1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

- and -Oxide Reductases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Victor W. T. Cheng1, and Joel H. Weiner
  • Editor: Valley Stewart2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biochemistry and Membrane Protein Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; 2: University of California, Davis, Davis, CA
  • Received 26 February 2007 Accepted 30 April 2007 Published 31 August 2007
  • Address correspondence to Joel H. Weiner joel.weiner@ualberta.ca
image of <span class="jp-italic">S</span>- and <span class="jp-italic">N</span>-Oxide Reductases
    Preview this reference work article:
    Zoom in
    Zoomout

    - and -Oxide Reductases, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/2/3_2_8_module-1.gif /docserver/preview/fulltext/ecosalplus/2/2/3_2_8_module-2.gif
  • Abstract:

    is a versatile facultative anaerobe that can respire on a number of terminal electron acceptors, including oxygen, fumarate, nitrate, and - and -oxides. Anaerobic respiration using - and -oxides is accomplished by enzymatic reduction of these substrates by dimethyl sulfoxide reductase (DmsABC) and trimethylamine -oxide reductase (TorCA). Both DmsABC and TorCA are membrane-associated redox enzymes that couple the oxidation of menaquinol to the reduction of - and -oxides in the periplasm. DmsABC is membrane bound and is composed of a membrane-extrinsic dimer with a 90.4-kDa catalytic subunit (DmsA) and a 23.1-kDa electron transfer subunit (DmsB). These subunits face the periplasm and are held to the membrane by a 30.8-kDa membrane anchor subunit (DmsC). The enzyme provides the scaffold for an electron transfer relay composed of a quinol binding site, five [4Fe-4S] clusters, and a molybdo-bis(molybdopterin guanine dinucleotide) (present nomenclature: Mo-bis-pyranopterin) (Mo-bisMGD) cofactor. TorCA is composed of a soluble periplasmic subunit (TorA, 92.5 kDa) containing a Mo-bis-MGD. TorA is coupled to the quinone pool via a pentaheme subunit (TorC, 40.4 kDa) in the membrane. Both DmsABC and TorCA require system-specific chaperones (DmsD or TorD) for assembly, cofactor insertion, and/or targeting to the Tat translocon. In this chapter, we discuss the complex regulation of the and operons, the poorly understood paralogues, and what is known about the assembly and translocation to the periplasmic space by the Tat translocon.

  • Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8

Key Concept Ranking

Cellular Processes
0.44359848
Transcription Start Site
0.43658414
Peripheral Membrane Proteins
0.42973602
Dimethyl sulfoxide reductase
0.4168296
Chemicals
0.3969456
0.44359848

