1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

NADH as Donor

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Thorsten Friedrich1, and Thomas Pohl
  • Editor: Valley Stewart2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Organic Chemistry and Biochemistry, Albert-Ludwigs-University, Albertstrasse 21, 79104 Freiburg, Germany; 2: University of California, Davis, Davis, CA
  • Received 13 March 2007 Accepted 16 May 2007 Published 13 August 2007
  • Address correspondence to Thorsten Friedrich tfriedri@uni-freiburg.de
image of NADH as Donor
    Preview this reference work article:
    Zoom in
    Zoomout

    NADH as Donor, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/2/3_2_4_module-1.gif /docserver/preview/fulltext/ecosalplus/2/2/3_2_4_module-2.gif
  • Abstract:

    The number of NADH dehydrogenases and their role in energy transduction in have been under debate for a long time. Now it is evident that possesses two respiratory NADH dehydrogenases, or NADH:ubiquinone oxidoreductases, that have traditionally been called NDH-I and NDH-II. This review describes the properties of these two NADH dehydrogenases, focusing on the mechanism of the energy converting NADH dehydrogenase as derived from the high resolution structure of the soluble part of the enzyme. In , complex I operates in aerobic and anaerobic respiration, while NDH-II is repressed under anaerobic growth conditions. The insufficient recycling of NADH most likely resulted in excess NADH inhibiting tricarboxylic acid cycle enzymes and the glyoxylate shunt. serovar Typhimurium complex I mutants are unable to activate ATP-dependent proteolysis under starvation conditions. NDH-II is a single subunit enzyme with a molecular mass of 47 kDa facing the cytosol. Despite the absence of any predicted transmembrane segment it has to be purified in the presence of detergents, and the activity of the preparation is stimulated by an addition of lipids.

  • Citation: Friedrich T, Pohl T. 2007. NADH as Donor, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.4

Key Concept Ranking

Immobilized Metal Affinity Chromatography
0.44091493
Acidic Amino Acids
0.35441414
Sodium Dodecyl Sulfate
0.3306862
Chemicals
0.3211724
0.44091493

