subunit. J Biol Chem 272:31058–31064. [PubMed][CrossRef]
101. Sorgen PL, Bubb MR, McCormick KA, Edison AS, Cain BD. 1998. Formation of the b subunit dimer is necessary for interaction with F1-ATPase. Biochemistry 37:923–932. [PubMed][CrossRef]
102. Senior AE, Muharemagic A, Wilke-Mounts S. 2006. Assembly of the stator in Escherichia coli ATP synthase. Complexation of α subunit with other F1 subunits is prerequisite for δ subunit binding to the N-terminal region of α. Biochemistry 45:15893–15902. [PubMed][CrossRef]
103. van Bloois E, Jan Haan G, de Gier J-W, Oudega B, Luirink J. 2004. F1Fo ATP synthase subunit c is targeted by the SRP to YidC in the E. coli inner membrane. FEBS Lett 576:97–100. [PubMed][CrossRef]
104. van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ. 2004. F1Fo ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol 165:213–222. [PubMed][CrossRef]
105. Yi L, Jiang F, Chen M, Cain B, Bolhuis A, Dalbey RE. 2003. YidC is strictly required for membrane insertion of subunits a and c of the F1Fo ATP synthase and SecE of the SecYEG translocase. Biochemistry 42:10537–10544. [PubMed][CrossRef]
106. Kol S, Turrell BR, de Keyzer J, van der Laan M, Nouwen N, Driessen AJ. 2006. YidC-mediated membrane insertion of assembly mutants of subunit c of the F1Fo ATPase. J Biol Chem 281:29762–29768. [PubMed][CrossRef]
107. Evans DJ, Jr. 1970. Membrane Mg2+-(Ca2+)-activated adenosine triphosphatase of Escherichia coli: characterization in the membrane-bound and solubilized states. J Bacteriol 104:1203–1212. [PubMed]
108. Evans DJ, Jr. 1969. Membrane adenosine triphosphatase of Escherichia coli: activation by calcium ion and inhibition by monovalent cations. J Bacteriol 100:914–922. [PubMed]
109. Kobayashi H, Anraku Y. 1972. Membrane-bound adenosine triphosphatase of Escherichia coli. I. Partial purification and properties. J Biochem (Tokyo) 71:387–399. [PubMed]
110. Bragg PD, Hou C. 1972. Purification of a factor for both aerobic-driven and ATP-driven energy-dependent transhydrogenases of Escherichia coli. FEBS Lett 28:309–312. [PubMed][CrossRef]
111. Hanson RL, Kennedy EP. 1973. Energy-transducing adenosine triphosphatase from Escherichia coli: purification, properties, and inhibition by antibody. J Bacteriol 114:772–781. [PubMed]
112. Futai M, Sternweis PC, Heppel LA. 1974. Purification and properties of reconstitutively active and inactive adenosinetriphosphatase from Escherichia coli. Proc Natl Acad Sci USA 71:2725–2729. [PubMed][CrossRef]
113. Nelson N, Kanner BI, Gutnick DL. 1974. Purification and properties of Mg2+-Ca2+ adenosinetriphosphatase from Escherichia coli. Proc Natl Acad Sci USA 71:2720–2724. [PubMed][CrossRef]
114. Vogel G, Steinhart R. 1976. ATPase of Escherichia coli: purification, dissociation, and reconstitution of the active complex from the isolated subunits. Biochemistry 15:208–216. [PubMed][CrossRef]
115. Senior AE, Downie JA, Cox GB, Gibson F, Langman L, Fayle DR. 1979. The uncA gene codes for the α-subunit of the adenosine triphosphatase of Escherichia coli. Electrophoretic analysis of uncA mutant strains. Biochem J 180:103–109. [PubMed]
116. Senior AE, Fayle DR, Downie JA, Gibson F, Cox GB. 1979. Properties of membranes from mutant strains of Escherichia coli in which the β-subunit of the adenosine triphosphatase is abnormal. Biochem J 180:111–118. [PubMed]
117. Al-Shawi MK, Senior AE. 1992. Catalytic sites of Escherichia coli F1-ATPase. Characterization of unisite catalysis at varied pH. Biochemistry 31:878–885. [PubMed][CrossRef]
118. Wise JG. 1990. Site-directed mutagenesis of the conserved β subunit tyrosine 331 of Escherichia coli ATP synthase yields catalytically active enzymes. J Biol Chem 265:10403–10409. [PubMed]
119. Bragg PD, Hou C. 1976. Solubilization of a phospholipid-stimulated adenosine triphosphatase complex from membranes of Escherichia coli. Arch Biochem Biophys 174:553–561. [PubMed][CrossRef]
120. Hare JF. 1975. Purification and characterization of a dicyclohexylcarbodiimide-sensitive adenosine triphosphatase complex from membranes of Escherichia coli. Biochem Biophys Res Commun 66:1329–1337. [PubMed][CrossRef]
121. Nieuwenhuis FJ, Thomas AAM, van Dam K. 1974. Solubilization by cholate or deoxycholate of a dicyclohexylcarbodiimide-sensitive adenosine triphosphatase complex from Escherichia coli. Biochem Soc Trans 2:512–513.
122. Beechey RB, Linnett PE, Fillingame RH. 1979. Isolation of carbodiimide-binding proteins from mitochondria and Escherichia coli. Methods Enzymol 55:426–434. [PubMed][CrossRef]
123. Beechey RB, Roberton AM, Holloway CT, Knight IG. 1967. The properties of dicyclohexylcarbodiimide as an inhibitor of oxidative phosphorylation. Biochemistry 6:3867–3879. [PubMed][CrossRef]
124. Cox GB, Downie JA, Fayle DR, Gibson F, Radik J. 1978. Inhibition, by a protease inhibitor, of the solubilization of the F1-portion of the Mg2+-stimulated adenosine triphosphatase of Escherichia coli. J Bacteriol 133:287–292. [PubMed]
125. Downie JA, Senior AE, Cox GB, Gibson F. 1979. Solubilization of adenosine triphosphatase from membranes of Escherichia coli: effect of p-aminobenzamidine. J Bacteriol 138:87–91. [PubMed]
126. Friedl P, Friedl C, Schairer HU. 1979. The ATP synthetase of Escherichia coli K12: purification of the enzyme and reconstitution of energy-transducing activities. Eur J Biochem 100:175–180. [PubMed][CrossRef]
127. Foster DL, Fillingame RH. 1979. Energy-transducing H+-ATPase of Escherichia coli. Purification, reconstitution, and subunit composition. J Biol Chem 254:8230–8236. [PubMed]
128. Grüber G, Hausrath A, Sagermann M, Capaldi RA. 1997. An improved purification of ECF1 and ECF1Fo by using a cytochrome bo-deficient strain of Escherichia coli facilitates crystallization of these complexes. FEBS Lett 410:165–168. [PubMed][CrossRef]
129. Fischer S, Gräber P, Turina P. 2000. The activity of the ATP synthase from Escherichia coli is regulated by the transmembrane proton motive force. J Biol Chem 275:30157–30162. [PubMed][CrossRef]
130. Ishmukhametov RR, Galkin MA, Vik SB. 2005. Ultrafast purification and reconstitution of His-tagged cysteine-less Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1706:110–116. [PubMed][CrossRef]
131. Kuo PH, Ketchum CJ, Nakamoto RK. 1998. Stability and functionality of cysteine-less FoF1 ATP synthase from Escherichia coli. FEBS Lett 426:217–220. [PubMed][CrossRef]
132. Kanazawa H, Miki T, Tamura F, Yura T, Futai M. 1979. Specialized transducing phage lambda carrying the genes for coupling factor of oxidative phosphorylation of Escherichia coli: increased synthesis of coupling factor on induction of prophage lambda asn. Proc Natl Acad Sci USA 76:1126–1130. [PubMed][CrossRef]
133. Mosher ME, Peters LK, Fillingame RH. 1983. Use of lambda unc transducing bacteriophages in genetic and biochemical characterization of H+-ATPase mutants of Escherichia coli. J Bacteriol 156:1078–1092. [PubMed]