References

1. Unden G, Bongaerts J. 1997. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234. [PubMed][CrossRef]
2. Mitchell P. 1979. Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159. [PubMed][CrossRef]
3. Unden G. 1988. Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr-independent expression. Arch Microbiol 150:499–503. [PubMed][CrossRef]
4. Gennis RB, Stewart V. 1996. Respiration, p 217–261. In Neidhardt FC (ed), Escherichia coli and Salmonella, 2nd ed., vol. 1. ASM Press, Washington, DC.
5. Bogachev AV, Murtazina RA, Skulachev VP. 1996. H+/e stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol 178:6233–6237.[PubMed]
6. Barrett EL, Kwan HS. 1985. Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol 39:131–149. [PubMed][CrossRef]
7. Zinder SH, Brock TD. 1978. Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Arch Microbiol 116:35–40. [PubMed][CrossRef]
8. Kiene RP, Bates TS. 1990. Biological removal of dimethyl sulphide from sea water. Nature 345:702. [CrossRef]
9. Lovelock JE, Maggs RJ, Rasmussen RA. 1972. Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237:452. [CrossRef]
10. Czjzek M, Dos Santos JP, Pommier J, Giordano G, Mejean V, Haser R. 1998. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J Mol Biol 284:435–447. [PubMed][CrossRef]
11. Rajagopalan KV. 1991. Novel aspects of the biochemistry of the molybdenum cofactor. Adv Enzymol Relat Areas Mol Biol 64:215–290. [PubMed][CrossRef]
12. Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC. 1996. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272:1615–1621. [PubMed][CrossRef]
13. Schneider F, Löwe J, Huber R, Schindelin H, Kisker C, Knäblein J. 1996. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 Å resolution. J Mol Biol 263:53–69. [PubMed][CrossRef]
14. Johnson JL, Hainline BE, Rajagopalan KV, Arison BH. 1984. The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives. J Biol Chem 259:5414–5422.[PubMed]
15. Kletzin A, Adams MW. 1996. Tungsten in biological systems. FEMS Microbiol Rev 18:5–63. [PubMed][CrossRef]
16. Hille R. 1996. The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816. [PubMed][CrossRef]
17. Rothery RA, Grant JL, Johnson JL, Rajagopalan KV, Weiner JH. 1995. Association of molybdopterin guanine dinucleotide with Escherichia coli dimethyl sulfoxide reductase: effect of tungstate and a mob mutation. J Bacteriol 177:2057–2063.[PubMed]
18. Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC. 2003. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Biol 10:681–687. [PubMed][CrossRef]
19. Jormakka M, Tornroth S, Byrne B, Iwata S. 2002. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295:1863–1868. [PubMed][CrossRef]
20. Rothery RA, Bertero MG, Cammack R, Palak M, Blasco F, Strynadka NC, Weiner JH. 2004. The catalytic subunit of Escherichia coli nitrate reductase A contains a novel [4Fe-4S] cluster with a high-spin ground state. Biochemistry 43:5324–5333. [PubMed][CrossRef]
21. McAlpine AS, McEwan AG, Bailey S. 1998. The high resolution crystal structure of DMSO reductase in complex with DMSO. J Mol Biol 275:613–623. [PubMed][CrossRef]
22. McAlpine AS, McEwan AG, Shaw AL, Bailey S. 1997. Molybdenum active centre of DMSO reductase from Rhodobacter capsulatus: crystal structure of the oxidised enzyme at 1.82-Å resolution and the dithionite-reduced enzyme at 2.8-Å resolution. J Biol Inorg Chem 2:690–701. [CrossRef]
23. Hille R. 1999. Molybdenum enzymes. Essays Biochem 34:125–137.[PubMed]
24. Johnson JL, Bastian NR, Rajagopalan KV. 1990. Molybdopterin guanine dinucleotide: a modified form of molybdopterin identified in the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides forma specialis denitrificans. Proc Natl Acad Sci USA 87:3190–3194. [PubMed][CrossRef]
25. George GN, Hilton J, Rajagopalan KV. 1996. X-ray absorption spectroscopy of dimethyl sulfoxide reductase from Rhodobacter sphaeroides. J Am Chem Soc 118:1113–1117. [CrossRef]
26. George GN, Hilton J, Temple C, Prince RC, Rajagopalan KV. 1999. Structure of the molybdenum site of dimethyl sulfoxide reductase. J Am Chem Soc 121:1256–1266. [CrossRef]
27. Baugh PE, Garner CD, Charnock JM, Collison D, Davies ES, McAlpine AS, Bailey S, Lane I, Hanson GR, McEwan AG. 1997. X-ray absorption spectroscopy of dimethylsulfoxide reductase from Rhodobacter capsulatus. J Biol Inorg Chem 2:634–643. [CrossRef]
28. Li HK, Temple C, Rajagopalan KV, Schindelin H. 2000. The 1.3 Å crystal structure of Rhodobacter sphaeroides dimethyl sulfoxide reductase reveals two distinct molybdenum coordination environments. J Am Chem Soc 122:7673–7680. [CrossRef]