References

1. Matsushita K, Ohnishi T, Kaback HR. 1987. NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry 26:7732–7737. [PubMed][CrossRef]
2. Yagi T, Xu X, Matsuno-Yagi A. 1992. The energy-transducing NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans. Biochim Biophys Acta 1101:181–183. [PubMed][CrossRef]
3. Friedrich T. 1998. The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364:134–146. [PubMed][CrossRef]
4. Friedrich T, Scheide D. 2000. The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5. [PubMed][CrossRef]
5. Sinegina L, Wikström M, Verkhovsky MI, Verkhovskaya ML. 2005. Activation of isolated NADH:ubiquinone reductase I (complex I) from Escherichia coli by detergent and phospholipids. Recovery of ubiquinone reductase activity and changes in EPR signals of iron-sulfur clusters. Biochemistry 44:8500–8506. [PubMed][CrossRef]
6. Jaworowski A, Mayo G, Shaw DC, Campbell HD, Young IG. 1981. Characterization of the respiratory NADH dehydrogenase of Escherichia coli and reconstitution of NADH oxidase in ndh mutant membrane vesicles. Biochemistry 20:3621–3628. [PubMed][CrossRef]
7. Young IG, Jaworowski A, Poulis MI. 1978. Amplification of the respiratory NADH dehydrogenase of Escherichia coli by gene cloning. Gene 4:25–36. [PubMed][CrossRef]
8. Young IG, Rogers BL, Campbell HD, Jaworowski A, Shaw DC. 1981. Nucleotide sequence coding for the respiratory NADH dehydrogenase of Escherichia coli. UUG initiation codon. Eur J Biochem 116:165–170. [PubMed][CrossRef]
9. Yano T, Sklar J, Nakamaru-Ogiso E, Takahashi Y, Yagi T, Ohnishi T. 2003. Characterization of cluster N5 as a fast-relaxing [4Fe-4S] cluster in the Nqo3 subunit of the proton-translocating NADH-ubiquinone oxidoreductase from Paracoccus denitrificans. J Biol Chem 278:15514–15522. [PubMed][CrossRef]
10. Calhoun MW, Gennis RB. 1993. Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli. J Bacteriol 175:3013–3019.[PubMed]
11. Lawford HG, Haddock BA. 1973. Respiration-driven proton translocation in Escherichia coli. Biochem J 136:217–220.[PubMed]
12. Matsushita K, Kaback HR. 1986. D-Lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase. Biochemistry 25:2321–2327. [PubMed][CrossRef]
13. Pohl T, Walter J, Stolpe S, Defeu Soufo HJ, Graumann PL, Friedrich T. 2007. Effects of the deletion of the Escherichia coli frataxin homologue CyaY on the respiratory NADH:ubiquinone oxidoreductase. BMC Biochemistry 8:13.
14. Owen P, Kaback HR. 1979. Antigenic architecture of membrane vesicles from Escherichia coli. Biochemistry 18:1422–1426. [PubMed][CrossRef]
15. Meinhardt SW, Matsushita K, Kaback HR, Ohnishi T. 1989. EPR characterization of the iron-sulfur-containing NADH-ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain. Biochemistry 28:2153–2160. [PubMed][CrossRef]
16. Calhoun MW, Oden KL, Gennis RB, de Mattos MJ, Neijssel OM. 1993. Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain. J Bacteriol 175:3020–3025.[PubMed]
17. Neijssel OM, Teixeira de Mattos MJ. 1994. The energetics of bacterial growth: a reassessment. Mol Microbiol 13:172–182. [PubMed][CrossRef]
18. Green J, Guest JR. 1994. Regulation of transcription at the ndh promoter of Escherichia coli by FNR and novel factors. Mol Microbiol 12:433–444. [PubMed][CrossRef]
19. Tersteegen A, Hedderich R. 1999. Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur J Biochem 264:930–943. [PubMed][CrossRef]
20. Tran QH, Bongaerts J, Vlad D, Unden G. 1997. Requirement for the proton-pumping NADH dehydrogenase I of Escherichia coli in respiration of NADH to fumarate and its bioenergetic implications. Eur J Biochem 244:155–160. [PubMed][CrossRef]
21. Vgenopoulou I, Gemperli AC, Steuber J. 2006. Specific modification of a Na+ binding site in NADH:quinone oxidoreductase from Klebsiella pneumoniae with dicyclohexylcarbodiimide. J Bacteriol 188:3264–3272. [PubMed][CrossRef]
22. Young IG, Wallace BJ. 1976. Mutations affecting the reduced nicotinamide adenine dinucleotide dehydrogenase complex of Escherichia coli. Biochim Biophys Acta 449:376–385. [PubMed][CrossRef]
23. Poole RK, Haddock BA. 1975. Effects of sulphate-limited growth in continuous culture on the electron-transport chain and energy conservation in Escherichia coli K12. Biochem J 152:537–546.[PubMed]
24. Archer CD, Wang X, Elliott T. 1993. Mutants defective in the energy-conserving NADH dehydrogenase of Salmonella typhimurium identified by a decrease in energy-dependent proteolysis after carbon starvation. Proc Natl Acad Sci USA 90:9877–9881. [PubMed][CrossRef]
25. Bogachev AV, Murtazina RA, Skulachev VP. 1996. H+/e- stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol 178:6233–6237.[PubMed]
26. Galkin A, Dröse S, Brandt U. 2006. The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes. Biochim Biophys Acta 1757:1575–1581. [PubMed][CrossRef]
27. Weiss H, Friedrich T, Hofhaus G, Preis D. 1991. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 197:563–576. [PubMed][CrossRef]
28. Gemperli AC, Dimroth P, Steuber J. 2003. Sodium ion cycling mediates energy coupling between complex I and ATP synthase. Proc Natl Acad Sci USA 100:839–844. [PubMed][CrossRef]
29. Degli Esposti M. 1998. Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235. [PubMed][CrossRef]
30. Miyoshi H. 2001. Probing the ubiquinone reduction site in bovine mitochondrial complex I using a series of synthetic ubiquinones and inhibitors. J Bioenerg Biomembr 33:223–231. [PubMed][CrossRef]
31. Friedrich T, Steinmüller K, Weiss H. 1995. The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS Lett 367:107–111. [PubMed][CrossRef]
32. Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE. 2006. Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727. [PubMed][CrossRef]
33. Brandt U. 2006. Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92. [PubMed][CrossRef]