134. Moriyama Y, Iwamoto A, Hanada H, Maeda M, Futai M. 1991. One-step purification of Escherichia coli H+-ATPase (FoF1) and its reconstitution into liposomes with neurotransmitter transporters. J Biol Chem 266:22141–22146. [PubMed]
135. Klionsky DJ, Brusilow WS, Simoni RD. 1984. In vivo evidence for the role of the ε subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. J Bacteriol 160:1055–1060. [PubMed]
136. Zhou Y, Duncan TM, Bulygin VV, Hutcheon ML, Cross RL. 1996. ATP hydrolysis by membrane-bound Escherichia coli FoF1 causes rotation of the γ subunit relative to the β subunits. Biochim Biophys Acta 1275:96–100. [PubMed][CrossRef]
137. Pänke O, Gumbiowski K, Junge W, Engelbrecht S. 2000. F-ATPase: specific observation of the rotating c subunit oligomer of EFoEF1. FEBS Lett 472:34–38. [PubMed][CrossRef]
138. Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y, Futai M. 1999. Mechanical rotation of the c subunit oligomer in ATP synthase (FoF1): direct observation. Science 286:1722–1724. [PubMed][CrossRef]
139. Stalz WD, Greie JC, Deckers-Hebestreit G, Altendorf K. 2003. Direct interaction of subunits a and b of the Fo complex of Escherichia coli ATP synthase by forming an ab2 subcomplex. J Biol Chem 278:27068–27071. [PubMed][CrossRef]
140. Wada T, Long JC, Zhang D, Vik SB. 1999. A novel labeling approach supports the five-transmembrane model of subunit a of the Escherichia coli ATP synthase. J Biol Chem 274:17353–17357. [PubMed][CrossRef]
141. Tomashek JJ, Poposki JA, Brusilow WS. 2001. A functional His-tagged c subunit of the Escherichia coli F-type ATPase/synthase. Arch Biochem Biophys 387:180–187. [PubMed][CrossRef]
142. Tanabe M, Nishio K, Iko Y, Sambongi Y, Iwamoto-Kihara A, Wada Y, Futai M. 2001. Rotation of a complex of the γ subunit and c ring of Escherichia coli ATP synthase. The rotor and stator are interchangeable. J Biol Chem 276:15269–15274. [PubMed][CrossRef]
143. Ekuni A, Watanabe H, Kuroda N, Sawada K, Murakami H, Kanazawa H. 1998. Reconstitution of F1-ATPase activity from Escherichia coli subunits α, β and subunit γ tagged with six histidine residues at the C-terminus. FEBS Lett 427:64–68. [PubMed][CrossRef]
144. Shin Y, Sawada K, Nagakura T, Miyanaga M, Moritani C, Noumi T, Tsuchiya T, Kanazawa H. 1996. Reconstitution of the F1-ATPase activity from purified α, β, γ and δ or ε subunits with glutathione S-transferase fused at their amino termini. Biochim Biophys Acta 1273:62–70. [PubMed][CrossRef]
145. Gay NJ, Walker JE. 1981. The atp operon: nucleotide sequence of the region encoding the α-subunit of Escherichia coli ATP-synthase. Nucleic Acids Res 9:2187–2194. [PubMed][CrossRef]
146. Saraste M, Gay NJ, Eberle A, Runswick MJ, Walker JE. 1981. The atp operon: nucleotide sequence of the genes for the γ, β, and ε subunits of Escherichia coli ATP synthase. Nucleic Acids Res 9:5287–5296. [PubMed][CrossRef]
147. Kanazawa H, Kayano T, Kiyasu T, Futai M. 1982. Nucleotide sequence of the genes for β and ε subunits of proton-translocating ATPase from Escherichia coli. Biochem Biophys Res Commun 105:1257–1264. [PubMed][CrossRef]
148. Kanazawa H, Kayano T, Mabuchi K, Futai M. 1981. Nucleotide sequence of the genes coding for α, β and γ subunits of the proton-translocating ATPase of Escherichia coli. Biochem Biophys Res Commun 103:604–612. [PubMed][CrossRef]
149. Kanazawa H, Mabuchi K, Kayano T, Noumi T, Sekiya T, Futai M. 1981. Nucleotide sequence of the genes for Fo components of the proton-translocating ATPase from Escherichia coli: prediction of the primary structure of Fo subunits. Biochem Biophys Res Commun 103:613–620. [PubMed][CrossRef]
150. Kanazawa H, Mabuchi K, Kayano T, Tamura F, Futai M. 1981. Nucleotide sequence of genes coding for dicyclohexylcarbodiimide-binding protein and the α subunit of proton-translocating ATPase of Escherichia coli. Biochem Biophys Res Commun 100:219–225. [PubMed][CrossRef]
151. Mabuchi K, Kanazawa H, Kayano T, Futai M. 1981. Nucleotide sequence of the gene coding for the δ subunit of proton translocating ATPase of Escherichia coli. Biochem Biophys Res Commun 102:172–179. [PubMed][CrossRef]
152. Nielsen J, Hansen FG, Hoppe J, Friedl P, von Meyenburg K. 1981. The nucleotide sequence of the atp genes coding for the Fo subunits a, b, c and the F1 subunit δ of the membrane bound ATP synthase of Escherichia coli. Mol Gen Genet 184:33–39. [PubMed][CrossRef]
153. Hoppe J, Schairer HU, Sebald W. 1980. The proteolipid of a mutant ATPase from Escherichia coli defective in H+-conduction contains a glycine instead of the carbodiimide-reactive aspartyl residue. FEBS Lett 109:107–111. [PubMed][CrossRef]
154. Sebald W, Hoppe J, Wachter E. 1979. Amino acid sequence of the ATPase proteolipid from mitochondria, chloroplasts, and bacteria (wild type and mutants), p 63–74. In Quagliariello E, Palmieri F, Papa S, and Klingenberg M (ed), Function and Molecular Aspects of Biomembrane Transport. Elsevier/North Holland Publishing Co., Amsterdam, The Netherlands.
155. Walker JE, Gay NJ, Saraste M, Eberle AN. 1984. DNA sequence around the Escherichia coli unc operon. Completion of the sequence of a 17 kilobase segment containing asnA, oriC, unc, glmS and phoS. Biochem J 224:799–815. [PubMed]
156. Bragg PD, Hou C. 1975. Subunit composition, function, and spatial arrangement in the Ca2+- and Mg2+-activated adenosine triphosphatases of Escherichia coli and Salmonella typhimurium. Arch Biochem Biophys 167:311–321. [PubMed][CrossRef]
157. Foster DL, Fillingame RH. 1982. Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. J Biol Chem 257:2009–2015. [PubMed]
158. Stock D, Leslie AG, Walker JE. 1999. Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705. [PubMed][CrossRef]
159. Jiang W, Hermolin J, Fillingame RH. 2001. The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. Proc Natl Acad Sci USA 98:4966–4971. [PubMed][CrossRef]
160. Stahlberg H, Müller DJ, Suda K, Fotiadis D, Engel A, Meier T, Matthey U, Dimroth P. 2001. Bacterial Na+-ATP synthase has an undecameric rotor. EMBO Rep 2:229–233. [PubMed][CrossRef]
161. Seelert H, Dencher NA, Muller DJ. 2003. Fourteen protomers compose the oligomer III of the proton-rotor in spinach chloroplast ATP synthase. J Mol Biol 333:337–344. [PubMed][CrossRef]
162. Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Muller DJ. 2005. The c15 ring of the Spirulina platensis F-ATP synthase: F1/Fo symmetry mismatch is not obligatory. EMBO Rep 6:1040–1044. [PubMed][CrossRef]
163. Schemidt RA, Hsu DK, Deckers-Hebestreit G, Altendorf K, Brusilow WS. 1995. The effects of an atpE ribosome-binding site mutation on the stoichiometry of the c subunit in the F1Fo ATPase of Escherichia coli. Arch Biochem Biophys 323:423–428. [PubMed][CrossRef]
164. Schemidt RA, Qu J, Williams JR, Brusilow WS. 1998. Effects of carbon source on expression of Fo genes and on the stoichiometry of the c subunit in the F1Fo ATPase of Escherichia coli. J Bacteriol 180:3205–3208. [PubMed]
165. Arechaga I, Butler PJ, Walker JE. 2002. Self-assembly of ATP synthase subunit c rings. FEBS Lett 515:189–193. [PubMed][CrossRef]
166. Abrahams JP, Buchanan SK, Van Raaij MJ, Fearnley IM, Leslie AG, Walker JE. 1996. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. Proc Natl Acad Sci USA 93:9420–9424. [PubMed][CrossRef]
167. Abrahams JP, Leslie AG, Lutter R, Walker JE. 1994. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628. [PubMed][CrossRef]
168. Bowler MW, Montgomery MG, Leslie AG, Walker JE. 2007. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. J Biol Chem 282:14238–14242. [PubMed][CrossRef]
169. Bowler MW, Montgomery MG, Leslie AG, Walker JE. 2006. How azide inhibits ATP hydrolysis by the F-ATPases. Proc Natl Acad Sci USA 103:8646–8649. [PubMed][CrossRef]
170. Braig K, Menz RI, Montgomery MG, Leslie AG, Walker JE. 2000. Structure of bovine mitochondrial F1-ATPase inhibited by Mg2+ ADP and aluminium fluoride. Structure 8:567–573. [PubMed][CrossRef]
171. Gibbons C, Montgomery MG, Leslie AG, Walker JE. 2000. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat Struct Biol 7:1055–1061. [PubMed][CrossRef]
172. Menz RI, Walker JE, Leslie AG. 2001. Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106:331–341. [PubMed][CrossRef]
173. Orriss GL, Leslie AGW, Braig K, Walker JE. 1998. Bovine F1-ATPase covalently inhibited with 4-chloro-7-nitrobenzofurazan: the structure provides further support for a rotary catalytic mechanism. Structure 6:831–837. [PubMed][CrossRef]
174. van Raaij MJ, Abrahams JP, Leslie AG, Walker JE. 1996. The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc Natl Acad Sci USA 93:6913–6917. [PubMed][CrossRef]
175. Hausrath AC, Capaldi RA, Matthews BW. 2001. The conformation of the ε- and γ-subunits within the Escherichia coli F1 ATPase. J Biol Chem 276:47227–47232. [PubMed][CrossRef]
176. Hausrath AC, Gruber G, Matthews BW, Capaldi RA. 1999. Structural features of the γ subunit of the Escherichia coli F1 ATPase revealed by a 4.4-Å resolution map obtained by x-ray crystallography. Proc Natl Acad Sci USA 96:13697–13702. [PubMed][CrossRef]
177. Shirakihara Y, Leslie AG, Abrahams JP, Walker JE, Ueda T, Sekimoto Y, Kambara M, Saika K, Kagawa Y, Yoshida M. 1997. The crystal structure of the nucleotide-free α3β3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure 5:825–836. [PubMed][CrossRef]
178. Bianchet MA, Hullihen J, Pedersen PL, Amzel LM. 1998. The 2.8-Å structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis. Proc Natl Acad Sci USA 95:11065–11070. [PubMed][CrossRef]
179. Chen C, Saxena AK, Simcoke WN, Garboczi DN, Pedersen PL, Ko YH. 2006. Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism. J Biol Chem 281:13777–13783. [PubMed][CrossRef]
180. Groth G. 2002. Structure of spinach chloroplast F1-ATPase complexed with the phytopathogenic inhibitor tentoxin. Proc Natl Acad Sci USA 99:3464–3468. [PubMed][CrossRef]
181. Groth G, Pohl E. 2001. The structure of the chloroplast F1-ATPase at 3.2 Å resolution. J Biol Chem 276:1345–1352. [PubMed][CrossRef]
182. Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM. 2006. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. EMBO J 25:5433–5442. [PubMed][CrossRef]
183. Uhlin U, Cox GB, Guss JM. 1997. Crystal structure of the ε subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5:1219–1230. [PubMed][CrossRef]
184. Wilkens S, Capaldi RA. 1998. Solution structure of the ε subunit of the F1-ATPase from Escherichia coli and interactions of this subunit with β subunits in the complex. J Biol Chem 273:26645–26651. [PubMed][CrossRef]
185. Wilkens S, Dahlquist FW, McIntosh LP, Donaldson LW, Capaldi RA. 1995. Structural features of the ε subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy. Nat Struct Biol 2:961–967. [PubMed][CrossRef]
186. Rodgers AJ, Wilce MC. 2000. Structure of the γ-ε complex of ATP synthase. Nat Struct Biol 7:1051–1054. [PubMed][CrossRef]
187. Wilkens S, Zhou J, Nakayama R, Dunn SD, Capaldi RA. 2000. Localization of the δ subunit in the Escherichia coli F1Fo-ATP synthase by immuno electron microscopy: the δ subunit binds on top of the F1. J Mol Biol 295:387–391. [PubMed][CrossRef]
188. Rubinstein J, Walker J. 2002. ATP synthase from Saccharomyces cerevisiae: location of the OSCP subunit in the peripheral stalk region. J Mol Biol 321:613–619. [PubMed][CrossRef]
189. Böttcher B, Bertsche I, Reuter R, Gräber P. 2000. Direct visualisation of conformational changes in EFoF1 by electron microscopy. J Mol Biol 296:449–457. [PubMed][CrossRef]
190. Wilkens S, Capaldi RA. 1998. ATP synthase's second stalk comes into focus. Nature 393:29. [CrossRef]
191. Gogol EP, Lücken U, Capaldi RA. 1987. The stalk connecting the F1 and Fo domains of ATP synthase visualized by electron microscopy of unstained specimens. FEBS Lett 219:274–278. [PubMed][CrossRef]
192. Lücken U, Gogol EP, Capaldi RA. 1990. Structure of the ATP synthase complex (ECF1Fo) of Escherichia coli from cryoelectron microscopy. Biochemistry 29:5339–5343. [PubMed][CrossRef]
193. Dmitriev OY, Abildgaard F, Markley JL, Fillingame RH. 2002. Structure of Ala24/Asp61 → Asp24/Asn61 substituted subunit c of Escherichia coli ATP synthase: implications for the mechanism of proton transport and Rotary movement in the Fo complex. Biochemistry 41:5537–5547. [PubMed][CrossRef]
194. Dmitriev OY, Fillingame RH. 2001. Structure of Ala20 → Pro/Pro64 → Ala substituted subunit c of Escherichia coli ATP synthase in which the essential proline is switched between transmembrane helices. J Biol Chem 276:27449–27454. [PubMed][CrossRef]
195. Girvin ME, Rastogi VK, Abildgaard F, Markley JL, Fillingame RH. 1998. Solution structure of the transmembrane H+-transporting subunit c of the F1Fo ATP synthase. Biochemistry 37:8817–8824. [PubMed][CrossRef]
196. Rastogi VK, Girvin ME. 1999. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268. [PubMed][CrossRef]
197. Meier T, Polzer P, Diederichs K, Welte W, Dimroth P. 2005. Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science 308:659–662. [PubMed][CrossRef]
198. Dmitriev OY, Jones PC, Fillingame RH. 1999. Structure of the subunit c oligomer in the F1Fo ATP synthase: model derived from solution structure of the monomer and cross-linking in the native enzyme. Proc Natl Acad Sci USA 96:7785–7790. [PubMed][CrossRef]
199. Birkenhäger R, Hoppert M, Deckers-Hebestreit G, Mayer F, Altendorf K. 1995. The Fo complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy. Eur J Biochem 230:58–67. [PubMed][CrossRef]
200. Boyer PD, Kohlbrenner WE. 1981. The present status of the binding-change mechanism and its relation to ATP formation by chloroplasts, p 231–240. In Selman BR and Reimer-Selman S (ed), Energy Coupling in Photosynthesis. Elsevier/North Holland Publishing Co., New York, NY.