34. Ohnishi T. 1998. Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364:186–206. [PubMed][CrossRef]
35. Wackwitz B, Bongaerts J, Goodman SD, Unden G. 1999. Growth phase-dependent regulation of nuoA-N expression in Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance. Mol Gen Genet 262:876–883. [PubMed][CrossRef]
36. Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H. 1993. The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol 233:109–122. [PubMed][CrossRef]
37. Yagi T, Hatefi Y. 1988. Identification of the dicyclohexylcarbodiimide-binding subunit of NADH-ubiquinone oxidoreductase (Complex I). J Biol Chem 263:16150–16155.[PubMed]
38. Leif H, Weidner U, Berger A, Spehr V, Braun M, van HP, Friedrich T, Ohnishi T, Weiss H. 1993. Escherichia coli NADH dehydrogenase I, a minimal form of the mitochondrial complex I. Biochem Soc Trans 21:998–1001.[PubMed]
39. Walker JE. 1992. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25:253–324. [PubMed][CrossRef]
40. Wikström M. 1984. Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett 169:300–304. [PubMed][CrossRef]
41. Blattner FR, Plunkett G, III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474. [PubMed][CrossRef]
42. Braun M, Bungert S, Friedrich T. 1998. Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochemistry 37:1861–1867. [PubMed][CrossRef]
43. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856. [PubMed][CrossRef]
44. Clark MA, Baumann L, Baumann P. 1997. Buchnera aphidicola (endosymbiont of aphids) contains nuoC(D) genes that encode subunits of NADH dehydrogenase. Curr Microbiol 35:122–123. [PubMed][CrossRef]
45. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV. 1998. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358. [PubMed][CrossRef]
46. Deng W, Burland V, Plunkett G, III, Boutin A, Mayhew GF, Liss P, Perna NT, Rose DJ, Mau B, Zhou S, Schwartz DC, Fetherston JD, Lindler LE, Brubaker RR, Plano GV, Straley SC, McDonough KA, Nilles ML, Matson JS, Blattner FR, Perry RD. 2002. Genome sequence of Yersinia pestis KIM. J Bacteriol 184:4601–4611. [PubMed][CrossRef]
47. Wissenbach U, Ternes D, Unden G. 1992. An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch Microbiol 158:68–73. [PubMed][CrossRef]
48. Yagi T, Matsuno-Yagi A. 2003. The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42:2266–2274. [PubMed][CrossRef]
49. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140. [PubMed][CrossRef]
50. Finel M. 1998. Does NADH play a central role in energy metabolism in Helicobacter pylori? Trends Biochem Sci 23:412–413. [PubMed][CrossRef]
51. Sled VD, Rudnitzky NI, Hatefi Y, Ohnishi T. 1994. Thermodynamic analysis of flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I). Biochemistry 33:10069–10075. [PubMed][CrossRef]
52. Dupuis A, Chevallet M, Darrouzet E, Duborjal H, Lunardi J, Issartel JP. 1998. The complex I from Rhodobacter capsulatus. Biochim Biophys Acta 1364:147–165. [PubMed][CrossRef]
53. Dupuis A, Darrouzet E, Duborjal H, Pierrard B, Chevallet M, van BR, Albracht SP, Lunardi J. 1998. Distal genes of the nuo operon of Rhodobacter capsulatus equivalent to the mitochondrial ND subunits are all essential for the biogenesis of the respiratory NADH-ubiquinone oxidoreductase. Mol Microbiol 28:531–541. [PubMed][CrossRef]
54. Falk-Krzesinski HJ, Wolfe AJ. 1998. Genetic analysis of the nuo locus, which encodes the proton-translocating NADH dehydrogenase in Escherichia coli. J Bacteriol 180:1174–1184.[PubMed]
55. Amarneh B, Vik SB. 2003. Mutagenesis of subunit N of the Escherichia coli complex I. Identification of the initiation codon and the sensitivity of mutants to decylubiquinone. Biochemistry 42:4800–4808. [PubMed][CrossRef]
56. Belevich G, Euro L, Wikström M, Verkhovskaya M. 2007. Role of the conserved arginine 274 and histidine 224 and 228 residues in the NuoCD subunit of complex I from Escherichia coli. Biochemistry 46:526–533. [PubMed][CrossRef]
57. Flemming D, Hellwig P, Friedrich T. 2003. Involvement of tyrosines 114 and 139 of subunit NuoB in the proton pathway around cluster N2 in Escherichia coli NADH:ubiquinone oxidoreductase. J Biol Chem 278:3055–3062. [PubMed][CrossRef]
58. Flemming D, Hellwig P, Lepper S, Kloer DP, Friedrich T. 2006. Catalytic importance of acidic amino acids on subunit NuoB of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 281:24781–24789. [PubMed][CrossRef]
59. Flemming D, Schlitt A, Spehr V, Bischof T, Friedrich T. 2003. Iron-sulfur cluster N2 of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is located on subunit NuoB. J Biol Chem 278:47602–47609. [PubMed][CrossRef]
60. Kervinen M, Hinttala R, Helander HM, Kurki S, Uusimaa J, Finel M, Majamaa K, Hassinen IE. 2006. The MELAS mutations 3946 and 3949 perturb the critical structure in a conserved loop of the ND1 subunit of mitochondrial complex I. Hum Mol Genet 15:2543–2552. [PubMed][CrossRef]
61. Kervinen M, Patsi J, Finel M, Hassinen IE. 2004. A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochemistry 43:773–781. [PubMed][CrossRef]
62. Nakamaru-Ogiso E, Yano T, Yagi T, Ohnishi T. 2005. Characterization of the iron-sulfur cluster N7 (N1c) in the subunit NuoG of the proton-translocating NADH-quinone oxidoreductase from Escherichia coli. J Biol Chem 280:301–307.[PubMed]
63. van der Spek TM, Arendsen AF, Happe RP, Yun S, Bagley KA, Stufkens DJ, Hagen WR, Albracht SP. 1996. Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy. Eur J Biochem 237:629–634. [PubMed][CrossRef]
64. Amarneh B, De Leon-Rangel J, Vik SB. 2006. Construction of a deletion strain and expression vector for the Escherichia coli NADH:ubiquinone oxidoreductase (Complex I). Biochim Biophys Acta 1757:1557–1560. [PubMed][CrossRef]