201. Cox GB, Fimmel AL, Gibson F, Hatch L. 1986. The mechanism of ATP synthase: a reassessment of the functions of the b and a subunits. Biochim Biophys Acta 849:62–69. [PubMed][CrossRef]
202. Cox GB, Jans DA, Fimmel AL, Gibson F, Hatch L. 1984. Hypothesis. The mechanism of ATP synthase Conformational change by rotation of the b-subunit. Biochim Biophys Acta 768:201–208. [PubMed]
203. Oosawa F, Hayashi S. 1984. A loose coupling mechansim of synthesis of ATP by proton flux in the molecular machine of living cells. J Phys Soc Japan 53:1575–1579. [CrossRef]
204. Oosawa F, Hayashi S. 1986. The loose coupling mechanism in molecular machines of living cells. Adv Biophys 22:151–183. [PubMed][CrossRef]
205. Schneider E, Altendorf K. 1987. Bacterial adenosine 5′-triphosphate synthase (F1Fo): purification and reconstitution of Fo complexes and biochemical and functional characterization of their subunits. Microbiol Rev 51:477–497. [PubMed]
206. Boyer PD. 1993. The binding change mechanism for ATP synthase-some probabilities and possibilities. Biochim Biophys Acta 1140:215–250. [PubMed][CrossRef]
207. Wilkens S, Capaldi RA. 1994. Asymmetry and structural changes in ECF1 examined by cryoelectronmicroscopy. Biol Chem Hoppe-Seyler 375:43–51. [PubMed]
208. Grüber G, Capaldi RA. 1996. Differentiation of catalytic sites on Escherichia coli F1ATPase by laser photoactivated labeling with [3H]-2-Azido-ATP using the mutant β Glu381Cys:εSer108Cys to identify different β subunits by their interactions with γ and ε subunits. Biochemistry 35:3875–3879. [PubMed][CrossRef]
209. Grüber G, Capaldi RA. 1996. The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites. J Biol Chem 271:32623–32628. [PubMed][CrossRef]
210. Haughton MA, Capaldi RA. 1995. Asymmetry of Escherichia coli F1-ATPase as a function of the interaction of α-β subunit pairs with the γ and ε subunits. J Biol Chem 270:20568–20574. [PubMed][CrossRef]
211. Haughton MA, Capaldi RA. 1996. The Escherichia coli F1-ATPase mutant β Tyr-297→Cys: functional studies and asymmetry of the enzyme under various nucleotide conditions based on reaction of the introduced Cys with N-ethylmaleimide and 7-chloro-4-nitrobenzofurazan. Biochim Biophys Acta 1276:154–160. [PubMed][CrossRef]
212. Lötscher HR, Capaldi RA. 1984. Structural asymmetry of the F1 of Escherichia coli as indicated by reaction with dicyclohexylcarbodiimide. Biochem Biophys Res Commun 121:331–339. [PubMed][CrossRef]
213. Bragg PD, Hou C. 1990. Reaction of membrane-bound F1-adenosine triphosphatase of Escherichia coli with chemical ligands and the asymmetry of β subunits. Biochim Biophys Acta 1015:216–222. [PubMed][CrossRef]
214. Bragg PD, Hou C. 1990. Role of minor subunits in the structural asymmetry of the Escherichia coli F1-ATPase. Biochem Biophys Res Commun 166:431–435. [PubMed][CrossRef]
215. Stan-Lotter H, Bragg PD. 1986. N,N′-dicyclohexylcarbodiimide and 4-chloro-7-nitrobenzofurazan bind to different β subunits of the F1 ATPase of Escherichia coli. Arch Biochem Biophys 248:116–120. [PubMed][CrossRef]
216. Stan-Lotter H, Bragg PD. 1986. Thiol modification as a probe of conformational forms of the F1 ATPase of Escherichia coli and of the structural asymmetry of its β subunits. Eur J Biochem 154:321–327. [PubMed][CrossRef]
217. Kersten MV, Dunn SD, Wise JG, Vogel PD. 2000. Site-directed spin-labeling of the catalytic sites yields insight into structural changes within the FoF1-ATP synthase of Escherichia coli. Biochemistry 39:3856–3860. [PubMed][CrossRef]
218. Lösel RM, Wise JG, Vogel PD. 1997. Asymmetry of catalytic but not of noncatalytic sites on Escherichia coli F1-ATPase in solution as observed using electron spin resonance spectroscopy. Biochemistry 36:1188–1193. [PubMed][CrossRef]
219. Bulygin VV, Duncan TM, Cross RL. 2004. Rotor/stator interactions of the ε subunit in Escherichia coli ATP synthase and implications for enzyme regulation. J Biol Chem 279:35616–35621. [PubMed][CrossRef]
220. Duncan TM, Bulygin VV, Zhou Y, Hutcheon ML, Cross RL. 1995. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci USA 92:10964–10968. [PubMed][CrossRef]
221. Zhou Y, Duncan TM, Cross RL. 1997. Subunit rotation in Escherichia coli FoF1-ATP synthase during oxidative phosphorylation. Proc Natl Acad Sci USA 94:10583–10587. [PubMed][CrossRef]
222. Sabbert D, Engelbrecht S, Junge W. 1996. Intersubunit rotation in active F-ATPase. Nature 381:623–625. [PubMed][CrossRef]
223. Noji H, Yasuda R, Yoshida M, Kinosita K, Jr. 1997. Direct observation of the rotation of F1-ATPase. Nature 386:299–302. [PubMed][CrossRef]
224. Kato-Yamada Y, Noji H, Yasuda R, Kinosita K, Jr, Yoshida M. 1998. Direct observation of the rotation of ε subunit in F1-ATPase. J Biol Chem 273:19375–19377. [PubMed][CrossRef]
225. Adachi K, Yasuda R, Noji H, Itoh H, Harada Y, Yoshida M, Kinosita K, Jr. 2000. Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc Natl Acad Sci USA 97:7243–7247. [PubMed][CrossRef]
226. Ueno H, Suzuki T, Kinosita K, Jr, Yoshida M. 2005. ATP-driven stepwise rotation of FoF1-ATP synthase. Proc Natl Acad Sci USA 102:1333–1338. [PubMed][CrossRef]
227. Nakanishi-Matsui M, Kashiwagi S, Hosokawa H, Cipriano DJ, Dunn SD, Wada Y, Futai M. 2006. Stochastic high-speed rotation of Escherichia coli ATP synthase F1 sector: the ε subunit-sensitive rotation. J Biol Chem 281:4126–4131. [PubMed][CrossRef]
228. Spetzler D, York J, Daniel D, Fromme R, Lowry D, Frasch W. 2006. Microsecond time scale rotation measurements of single F1-ATPase molecules. Biochemistry 45:3117–3124. [PubMed][CrossRef]
229. Yasuda R, Noji H, Kinosita K, Jr, Yoshida M. 1998. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93:1117–1124. [PubMed][CrossRef]
230. Yasuda R, Noji H, Yoshida M, Kinosita K, Jr, Itoh H. 2001. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904. [PubMed][CrossRef]
231. Börsch M, Diez M, Zimmermann B, Reuter R, Gräber P. 2002. Stepwise rotation of the γ-subunit of EFoF1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett 527:147–152. [PubMed][CrossRef]
232. Diez M, Zimmermann B, Börsch M, Konig M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CA, Gräber P. 2004. Proton-powered subunit rotation in single membrane-bound FoF1-ATP synthase. Nat Struct Mol Biol 11:135–141. [PubMed][CrossRef]
233. Yasuda R, Masaike T, Adachi K, Noji H, Itoh H, Kinosita K, Jr. 2003. The ATP-waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci USA 100:9314–9318. [PubMed][CrossRef]
234. Zimmermann B, Diez M, Börsch M, Gräber P. 2006. Subunit movements in membrane-integrated EFoF1 during ATP synthesis detected by single-molecule spectroscopy. Biochim Biophys Acta 1757:311–319. [PubMed][CrossRef]
235. Noji H, Hasler K, Junge W, Kinosita K, Jr, Yoshida M, Engelbrecht S. 1999. Rotation of Escherichia coli F1-ATPase. Biochem Biophys Res Commun 260:597–599. [PubMed][CrossRef]
236. Nishio K, Iwamoto-Kihara A, Yamamoto A, Wada Y, Futai M. 2002. Subunit rotation of ATP synthase embedded in membranes: a or β subunit rotation relative to the c subunit ring. Proc Natl Acad Sci USA 99:13448–13452. [PubMed][CrossRef]