65. Court DL, Sawitzke JA, Thomason LC. 2002. Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388. [PubMed][CrossRef]
66. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. [PubMed][CrossRef]
67. Zhang J, Zeuner Y, Kleefeld A, Unden G, Janshoff A. 2004. Multiple site-specific binding of Fis protein to Escherichia coli nuoA-N promoter DNA and its impact on DNA topology visualised by means of scanning force microscopy. ChemBioChem 5:1286–1289. [PubMed][CrossRef]
68. Pohl T, Bauer T, Dörner K, Stolpe S, Sell P, Zocher G, Friedrich T. 2007. Iron-sulfur cluster N7 of the NADH:ubiquinone oxidoreductase (complex I) is essential for stability but not involved in electron transfer. Biochemistry 46:6588–6596. [PubMed][CrossRef]
69. Bongaerts J, Zoske S, Weidner U, Unden G. 1995. Transcriptional regulation of the proton translocating NADH dehydrogenase genes (nuoA-N) of Escherichia coli by electron acceptors, electron donors and gene regulators. Mol Microbiol 16:521–534. [PubMed][CrossRef]
70. Zambrano MM, Kolter R. 1993. Escherichia coli mutants lacking NADH dehydrogenase I have a competitive disadvantage in stationary phase. J Bacteriol 175:5642–5647.[PubMed]
71. Uhlmann M, Friedrich T. 2005. EPR signals assigned to Fe/S cluster N1c of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) derive from cluster N1a. Biochemistry 44:1653–1658. [PubMed][CrossRef]
72. Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T. 1995. Isolation and characterization of the proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli. Eur J Biochem 230:538–548. [PubMed][CrossRef]
73. Smith MA, Finel M, Korolik V, Mendz GL. 2000. Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch Microbiol 174:1–10. [PubMed][CrossRef]
74. David P, Baumann M, Wikström M, Finel M. 2002. Interaction of purified NDH-1 from Escherichia coli with ubiquinone analogues. Biochim Biophys Acta 1553:268–278. [PubMed][CrossRef]
75. Sherwood S, Hirst J. 2006. Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism? Biochem J 400:541–550. [PubMed][CrossRef]
76. Holt PJ, Morgan DJ, Sazanov LA. 2003. The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping. J Biol Chem 278:43114–43120. [PubMed][CrossRef]
77. Sazanov LA. 2007. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46:2275–2288. [PubMed][CrossRef]
78. Putnoky P, Kereszt A, Nakamura T, Endre G, Grosskopf E, Kiss P, Kondorosi A. 1998. The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol Microbiol 28:1091–1101. [PubMed][CrossRef]
79. Tran QH, Unden G. 1998. Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. Eur J Biochem 251:538–543. [PubMed][CrossRef]
80. Yano T, Magnitsky S, Ohnishi T. 2000. Characterization of the complex I-associated ubisemiquinone species: toward the understanding of their functional roles in the electron/proton transfer reaction. Biochim Biophys Acta 1459:299–304. [PubMed][CrossRef]
81. Sazanov LA, Carroll J, Holt P, Toime L, Fearnley IM. 2003. A role for native lipids in the stabilization and two-dimensional crystallization of the Escherichia coli NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 278:19483–19491. [PubMed][CrossRef]
82. Galkin A, Brandt U. 2005. Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 280:30129–30135. [PubMed][CrossRef]
83. Kussmaul L, Hirst J. 2006. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103:7607–7612. [PubMed][CrossRef]
84. Sauter M, Böhm R, Böck A. 1992. Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532. [PubMed][CrossRef]
85. Moser CC, Farid TA, Chobot SE, Dutton PL. 2006. Electron tunneling chains of mitochondria. Biochim Biophys Acta 1757:1096–1109. [PubMed][CrossRef]
86. Ingledew WJ, Ohnishi T. 1980. An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria. Biochem J 186:111–117.[PubMed]
87. Zickermann V, Bostina M, Hunte C, Ruiz T, Radermacher M, Brandt U. 2003. Functional implications from an unexpected position of the 49-kDa subunit of NADH:ubiquinone oxidoreductase. J Biol Chem 278:29072–29078. [PubMed][CrossRef]
88. Zu Y, Di BS, Yagi T, Hirst J. 2002. Redox properties of the [2Fe-2S] center in the 24 kDa (NQO2) subunit of NADH:ubiquinone oxidoreductase (complex I). Biochemistry 41:10056–10069. [PubMed][CrossRef]
89. Steuber J, Schmid C, Rufibach M, Dimroth P. 2000. Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli. Mol Microbiol 35:428–434. [CrossRef]
90. Guenebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T. 1998. Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 276:105–112. [PubMed][CrossRef]
91. Friedrich T, Böttcher B. 2004. The gross structure of the respiratory complex I: a Lego System. Biochim Biophys Acta 1608:1–9. [PubMed][CrossRef]
92. Grigorieff N. 1999. Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Curr Opin Struct Biol 9:476–483. [PubMed][CrossRef]
93. Böttcher B, Scheide D, Hesterberg M, Nagel-Steger L, Friedrich T. 2002. A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 277:17970–17977. [PubMed][CrossRef]
94. Baranova EA, Morgan DJ, Sazanov LA. Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I. J Struct Biol, in press.
95. Baranova EA, Holt PJ, Sazanov LA. 2007. Projection structure of the membrane domain of Escherichia coli respiratory complex I at 8 A resolution. J Mol Biol 366:140–154. [PubMed][CrossRef]
96. Hinchliffe P, Carroll J, Sazanov LA. 2006. Identification of a novel subunit of respiratory complex I from Thermus thermophilus. Biochemistry 45:4413–4420. [PubMed][CrossRef]
97. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC. 1998. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858. [PubMed][CrossRef]
98. Berks BC, Ferguson SJ, Moir JW, Richardson DJ. 1995. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232:97–173. [PubMed][CrossRef]
99. Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC. 2003. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Biol 10:681–687. [PubMed][CrossRef]