237. Tsunoda SP, Aggeler R, Noji H, Kinosita K, Jr, Yoshida M, Capaldi RA. 2000. Observations of rotation within the FoF1-ATP synthase: deciding between rotation of the Fo c subunit ring and artifact. FEBS Lett 470:244–248. [PubMed][CrossRef]
238. Bragg PD, Hou C. 1986. Effect of disulfide cross-linking between α and δ subunits on the properties of the F1 adenosine triphosphatase of Escherichia coli. Biochim Biophys Acta 851:385–394. [PubMed][CrossRef]
239. Tozer RG, Dunn SD. 1986. Column centrifugation generates an intersubunit disulfide bridge in Escherichia coli F1-ATPase. Eur J Biochem 161:513–518. [PubMed][CrossRef]
240. Aggeler R, Chicas-Cruz K, Cai SX, Keana JF, Capaldi RA. 1992. Introduction of reactive cysteine residues in the ε subunit of Escherichia coli F1 ATPase, modification of these sites with tetrafluorophenyl azide-maleimides, and examination of changes in the binding of the ε subunit when different nucleotides are in catalytic sites. Biochemistry 31:2956–2961. [PubMed][CrossRef]
241. Aggeler R, Capaldi RA. 1992. Cross-linking of the γ subunit of the Escherichia coli ATPase (ECF1) via cysteines introduced by site-directed mutagenesis. J Biol Chem 267:21355–21359. [PubMed]
242. Aggeler R, Haughton MA, Capaldi RA. 1995. Disulfide bond formation between the COOH-terminal domain of the β subunits and the γ and ε subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences. J Biol Chem 270:9185–9191. [PubMed][CrossRef]
243. Gumbiowski K, Cherepanov D, Muller M, Panke O, Promto P, Winkler S, Junge W, Engelbrecht S. 2001. F-ATPase: forced full rotation of the rotor despite covalent cross-link with the stator. J Biol Chem 276:42287–42292. [PubMed][CrossRef]
244. Tsunoda SP, Muneyuki E, Amano T, Yoshida M, Noji H. 1999. Cross-linking of two β subunits in the closed conformation in F1-ATPase. J Biol Chem 274:5701–5706. [PubMed][CrossRef]
245. Zhang Y, Fillingame RH. 1995. Subunits coupling H+ transport and ATP synthesis in the Escherichia coli ATP synthase. Cys-Cys cross-linking of F1 subunit ε to the polar loop of Fo subunit c. J Biol Chem 270:24609–24614. [PubMed][CrossRef]
246. Zhang Y, Oldenburg M, Fillingame RH. 1994. Suppressor mutations in F1 subunit ε recouple ATP-driven H+ translocation in uncoupled Q42E subunit c mutant of Escherichia coli F1Fo ATP synthase. J Biol Chem 269:10221–10224. [PubMed]
247. Tsunoda SP, Aggeler R, Yoshida M, Capaldi RA. 2001. Rotation of the c subunit oligomer in fully functional F1Fo ATP synthase. Proc Natl Acad Sci USA 98:898–902. [PubMed][CrossRef]
248. Long JC, DeLeon-Rangel J, Vik SB. 2002. Characterization of the first cytoplasmic loop of subunit a of the Escherichia coli ATP synthase by surface labeling, cross-linking, and mutagenesis. J Biol Chem 277:27288–27293. [PubMed][CrossRef]
249. Jones PC, Hermolin J, Jiang W, Fillingame RH. 2000. Insights into the rotary catalytic mechanism of FoF1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme. J Biol Chem 275:31340–31346. [PubMed][CrossRef]
250. Suzuki T, Ueno H, Mitome N, Suzuki J, Yoshida M. 2002. Fo of ATP synthase is a rotary proton channel. Obligatory coupling of proton translocation with rotation of c-subunit ring. J Biol Chem 277:13281–13285. [PubMed][CrossRef]
251. Hutcheon ML, Duncan TM, Ngai H, Cross RL. 2001. Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the Fo sector of Escherichia coli ATP synthase. Proc Natl Acad Sci USA 98:8519–8524. [PubMed][CrossRef]
252. Jiang W, Fillingame RH. 1998. Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc Natl Acad Sci USA 95:6607–6612. [PubMed][CrossRef]
253. Imada K, Minamino T, Tahara A, Namba K. 2007. Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc Natl Acad Sci USA 104:485–490. [PubMed][CrossRef]
254. Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E, de la Cruz F, Coll M. 2001. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637–641. [PubMed][CrossRef]
255. Richardson JP. 2006. How Rho exerts its muscle on RNA. Mol Cell 22:711–712. [PubMed][CrossRef]
256. Patel SS, Picha KM. 2000. Structure and function of hexameric helicases. Annu Rev Biochem 69:651–697. [PubMed][CrossRef]
257. Erzberger JP, Berger JM. 2006. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 35:93–114. [PubMed][CrossRef]
258. Zolkiewski M. 2006. A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol Microbiol 61:1094–1100. [PubMed][CrossRef]
259. Bowman GD, Goedken ER, Kazmirski SL, O'Donnell M, Kuriyan J. 2005. DNA polymerase clamp loaders and DNA recognition. FEBS Lett 579:863–867. [PubMed][CrossRef]
260. Al-Shawi MK, Ketchum CJ, Nakamoto RK. 1997. The Escherichia coli FoF1 γM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway. Biochemistry 36:12961–12969. [PubMed][CrossRef]
261. Suzuki T, Murakami T, Iino R, Suzuki J, Ono S, Shirakihara Y, Yoshida M. 2003. FoF1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of ε subunit in response to proton motive force and ADP/ATP balance. J Biol Chem 278:46840–46846. [PubMed][CrossRef]
262. Vinogradov AD. 2000. Steady-state and pre-steady-state kinetics of the mitochondrial F1Fo ATPase: is ATP synthase a reversible molecular machine? J Exp Biol 203(Pt. 1):41–49.
263. Cross RL, Grubmeyer C, Penefsky HS. 1982. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate enhancements resulting from cooperative interactions between multiple catalytic sites. J Biol Chem 257:12101–12105. [PubMed]
264. Grubmeyer C, Cross RL, Penefsky HS. 1982. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate constants for elementary steps in catalysis at a single site. J Biol Chem 257:12092–12100. [PubMed]
265. Grubmeyer C, Penefsky HS. 1981. Cooperatively between catalytic sites in the mechanism of action of beef heart mitochondrial adenosine triphosphatase. J Biol Chem 256:3728–3734. [PubMed]
266. Matsuno-Yagi A, Hatefi Y. 1985. Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis. J Biol Chem 260:11424–11427. [PubMed]
267. Weber J, Wilke-Mounts S, Lee RS, Grell E, Senior AE. 1993. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. J Biol Chem 268:20126–20133. [PubMed]
268. Weber J, Wilke-Mounts S, Senior AE. 1994. Cooperativity and stoichiometry of substrate binding to the catalytic sites of Escherichia coli F1-ATPase. Effects of magnesium, inhibitors, and mutation. J Biol Chem 269:20462–20467. [PubMed]
269. Al-Shawi MK, Parsonage D, Senior AE. 1990. Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases. J Biol Chem 265:4402–4410. [PubMed]
270. Al-Shawi MK, Senior AE. 1988. Complete kinetic and thermodynamic characterization of the unisite catalytic pathway of Escherichia coli F1-ATPase. Comparison with mitochondrial F1-ATPase and application to the study of mutant enzymes. J Biol Chem 263:19640–19648. [PubMed]
271. Weber J, Senior AE. 2001. Bi-site catalysis in F1-ATPase: does it exist? J Biol Chem 276:35422–35428. [PubMed][CrossRef]
272. Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E, Yoshida M, Kinosita K, Jr. 2004. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat Struct Mol Biol 11:142–148. [PubMed][CrossRef]
273. Sakaki N, Shimo-Kon R, Adachi K, Itoh H, Furuike S, Muneyuki E, Yoshida M, Kinosita K, Jr. 2005. One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys J 88:2047–2056. [PubMed][CrossRef]
274. Gao YQ, Yang W, Karplus M. 2005. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Cell 123:195–205. [PubMed][CrossRef]
275. Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K, Jr, Yoshida M. 2003. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Proc Natl Acad Sci USA 100:14731–14736. [PubMed][CrossRef]
276. Rao R, Pagan J, Senior AE. 1988. Directed mutagenesis of the strongly conserved lysine 175 in the proposed nucleotide-binding domain of α-subunit from Escherichia coli F1-ATPase. J Biol Chem 263:15957–15963. [PubMed]
277. Senior AE, al-Shawi MK. 1992. Further examination of seventeen mutations in Escherichia coli F1-ATPase β-subunit. J Biol Chem 267:21471–21478. [PubMed]
278. Weber J, Bowman C, Senior AE. 1996. Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis. J Biol Chem 271:18711–18718. [PubMed][CrossRef]
279. Walker JE, Saraste M, Runswick MJ, Gay NJ. 1982. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951. [PubMed]
280. Löbau S, Weber J, Senior AE. 1998. Catalytic site nucleotide binding and hydrolysis in F1Fo-ATP synthase. Biochemistry 37:10846–10853. [PubMed][CrossRef]
281. Ko YH, Hong S, Pedersen PL. 1999. Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate. J Biol Chem 274:28853–28856. [PubMed][CrossRef]
282. Weber J, Hammond ST, Wilke-Mounts S, Senior AE. 1998. Mg2+ coordination in catalytic sites of F1-ATPase. Biochemistry 37:608–614. [PubMed][CrossRef]
283. Omote H, Maeda M, Futai M. 1992. Effects of mutations of conserved Lys-155 and Thr-156 residues in the phosphate-binding glycine-rich sequence of the F1-ATPase β subunit of Escherichia coli. J Biol Chem 267:20571–20576. [PubMed]
284. Löbau S, Weber J, Wilke-Mounts S, Senior AE. 1997. F1-ATPase, roles of three catalytic site residues. J Biol Chem 272:3648–3656. [PubMed][CrossRef]
285. Senior AE, Nadanaciva S, Weber J. 2002. The molecular mechanism of ATP synthesis by F1Fo-ATP synthase. Biochim Biophys Acta 1553:188–211. [PubMed][CrossRef]
286. Nadanaciva S, Weber J, Senior AE. 1999. Binding of the transition state analog MgADP-fluoroaluminate to F1-ATPase. J Biol Chem 274:7052–7058. [PubMed][CrossRef]
287. Nadanaciva S, Weber J, Senior AE. 1999. The role of β-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase. Biochemistry 38:7670–7677. [PubMed][CrossRef]
288. Webb MR, Grubmeyer C, Penefsky HS, Trentham DR. 1980. The stereochemical course of phosphoric residue transfer catalyzed by beef heart mitochondrial ATPase. J Biol Chem 255:11637–11639. [PubMed]
289. Nadanaciva S, Weber J, Wilke-Mounts S, Senior AE. 1999. Importance of F1-ATPase residue α-Arg-376 for catalytic transition state stabilization. Biochemistry 38:15493–15499. [PubMed][CrossRef]
290. Le NP, Omote H, Wada Y, Al-Shawi MK, Nakamoto RK, Futai M. 2000. Escherichia coli ATP synthase α subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state. Biochemistry 39:2778–2783. [PubMed][CrossRef]
291. Ahmad Z, Senior AE. 2005. Involvement of ATP synthase residues αArg-376, βArg-182, and βLys-155 in Pi binding. FEBS Lett 579:523–528. [PubMed][CrossRef]
292. Ahmad Z, Senior AE. 2005. Modulation of charge in the phosphate binding site of Escherichia coli ATP synthase. J Biol Chem 280:27981–27989. [PubMed][CrossRef]
293. Ahmad Z, Senior AE. 2004. Mutagenesis of residue βArg-246 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F1-ATPase. J Biol Chem 279:31505–31513. [PubMed][CrossRef]
294. Ahmad Z, Senior AE. 2004. Role of βAsn-243 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F1-ATPase. J Biol Chem 279:46057–46064. [PubMed][CrossRef]
295. Bandyopadhyay S, Valder CR, Huynh HG, Ren H, Allison WS. 2002. The β G156C substitution in the F1-ATPase from the thermophilic Bacillus PS3 affects catalytic site cooperativity by destabilizing the closed conformation of the catalytic site. Biochemistry 41:14421–14429. [PubMed][CrossRef]
296. Grodsky NB, Dou C, Allison WS. 1998. Mutations in the nucleotide binding domain of the α subunits of the F1-ATPase from thermophilic Bacillus PS3 that affect cross-talk between nucleotide binding sites. Biochemistry 37:1007–1014. [PubMed][CrossRef]
297. Maggio MB, Pagan J, Parsonage D, Hatch L, Senior AE. 1987. The defective proton-ATPase of uncA mutants of Escherichia coli. Identification by DNA sequencing of residues in the α-subunit which are essential for catalysis or normal assembly. J Biol Chem 262:8981–8984. [PubMed]
298. Noumi T, Oka N, Kanazawa H, Futai M. 1986. Mutational replacements of conserved amino acid residues in the β subunit resulted in defective assembly of H+-translocating ATPase (FoF1) in Escherichia coli. J Biol Chem 261:7070–7075. [PubMed]
299. Noumi T, Taniai M, Kanazawa H, Futai M. 1986. Replacement of arginine 246 by histidine in the β subunit of Escherichia coli H+-ATPase resulted in loss of multi-site ATPase activity. J Biol Chem 261:9196–9201. [PubMed]
300. Omote H, Le NP, Park MY, Maeda M, Futai M. 1995. β subunit Glu-185 of Escherichia coli H+-ATPase (ATP synthase) is an essential residue for cooperative catalysis. J Biol Chem 270:25656–25660. [PubMed][CrossRef]
301. Parsonage D, Duncan TM, Wilke-Mounts S, Kironde FA, Hatch L, Senior AE. 1987. The defective proton-ATPase of uncD mutants of Escherichia coli. Identification by DNA sequencing of residues in the β-subunit which are essential for catalysis or normal assembly. J Biol Chem 262:6301–6307. [PubMed]
302. Wise JG, Duncan TM, Latchney LR, Cox DN, Senior AE. 1983. Properties of F1-ATPase from the uncD412 mutant of Escherichia coli. Biochem J 215:343–350. [PubMed]
303. Nakamoto RK, Maeda M, Futai M. 1993. The γ subunit of the Escherichia coli ATP synthase. Mutations in the carboxyl-terminal region restore energy coupling to the amino-terminal mutant γ Met-23→Lys. J Biol Chem 268:867–872. [PubMed]
304. Shin K, Nakamoto RK, Maeda M, Futai M. 1992. FoF1-ATPase γ subunit mutations perturb the coupling between catalysis and transport. J Biol Chem 267:20835–20839. [PubMed]
305. Ketchum CJ, Al-Shawi MK, Nakamoto RK. 1998. Intergenic suppression of the γM23K uncoupling mutation in FoF1 ATP synthase by βGlu-381 substitutions: the role of the β380 DELSEED 386 segment in energy coupling. Biochem J 330:707–712. [PubMed]
306. Omote H, Sambonmatsu N, Saito K, Sambongi Y, Iwamoto-Kihara A, Yanagida T, Wada Y, Futai M. 1999. The γ-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli. Proc Natl Acad Sci USA 96:7780–7784. [PubMed][CrossRef]
307. Al-Shawi MK, Ketchum CJ, Nakamoto RK. 1997. Energy coupling, turnover, and stability of the FoF1 ATP synthase are dependent on the energy of interaction between γ and β subunits. J Biol Chem 272:2300–2306. [PubMed][CrossRef]
308. Boltz KW, Frasch WD. 2006. Hydrogen bonds between the α and β subunits of the F1-ATPase allow communication between the catalytic site and the interface of the β catch loop and the γ subunit. Biochemistry 45:11190–11199. [PubMed][CrossRef]
309. Boltz KW, Frasch WD. 2005. Interactions of γ T273 and γ E275 with the β subunit PSAV segment that links the γ subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1Fo ATP synthase. Biochemistry 44:9497–9506. [PubMed][CrossRef]