100. Kloer DP, Hagel C, Heider J, Schulz GE. 2006. Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14:1377–1388. [PubMed][CrossRef]
101. Albracht SP. 1993. Intimate relationships of the large and the small subunits of all nickel hydrogenases with two nuclear-encoded subunits of mitochondrial NADH:ubiquinone oxidoreductase. Biochim Biophys Acta 1144:221–224. [PubMed][CrossRef]
102. Friedrich T, Weidner U, Nehls U, Fecke W, Schneider R, Weiss H. 1993. Attempts to define distinct parts of NADH:ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr 25:331–337. [PubMed][CrossRef]
103. Roth R, Hägerhall C. 2001. Transmembrane orientation and topology of the NADH:quinone oxidoreductase putative quinone binding subunit NuoH. Biochim Biophys Acta 1504:352–362. [PubMed][CrossRef]
104. Albracht SP, De Jong AM. 1997. Bovine-heart NADH:ubiquinone oxidoreductase is a monomer with 8 Fe-S clusters and 2 FMN groups. Biochim Biophys Acta 1318:92–106. [PubMed][CrossRef]
105. Gurrath M, Friedrich T. 2004. Adjacent cysteines are capable of ligating the same tetranuclear iron-sulfur cluster. Proteins 56:556–563. [PubMed][CrossRef]
106. Unden G, Bongaerts J. 1997. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234. [PubMed][CrossRef]
107. Zharova TV, Vinogradov AD. 1997. A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose. Biochim Biophys Acta 1320:256–264. [PubMed][CrossRef]
108. Grgic L, Zwicker K, Kashani-Poor N, Kerscher S, Brandt U. 2004. Functional significance of conserved histidines and arginines in the 49-kDa subunit of mitochondrial complex I. J Biol Chem 279:21193–21199. [PubMed][CrossRef]
109. Azevedo JE, Videira A. 1994. Characterization of a membrane fragment of respiratory chain complex I from Neurospora crassa. Insights on the topology of the ubiquinone-binding site. Int J Biochem 26:505–510. [PubMed][CrossRef]
110. Kao MC, Di Bernardo S, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, Yagi T. 2005. Characterization of the membrane domain subunit NuoJ (ND6) of the NADH-quinone oxidoreductase from Escherichia coli by chromosomal DNA manipulation. Biochemistry 44:3562–3571. [PubMed][CrossRef]
111. Rodriguez-Montelongo L, Volentini SI, Farias RN, Massa EM, Rapisarda VA. 2006. The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch Biochem Biophys 451:1–7. [PubMed][CrossRef]
112. Velazquez I, Nakamaru-Ogiso E, Yano T, Ohnishi T, Yagi T. 2005. Amino acid residues associated with cluster N3 in the NuoF subunit of the proton-translocating NADH-quinone oxidoreductase from Escherichia coli. FEBS Lett 579:3164–3168. [PubMed][CrossRef]
113. Xu X, Matsuno-Yagi A, Yagi T. 1993. DNA sequencing of the seven remaining structural genes of the gene cluster encoding the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans. Biochemistry 32:968–981. [PubMed][CrossRef]
114. Kurki S, Zickermann V, Kervinen M, Hassinen I, Finel M. 2000. Mutagenesis of three conserved Glu residues in a bacterial homologue of the ND1 subunit of complex I affects ubiquinone reduction kinetics but not inhibition by dicyclohexylcarbodiimide. Biochemistry 39:13496–13502. [PubMed][CrossRef]
115. Kao MC, Matsuno-Yagi A, Yagi T. 2004. Subunit proximity in the H+-translocating NADH-quinone oxidoreductase probed by zero-length cross-linking. Biochemistry 43:3750–3755. [PubMed][CrossRef]
116. Kao MC, Di Bernardo S, Perego M, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T. 2004. Functional roles of four conserved charged residues in the membrane domain subunit NuoA of the proton-translocating NADH-quinone oxidoreductase from Escherichia coli. J Biol Chem 279:32360–32366. [PubMed][CrossRef]
117. Kao MC, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T. 2005. Characterization of the membrane domain subunit NuoK (ND4L) of the NADH-quinone oxidoreductase from Escherichia coli. Biochemistry 44:9545–9554. [PubMed][CrossRef]
118. Fearnley, Walker IMJE. 1992. Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140:105–134. [PubMed][CrossRef]
119. Kikuno R, Miyata T. 1985. Sequence homologies among mitochondrial DNA-coded URF2, URF4 and URF5. FEBS Lett 189:85–88. [PubMed][CrossRef]
120. Friedrich T, Weiss H. 1997. Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187:529–540. [PubMed][CrossRef]
121. Mathiesen C, Hägerhall C. 2003. The “antiporter module” of respiratory chain complex I includes the MrpC/NuoK subunit—a revision of the modular evolution scheme. FEBS Lett 549:7–13. [PubMed][CrossRef]
122. Stolpe, Friedrich ST. 2004. The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem 279:18377–18383. [PubMed][CrossRef]
123. Mathiesen C, Hägerhall C. 2002. Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556:121–132. [PubMed][CrossRef]
124. Friedrich T. 2001. Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33:169–177. [PubMed][CrossRef]
125. Mamedova AA, Holt PJ, Carroll J, Sazanov LA. 2004. Substrate-induced conformational change in bacterial complex I. J Biol Chem 279:23830–23836. [PubMed][CrossRef]
126. Böhm R, Sauter M, Böck A. 1990. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 4:231–243. [PubMed][CrossRef]
127. Flemming D, Stolpe S, Schneider D, Hellwig P, Friedrich T. 2005. A possible role for iron-sulfur cluster N2 in proton translocation by the NADH: ubiquinone oxidoreductase (complex I). J Mol Microbiol Biotechnol 10:208–222. [PubMed][CrossRef]
128. Hedderich R. 2004. Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36:65–75. [PubMed][CrossRef]
129. Hedderich R, Forzi L. 2005. Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10:92–104. [PubMed][CrossRef]
130. Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA. 2005. The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354. [PubMed][CrossRef]