310. Greene MD, Frasch WD. 2003. Interactions among γ R268, γ Q269, and the β subunit catch loop of Escherichia coli F1-ATPase are important for catalytic activity. J Biol Chem 278:51594–51598. [PubMed][CrossRef]
311. Lowry DS, Frasch WD. 2005. Interactions between βD372 and γ subunit N-terminus residues γK9 and γS12 are important to catalytic activity catalyzed by Escherichia coli F1Fo-ATP synthase. Biochemistry 44:7275–7281. [PubMed][CrossRef]
312. Kanazawa H, Hama H, Rosen BP, Futai M. 1985. Deletion of seven amino acid residues from the γ subunit of Escherichia coli H+-ATPase causes total loss of F1 assembly on membranes. Arch Biochem Biophys 241:364–370. [PubMed][CrossRef]
313. Humbert R, Altendorf K. 1989. Defective γ subunit of ATP synthase (F1Fo) from Escherichia coli leads to resistance to aminoglycoside antibiotics. J Bacteriol 171:1435–1444. [PubMed]
314. Iwamoto A, Miki J, Maeda M, Futai M. 1990. H+-ATPase γ subunit of Escherichia coli. Role of the conserved carboxyl-terminal region. J Biol Chem 265:5043–5048. [PubMed]
315. Müller M, Pänke O, Junge W, Engelbrecht S. 2002. F1-ATPase: the C-terminal end of subunit γ is not required for ATP hydrolysis-driven rotation. J Biol Chem 8:23308–23313. [CrossRef]
316. Dunn SD. 1982. The isolated γ subunit of Escherichia coli F1 ATPase binds the ε subunit. J Biol Chem 257:7354–7359. [PubMed]
317. Watts SD, Capaldi RA. 1997. Interactions between the F1 and Fo parts in the Escherichia coli ATP synthase. Associations involving the loop region of c subunits. J Biol Chem 272:15065–15068. [PubMed][CrossRef]
318. Watts SD, Tang C, Capaldi RA. 1996. The stalk region of the Escherichia coli ATP synthase. Tyrosine 205 of the γ subunit is in the interface between the F1 and Fo parts and can interact with both the ε and c oligomer. J Biol Chem 271:28341–28347. [PubMed][CrossRef]
319. Watts SD, Zhang Y, Fillingame RH, Capaldi RA. 1995. The γ subunit in the Escherichia coli ATP synthase complex (ECF1Fo) extends through the stalk and contacts the c subunits of the Fo part. FEBS Lett 368:235–238. [PubMed][CrossRef]
320. Ketchum CJ, Nakamoto RK. 1998. A mutation in the Escherichia coli FoF1-ATP synthase rotor, γE208K, perturbs conformational coupling between transport and catalysis. J Biol Chem 273:22292–22297. [PubMed][CrossRef]
321. Andrews SH, Peskova YB, Polar MK, Herlihy VB, Nakamoto RK. 2001. Conformation of the γ subunit at the γ-ε-c interface in the complete Escherichia coli F1-ATPase complex by site-directed spin labeling. Biochemistry 40:10664–10670. [PubMed][CrossRef]
322. Laget PP, Smith JB. 1979. Inhibitory properties of endogenous subunit ε in the Escherichia coli F1 ATPase. Arch Biochem Biophys 197:83–89. [PubMed][CrossRef]
323. Smith JB, Sternweis PC, Heppel LA. 1975. Partial purification of active δ and ε subunits of the membrane ATPase from Escherichia coli. J Supramol Struct 3:248–255. [PubMed][CrossRef]
324. Sternweis PC, Smith JB. 1980. Characterization of the inhibitory (ε) subunit of the proton-translocating adenosine triphosphatase from Escherichia coli. Biochemistry 19:526–531. [PubMed][CrossRef]
325. Tuttas-Dörschug R, Hanstein WG. 1989. Coupling factor 1 from Escherichia coli lacking subunits δ and ε: preparation and specific binding to depleted membranes, mediated by subunits δ or ε. Biochemistry 28:5107–5113. [PubMed][CrossRef]
326. Pan W, Ko YH, Pedersen PL. 1998. δ subunit of rat liver mitochondrial ATP synthase: molecular description and novel insights into the nature of its association with the F1-moiety. Biochemistry 37:6911–6923. [PubMed][CrossRef]
327. Aggeler R, Capaldi RA. 1996. Nucleotide-dependent movement of the ε subunit between α and β subunits in the Escherichia coli F1Fo-type ATPase. J Biol Chem 271:13888–13891. [PubMed][CrossRef]
328. Dallmann HG, Flynn TG, Dunn SD. 1992. Determination of the 1-ethyl-3-[(3-dimethylamino)propyl]-carbodiimide-induced cross-link between the β and ε subunits of Escherichia coli F1-ATPase. J Biol Chem 267:18953–18960. [PubMed]
329. Tsunoda SP, Rodgers AJ, Aggeler R, Wilce MC, Yoshida M, Capaldi RA. 2001. Large conformational changes of the ε subunit in the bacterial F1Fo ATP synthase provide a ratchet action to regulate this rotary motor enzyme. Proc Natl Acad Sci USA 98:6560–6564. [PubMed][CrossRef]
330. Cipriano DJ, Bi Y, Dunn SD. 2002. Genetic fusions of globular proteins to the ε subunit of the Escherichia coli ATP synthase. Implications for in vivo rotational catalysis and ε subunit function. J Biol Chem 277:16782–16790. [PubMed][CrossRef]
331. Cipriano DJ, Dunn SD. 2006. The role of the ε subunit in the Escherichia coli ATP synthase. The C-terminal domain is required for efficient energy coupling. J Biol Chem 281:501–507. [PubMed][CrossRef]
332. Kato-Yamada Y, Yoshida M. 2003. Isolated ε subunit of thermophilic F1-ATPase binds ATP. J Biol Chem 278:36013–36016. [PubMed][CrossRef]
333. Iizuka S, Kato S, Yoshida M, Kato-Yamada Y. 2006. γε sub-complex of thermophilic ATP synthase has the ability to bind ATP. Biochem Biophys Res Commun 349:1368–1371. [PubMed][CrossRef]
334. Kato Y, Matsui T, Tanaka N, Muneyuki E, Hisabori T, Yoshida M. 1997. Thermophilic F1-ATPase is activated without dissociation of an endogenous inhibitor, ε subunit. J Biol Chem 272:24906–24912. [PubMed][CrossRef]
335. Kato-Yamada Y, Bald D, Koike M, Motohashi K, Hisabori T, Yoshida M. 1999. ε subunit, an endogenous inhibitor of bacterial F1-ATPase, also inhibits FoF1-ATPase. J Biol Chem 274:33991–33994. [PubMed][CrossRef]
336. Feniouk BA, Suzuki T, Yoshida M. 2006. Regulatory interplay between proton motive force, ADP, phosphate, and subunit ε in bacterial ATP synthase. J Biol Chem 282:764–772. [PubMed][CrossRef]
337. Iino R, Murakami T, Iizuka S, Kato-Yamada Y, Suzuki T, Yoshida M. 2005. Real-time monitoring of conformational dynamics of the ε subunit in F1-ATPase. J Biol Chem 280:40130–40134. [PubMed][CrossRef]
338. Cox GB, Hatch L, Webb D, Fimmel AL, Lin ZH, Senior AE, Gibson F. 1987. Amino acid substitutions in the ε-subunit of the F1Fo-ATPase of Escherichia coli. Biochim Biophys Acta 890:195–204. [PubMed][CrossRef]
339. LaRoe DJ, Vik SB. 1992. Mutations at Glu-32 and His-39 in the ε subunit of the Escherichia coli F1Fo ATP synthase affect its inhibitory properties. J Bacteriol 174:633–637. [PubMed]
340. Skakoon EN, Dunn SD. 1993. Location of conserved residue histidine-38 of the ε subunit of Escherichia coli ATP synthase. Arch Biochem Biophys 302:272–278. [PubMed][CrossRef]
341. Jounouchi M, Takeyama M, Noumi T, Moriyama Y, Maeda M, Futai M. 1992. Role of the amino terminal region of the ε subunit of Escherichia coli H+-ATPase (FoF1). Arch Biochem Biophys 292:87–94. [PubMed][CrossRef]
342. Kuki M, Noumi T, Maeda M, Amemura A, Futai M. 1988. Functional domains of ε subunit of Escherichia coli H+-ATPase (FoF1). J Biol Chem 263:17437–17442. [PubMed]
343. Skakoon EN, Dunn SD. 1993. Orientation of the ε subunit in Escherichia coli ATP synthase. Arch Biochem Biophys 302:279–284. [PubMed][CrossRef]
344. Xiong H, Vik SB. 1995. Alanine-scanning mutagenesis of the ε subunit of the F1-Fo ATP synthase from Escherichia coli reveals two classes of mutants. J Biol Chem 270:23300–23304. [PubMed][CrossRef]
345. Xiong H, Zhang D, Vik SB. 1998. Subunit ε of the Escherichia coli ATP synthase: novel insights into structure and function by analysis of thirteen mutant forms. Biochemistry 37:16423–16429. [PubMed][CrossRef]
346. Mendel-Hartvig J, Capaldi RA. 1991. Catalytic site nucleotide and inorganic phosphate dependence of the conformation of the ε subunit in Escherichia coli adenosinetriphosphatase. Biochemistry 30:1278–1284. [PubMed][CrossRef]
347. Mendel-Hartvig J, Capaldi RA. 1991. Nucleotide-dependent and dicyclohexylcarbodiimide-sensitive conformational changes in the ε subunit of Escherichia coli ATP synthase. Biochemistry 30:10987–10991. [PubMed][CrossRef]
348. Zimmermann B, Diez M, Zarrabi N, Gräber P, Börsch M. 2005. Movements of the ε-subunit during catalysis and activation in single membrane-bound H+-ATP synthase. EMBO J 24:2053–2063. [PubMed][CrossRef]
349. Ganti S, Vik SB. 2007. Chemical modification of mono-cysteine mutants allows a more global look at conformations of the ε subunit of the ATP synthase from Escherichia coli. J Bioenerg Biomembr 39:99–107. [PubMed][CrossRef]
350. Wilkens S, Dunn SD, Chandler J, Dahlquist FW, Capaldi RA. 1997. Solution structure of the N-terminal domain of the δ subunit of the E. coli ATP synthase. Nat Struct Biol 4:198–201. [PubMed][CrossRef]
351. Ogilvie I, Aggeler R, Capaldi RA. 1997. Cross-linking of the δ subunit to one of the three α subunits has no effect on functioning, as expected if δ is a part of the stator that links the F1 and Fo parts of the Escherichia coli ATP synthase. J Biol Chem 272:16652–16656. [PubMed][CrossRef]
352. Weber J, Wilke-Mounts S, Senior AE. 2002. Quantitative determination of binding affinity of δ-subunit in Escherichia coli F1-ATPase. Effects of mutation, Mg2+, and pH on Kd. J Biol Chem 277:18390–18396. [PubMed][CrossRef]
353. Weber J, Muharemagic A, Wilke-Mounts S, Senior AE. 2003. F1Fo-ATP synthase: binding of δ subunit to a 22-residue peptide mimicking the N-terminal region of α subunit. J Biol Chem 278:13623–13626. [PubMed][CrossRef]
354. Weber J, Wilke-Mounts S, Senior AE. 2003. Identification of the F1-binding surface on the δ-subunit of ATP synthase. J Biol Chem 278:13409–13416. [PubMed][CrossRef]
355. Wilkens S, Borchardt D, Weber J, Senior AE. 2005. Structural characterization of the interaction of the δ and α subunits of the Escherichia coli F1Fo-ATP synthase by NMR spectroscopy. Biochemistry 44:11786–11794. [PubMed][CrossRef]
356. Dunn SD, Heppel LA, Fullmer CS. 1980. The NH2-terminal portion of the α subunit of Escherichia coli F1 ATPase is required for binding the δ subunit. J Biol Chem 255:6891–6896. [PubMed]
357. Jounouchi M, Takeyama M, Chaiprasert P, Noumi T, Moriyama Y, Maeda M, Futai M. 1992. Escherichia coli H+-ATPase: role of the δ subunit in binding Fl to the Fo sector. Arch Biochem Biophys 292:376–381. [PubMed][CrossRef]
358. Hazard AL, Senior AE. 1994. Mutagenesis of subunit δ from Escherichia coli F1Fo-ATP synthase. J Biol Chem 269:418–426. [PubMed]
359. Hazard AL, Senior AE. 1994. Defective energy coupling in δ-subunit mutants of Escherichia coli F1Fo-ATP synthase. J Biol Chem 269:427–432. [PubMed]
360. Stack AE, Cain BD. 1994. Mutations in the δ subunit influence the assembly of F1Fo ATP synthase in Escherichia coli. J Bacteriol 176:540–542. [PubMed]
361. Dunn SD. 1992. The polar domain of the b subunit of Escherichia coli F1Fo-ATPase forms an elongated dimer that interacts with the F1 sector. J Biol Chem 267:7630–7636. [PubMed]
362. McLachlin DT, Bestard JA, Dunn SD. 1998. The b and δ subunits of the Escherichia coli ATP synthase interact via residues in their C-terminal regions. J Biol Chem 273:15162–15168. [PubMed][CrossRef]
363. Hermolin J, Gallant J, Fillingame RH. 1983. Topology, organization, and function of the psi subunit in the Fo sector of the H+-ATPase of Escherichia coli. J Biol Chem 258:14550–14555. [PubMed]
364. Hoppe J, Friedl P, Schairer HU, Sebald W, von Meyenburg K, Jorgensen BB. 1983. The topology of the proton translocating Fo component of the ATP synthase from E. coli K12: studies with proteases. EMBO J 2:105–110. [PubMed]
365. Perlin DS, Cox DN, Senior AE. 1983. Integration of F1 and the membrane sector of the proton-ATPase of Escherichia coli. Role of subunit “b” (uncF protein). J Biol Chem 258:9793–9800. [PubMed]
366. McLachlin DT, Dunn SD. 1997. Dimerization interactions of the b subunit of the Escherichia coli F1Fo-ATPase. J Biol Chem 272:21233–21239. [PubMed][CrossRef]
367. Revington M, McLachlin DT, Shaw GS, Dunn SD. 1999. The dimerization domain of the b subunit of the Escherichia coli F1Fo-ATPase. J Biol Chem 274:31094–31101. [PubMed][CrossRef]
368. Dunn SD, Revington M, Cipriano DJ, Shilton BH. 2000. The b subunit of Escherichia coli ATP synthase. J Bioenerg Biomembr 32:347–355. [PubMed][CrossRef]
369. Sorgen PL, Caviston TL, Perry RC, Cain BD. 1998. Deletions in the second stalk of F1Fo-ATP synthase in Escherichia coli. J Biol Chem 273:27873–27878. [PubMed][CrossRef]
370. Sorgen PL, Bubb MR, Cain BD. 1999. Lengthening the second stalk of F1Fo ATP synthase in Escherichia coli. J Biol Chem 274:36261–36266. [PubMed][CrossRef]
371. Grabar TB, Cain BD. 2004. Genetic complementation between mutant b subunits in F1Fo ATP synthase. J Biol Chem 279:31205–31211. [PubMed][CrossRef]
372. Grabar TB, Cain BD. 2003. Integration of b subunits of unequal lengths into F1Fo-ATP synthase. J Biol Chem 278:34751–34756. [PubMed][CrossRef]
373. Caviston TL, Ketchum CJ, Sorgen PL, Nakamoto RK, Cain BD. 1998. Identification of an uncoupling mutation affecting the b subunit of F1Fo ATP synthase in Escherichia coli. FEBS Lett 429:201–206. [PubMed][CrossRef]
374. Steigmiller S, Börsch M, Gräber P, Huber M. 2005. Distances between the b-subunits in the tether domain of FoF1-ATP synthase from E. coli. Biochim Biophys Acta 1708:143–153. [PubMed][CrossRef]
375. Hardy AW, Grabar TB, Bhatt D, Cain BD. 2003. Mutagenesis studies of the F1Fo ATP synthase b subunit membrane domain. J Bioenerg Biomembr 35:389–397. [PubMed][CrossRef]
376. Jans DA, Fimmel AL, Hatch L, Gibson F, Cox GB. 1984. An additional acidic residue in the membrane portion of the b-subunit of the energy-transducing adenosine triphosphatase of Escherichia coli affects both assembly and function. Biochem J 221:43–51. [PubMed]
377. Porter AC, Kumamoto C, Aldape K, Simoni RD. 1985. Role of the b subunit of the Escherichia coli proton-translocating ATPase. A mutagenic analysis. J Biol Chem 260:8182–8187. [PubMed]
378. Kumamoto CA, Simoni RD. 1986. Genetic evidence for interaction between the a and b subunits of the Fo portion of the Escherichia coli proton translocating ATPase. J Biol Chem 261:10037–10042. [PubMed]
379. Kumamoto CA, Simoni RD. 1987. A mutation of the c subunit of the Escherichia coli proton-translocating ATPase that suppresses the effects of a mutant b subunit. J Biol Chem 262:3060–3064. [PubMed]
380. McCormick KA, Cain BD. 1991. Targeted mutagenesis of the b subunit of F1Fo ATP synthase in Escherichia coli: Glu-77 through Gln-85. J Bacteriol 173:7240–7248. [PubMed]
381.