131. Burgdorf T, van der LE, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SP, Friedrich B. 2005. The soluble NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 187:3122–3132. [PubMed][CrossRef]
132. Massanz C, Schmidt S, Friedrich B. 1998. Subforms and in vitro reconstitution of the NAD-reducing hydrogenase of Alcaligenes eutrophus. J Bacteriol 180:1023–1029.[PubMed]
133. Oh JI, Bowien B. 1998. Structural analysis of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha. J Biol Chem 273:26349–26360. [PubMed][CrossRef]
134. Pilkington SJ, Skehel JM, Gennis RB, Walker JE. 1991. Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase. Biochemistry 30:2166–2175. [PubMed][CrossRef]
135. Hiramatsu T, Kodama K, Kuroda T, Mizushima T, Tsuchiya T. 1998. A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol 180:6642–6648.[PubMed]
136. Prüss BM, Nelms JM, Park C, Wolfe AJ. 1994. Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol 176:2143–2150.[PubMed]
137. Sled VD, Friedrich T, Leif H, Weiss H, Meinhardt SW, Fukumori Y, Calhoun MW, Gennis RB, Ohnishi T. 1993. Bacterial NADH-quinone oxidoreductases: iron-sulfur clusters and related problems. J Bioenerg Biomembr 25:347–356. [PubMed][CrossRef]
138. Darrouzet E, Issartel JP, Lunardi J, Dupuis A. 1998. The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett 431:34–38. [PubMed][CrossRef]
139. Earley FG, Patel SD, Ragan I, Attardi G. 1987. Photolabelling of a mitochondrially encoded subunit of NADH dehydrogenase with [3H]dihydrorotenone. FEBS Lett 219:108–112. [PubMed][CrossRef]
140. Kashani-Poor N, Zwicker K, Kerscher S, Brandt U. 2001. A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem 276:24082–24087. [PubMed][CrossRef]
141. Schmid R, Gerloff DL. 2004. Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3-D modeling. FEBS Lett 578:163–168. [PubMed][CrossRef]
142. Ino T, Nishioka T, Miyoshi H. 2003. Characterization of inhibitor binding sites of mitochondrial complex I using fluorescent inhibitor. Biochim Biophys Acta 1605:15–20. [PubMed][CrossRef]
143. Fisher N, Rich PR. 2000. A motif for quinone binding sites in respiratory and photosynthetic systems. J Mol Biol 296:1153–1162. [PubMed][CrossRef]
144. Gong X, Xie T, Yu L, Hesterberg M, Scheide D, Friedrich T, Yu CA. 2003. The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J Biol Chem 278:25731–25737. [PubMed][CrossRef]
145. Nakamaru-Ogiso E, Sakamoto K, Matsuno-Yagi A, Miyoshi H, Yagi T. 2003. The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry 42:746–754. [PubMed][CrossRef]
146. Brandt U. 1997. Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. Biochim Biophys Acta 1318:79–91. [PubMed][CrossRef]
147. Dutton PL, Moser CC, Sled VD, Daldal F, Ohnishi T. 1998. A reductant-induced oxidation mechanism for complex I. Biochim Biophys Acta 1364:245–257. [PubMed][CrossRef]
148. Schulte U, Abelmann A, Amling N, Brors B, Friedrich T, Kintscher L, Rasmussen T, Weiss H. 1998. Search for novel redox groups in mitochondrial NADH:ubiquinone oxidoreductase (complex I) by diode array UV/VIS spectroscopy. Biofactors 8:177–186. [PubMed][CrossRef]
149. Ohnishi T, Johnson JE, Jr, Yano T, Lobrutto R, Widger WR. 2005. Thermodynamic and EPR studies of slowly relaxing ubisemiquinone species in the isolated bovine heart complex I. FEBS Lett 579:500–506. [PubMed][CrossRef]
150. Yamashita T, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, Yagi T. 2007. Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae. J Biol Chem 282:6012–6020. [PubMed][CrossRef]
151. Yano T, Dunham WR, Ohnishi T. 2005. Characterization of the delta μH+-sensitive ubisemiquinone species (SQ(Nf)) and the interaction with cluster N2: new insight into the energy-coupled electron transfer in complex I. Biochemistry 44:1744–1754. [PubMed][CrossRef]
152. Friedrich T, Abelmann A, Brors B, Guenebaut V, Kintscher L, Leonard K, Rasmussen T, Scheide D, Schlitt A, Schulte U, Weiss H. 1998. Redox components and structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1365:215–219. [PubMed][CrossRef]
153. Schuler F, Yano T, Di Bernardo S, Yagi T, Yankovskaya V, Singer TP, Casida JE. 1999. NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone. Proc Natl Acad Sci USA 96:4149–4153. [PubMed][CrossRef]
154. Carroll J, Fearnley IM, Walker JE. 2006. Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins. Proc Natl Acad Sci USA 103:16170–16175. [PubMed][CrossRef]
155. Majander A, Finel M, Wikström M. 1994. Diphenyleneiodonium inhibits reduction of iron-sulfur clusters in the mitochondrial NADH-ubiquinone oxidoreductase (Complex I). J Biol Chem 269:21037–21042.[PubMed]
156. Zhang Y, Buchholz F, Muyrers JP, Stewart AF. 1998. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128. [PubMed][CrossRef]
157. Friedrich T, van HP, Leif H, Ohnishi T, Forche E, Kunze B, Jansen R, Trowitzsch-Kienast W, Höfle G, Reichenbach H, Weiss H. 1994. Two binding sites of inhibitors in NADH: ubiquinone oxidoreductase (complex I). Relationship of one site with the ubiquinone-binding site of bacterial glucose:ubiquinone oxidoreductase. Eur J Biochem 219:691–698. [PubMed][CrossRef]
158. Ohshima M, Miyoshi H, Sakamoto K, Takegami K, Iwata J, Kuwabara K, Iwamura H, Yagi T. 1998. Characterization of the ubiquinone reduction site of mitochondrial complex I using bulky synthetic ubiquinones. Biochemistry 37:6436–6445. [PubMed][CrossRef]
159. Okun JG, Zickermann V, Brandt U. 1999. Properties of the common inhibitor-binding domain in mitochondrial NADH-dehydrogenase (complex I). Biochem Soc Trans 27:596–601.[PubMed]
160. Spehr V, Schlitt A, Scheide D, Guenebaut V, Friedrich T. 1999. Overexpression of the Escherichia coli nuo-operon and isolation of the overproduced NADH:ubiquinone oxidoreductase (complex I). Biochemistry 38:16261–16267. [PubMed][CrossRef]
161. Belogrudov G, Hatefi Y. 1994. Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. Biochemistry 33:4571–4576. [PubMed][CrossRef]
162. Brandt U, Kerscher S, Dröse S, Zwicker K, Zickermann V. 2003. Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 545:9–17. [PubMed][CrossRef]
163. Hellwig P, Scheide D, Bungert S, Mäntele W, Friedrich T. 2000. FT-IR spectroscopic characterization of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli: oxidation of FeS cluster N2 is coupled with the protonation of an aspartate or glutamate side chain. Biochemistry 39:10884–10891. [PubMed][CrossRef]
164. Zwicker K, Galkin A, Dröse S, Grgic L, Kerscher S, Brandt U. 2006. The Redox-Bohr group associated with iron-sulfur cluster N2 of complex I. J Biol Chem 281:23013–23017. [PubMed][CrossRef]
165. Ohnishi T, Salerno JC. 2005. Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I). FEBS Lett 579:4555–4561. [PubMed][CrossRef]
166. Gemperli AC, Dimroth P, Steuber J. 2002. The respiratory complex I (NDH I) from Klebsiella pneumoniae, a sodium pump. J Biol Chem 277:33811–33817. [PubMed][CrossRef]
167. Krebs W, Steuber J, Gemperli AC, Dimroth P. 1999. Na+ translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae. Mol Microbiol 33:590–598. [PubMed][CrossRef]
168. Steuber J. 2003. The C-terminally truncated NuoL subunit (ND5 homologue) of the Na+-dependent complex I from Escherichia coli transports Na+. J Biol Chem 278:26817–26822. [PubMed][CrossRef]
169. Bertsova YV, Bogachev AV. 2004. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. FEBS Lett 563:207–212. [PubMed][CrossRef]
170. Friedrich T, Stolpe S, Schneider D, Barquera B, Hellwig P. 2005. Ion translocation by the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochem Soc Trans 33:836–839. [PubMed][CrossRef]
171. Bjorklof K, Zickermann V, Finel M. 2000. Purification of the 45 kDa, membrane bound NADH dehydrogenase of Escherichia coli (NDH-2) and analysis of its interaction with ubiquinone analogues. FEBS Lett 467:105–110. [PubMed][CrossRef]
172. Owen P, Kaback HR. 1979. Immunochemical analysis of membrane vesicles from Escherichia coli. Biochemistry 18:1413–1422. [PubMed][CrossRef]
173. Melo AM, Bandeiras TM, Teixeira M. 2004. New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 68:603–616. [PubMed][CrossRef]
174. Campbell HD, Young IG. 1983. Stereospecificity and requirements for activity of the respiratory NADH dehydrogenase of Escherichia coli. Biochemistry 22:5754–5760. [PubMed][CrossRef]
175. Yagi T, Yano T, Matsuno-Yagi A. 1993. Characteristics of the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans as revealed by biochemical, biophysical, and molecular biological approaches. J Bioenerg Biomembr 25:339–345. [PubMed][CrossRef]
176. Yagi T, Yano T, Di Bernardo S, Matsuno-Yagi A. 1998. Procaryotic complex I (NDH-1), an overview. Biochim Biophys Acta 1364:125–133. [PubMed][CrossRef]
177. Sazanov LA, Hinchliffe P. 2006. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436. [PubMed][CrossRef]
178. Brito JA, Bandeiras TM, Teixeira M, Vonrhein C, Archer M. 2006. Crystallisation and preliminary structure determination of a NADH: quinone oxidoreductase from the extremophile Acidianus ambivalens. Biochim Biophys Acta 1764:842–845.[PubMed]
179. Green J, Anjum MF, Guest JR. 1997. Regulation of the ndh gene of Escherichia coli by integration host factor and a novel regulator. Arch Microbiol 143:2865–2875.
180. Jackson L, Blake T, Green J. 2004. Regulation of ndh expression in Escherichia coli by Fis. Microbiology 150:407–413. [PubMed][CrossRef]
181. Pereira MM, Bandeiras TM, Fernandes AS, Lemos RS, Melo AM, Teixeira M. 2004. Respiratory chains from aerobic thermophilic prokaryotes. J Bioenerg Biomembr 36:93–105. [PubMed][CrossRef]
182. Bandeiras TM, Salgueiro C, Kletzin A, Gomes CM, Teixeira M. 2002. Acidianus ambivalens type-II NADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN. FEBS Lett 531:273–277. [PubMed][CrossRef]
183. Argyrou A, Blanchard JS. 2004. Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol 78:89–142. [PubMed][CrossRef]
184. Avila CL, Rapisarda VA, Farias RN, De Las RJ, Chehin R. 2007. Linear array of conserved sequence motifs to discriminate protein subfamilies: study on pyridine nucleotide-disulfide reductases. BMC Bioinformatics 8:96. [CrossRef]
185. Bergsma J, Van Dongen MB, Konings WN. 1982. Purification and characterization of NADH dehydrogenase from Bacillus subtilis. Eur J Biochem 128:151–157.[PubMed]
186. Kim YJ, Song KB, Rhee SK. 1995. A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis. J Bacteriol 177:5176–5178.[PubMed]
187. Bertsova YV, Bogachev AV, Skulachev VP. 2001. Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869–6874. [PubMed][CrossRef]
188. Cook SA, Shiemke AK. 2002. Evidence that a type-2 NADH:quinone oxidoreductase mediates electron transfer to particulate methane monooxygenase in methylococcus capsulatus. Arch Biochem Biophys 398:32–40. [PubMed][CrossRef]
189. Howitt CA, Udall PK, Vermaas WF. 1999. Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration. J Bacteriol 181:3994–4003.[PubMed]
190. Noda S, Takezawa Y, Mizutani T, Asakura T, Nishiumi E, Onoe K, Wada M, Tomita F, Matsushita K, Yokota A. 2006. Alterations of cellular physiology in Escherichia coli in response to oxidative phosphorylation impaired by defective F1-ATPase. J Bacteriol 188:6869–6876. [PubMed][CrossRef]
191. Rasmussen T, Scheide D, Brors B, Kintscher L, Weiss H, Friedrich T. 2001. Identification of two tetranuclear FeS clusters on the ferredoxin-type subunit of NADH:ubiquinone oxidoreductase (complex I). Biochemistry 40:6124–6131. [PubMed][CrossRef]
ecosalplus.3.2.4.citations
ecosalplus/2/2
content/journal/ecosalplus/10.1128/ecosalplus.3.2.4
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.2.4
2007-08-13
2017-02-25

Abstract:

The number of NADH dehydrogenases and their role in energy transduction in have been under debate for a long time. Now it is evident that possesses two respiratory NADH dehydrogenases, or NADH:ubiquinone oxidoreductases, that have traditionally been called NDH-I and NDH-II. This review describes the properties of these two NADH dehydrogenases, focusing on the mechanism of the energy converting NADH dehydrogenase as derived from the high resolution structure of the soluble part of the enzyme. In , complex I operates in aerobic and anaerobic respiration, while NDH-II is repressed under anaerobic growth conditions. The insufficient recycling of NADH most likely resulted in excess NADH inhibiting tricarboxylic acid cycle enzymes and the glyoxylate shunt. serovar Typhimurium complex I mutants are unable to activate ATP-dependent proteolysis under starvation conditions. NDH-II is a single subunit enzyme with a molecular mass of 47 kDa facing the cytosol. Despite the absence of any predicted transmembrane segment it has to be purified in the presence of detergents, and the activity of the preparation is stimulated by an addition of lipids.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The arrangement of the peripheral subunits is derived from the crystal structure of the peripheral arm of the complex I ( 81 ). The arrangement of the hydrophobic subunits is derived from electron microscopic data obtained with complex I ( 95 ). The membrane runs horizontally.

Citation: Friedrich T, Pohl T. 2007. NADH as Donor, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The substrate quinone is abbreviated with Q. Electron transfer steps are indicated by solid arrows. Hypothetical electron transfer steps are shown as dotted lines.

Citation: Friedrich T, Pohl T. 2007. NADH as Donor, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.4
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Nomenclature, properties, and proposed function of the subunits of the complex I and nomenclature of the subunits

Citation: Friedrich T, Pohl T. 2007. NADH as Donor, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.4
Generic image for table
Table 2

Localization and midpoint potential of the cofactors of the complex I

Citation: Friedrich T, Pohl T. 2007. NADH as Donor, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.4

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error