29. George GN, Doonan CJ, Rothery RA, Boroumand N, Weiner JH. 2007. X-ray absorption spectroscopic characterization of the molybdenum site of Escherichia coli dimethyl sulfoxide reductase. Inorg Chem 46:2–4. [PubMed][CrossRef]
30. Bell AF, He X, Ridge JP, Hanson GR, McEwan AG, Tonge PJ. 2001. Active site heterogeneity in dimethyl sulfoxide reductase from Rhodobacter capsulatus revealed by Raman spectroscopy. Biochemistry 40:440–448. [PubMed][CrossRef]
31. Garton SD, Hilton J, Oku H, Crouse BR, Rajagopalan KV, Johnson MK. 1997. Active site structures and catalytic mechanism of Rhodobacter sphaeroides dimethyl sulfoxide reductase as revealed by resonance raman spectroscopy. J Am Chem Soc 119:12906–12916. [CrossRef]
32. Bray RC, Adams B, Smith AT, Bennett B, Bailey S. 2000. Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family. Biochemistry 39:11258–11269. [PubMed][CrossRef]
33. Johnson KE, Rajagopalan KV. 2001. An active site tyrosine influences the ability of the dimethyl sulfoxide reductase family of molybdopterin enzymes to reduce S-oxides. J Biol Chem 276:13178–13185. [PubMed][CrossRef]
34. Ridge JP, Aguey-Zinsou KF, Bernhardt PV, Brereton IM, Hanson GR, McEwan AG. 2002. Site-directed mutagenesis of dimethyl sulfoxide reductase from Rhodobacter capsulatus: characterization of a Y114 → F mutant. Biochemistry 41:15762–15769. [PubMed][CrossRef]
35. Ridge JP, Aguey-Zinsou KF, Bernhardt PV, Hanson GR, McEwan AG. 2004. The critical role of tryptophan-116 in the catalytic cycle of dimethylsulfoxide reductase from Rhodobacter capsulatus. FEBS Lett 563:197–202. [PubMed][CrossRef]
36. Simala-Grant JL, Weiner JH. 1996. Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology 142(Pt 11):3231–3239. [CrossRef]
37. Simala-Grant JL, Weiner JH. 1998. Modulation of the substrate specificity of Escherichia coli dimethylsulfoxide reductase. Eur J Biochem 251:510–515. [PubMed][CrossRef]
38. Abo M, Tachibana M, Okubo A, Yamazaki S. 1995. Enantioselective deoxygenation of alkyl aryl sulfoxides by DMSO reductase from Rhodobacter sphaeroides f.s. denitrificans. Bioorg Med Chem 3:109–112. [PubMed][CrossRef]
39. Hanlon SP, Graham DL, Hogan PJ, Holt RA, Reeve CD, Shaw AL, McEwan AG. 1998. Asymmetric reduction of racemic sulfoxides by dimethyl sulfoxide reductases from Rhodobacter capsulatus, Escherichia coli and Proteus species. Microbiology 144(Pt 8):2247–2253. [CrossRef]
40. Trieber CA, Rothery RA, Weiner JH. 1996. Consequences of removal of a molybdenum ligand (DmsA-Ser-176) of Escherichia coli dimethyl sulfoxide reductase. J Biol Chem 271:27339–27345. [PubMed][CrossRef]
41. Heffron K, Leger C, Rothery RA, Weiner JH, Armstrong FA. 2001. Determination of an optimal potential window for catalysis by E. coli dimethyl sulfoxide reductase and hypothesis on the role of Mo(V) in the reaction pathway. Biochemistry 40:3117–3126. [PubMed][CrossRef]
42. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD. 1997. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308. [PubMed][CrossRef]
43. Rothery RA, Trieber CA, Weiner JH. 1999. Interactions between the molybdenum cofactor and iron-sulfur clusters of Escherichia coli dimethylsulfoxide reductase. J Biol Chem 274:13002–13009. [PubMed][CrossRef]
44. Trieber CA, Rothery RA, Weiner JH. 1996. Engineering a novel iron-sulfur cluster into the catalytic subunit of Escherichia coli dimethyl-sulfoxide reductase. J Biol Chem 271:4620–4626. [PubMed][CrossRef]
45. Rothery RA, Weiner JH. 1991. Alteration of the iron-sulfur cluster composition of Escherichia coli dimethyl sulfoxide reductase by site-directed mutagenesis. Biochemistry 30:8296–8305. [PubMed][CrossRef]
46. Rothery RA, Weiner JH. 1996. Interaction of an engineered [3Fe-4S] cluster with a menaquinol binding site of Escherichia coli DMSO reductase. Biochemistry 35:3247–3257. [PubMed][CrossRef]
47. Cammack R, Weiner JH. 1990. Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli. Biochemistry 29:8410–8416. [PubMed][CrossRef]
48. Blasco F, Iobbi C, Giordano G, Chippaux M, Bonnefoy V. 1989. Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the alpha and beta subunits in iron binding and electron transfer. Mol Gen Genet 218:249–256. [PubMed][CrossRef]
49. Guigliarelli B, Asso M, More C, Augier V, Blasco F, Pommier J, Giordano G, Bertrand P. 1992. EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism. Eur J Biochem 207:61–68. [PubMed][CrossRef]
50. Cheng VW, Rothery RA, Bertero MG, Strynadka NC, Weiner JH. 2005. Investigation of the environment surrounding iron-sulfur cluster 4 of Escherichia coli dimethylsulfoxide reductase. Biochemistry 44:8068–8077. [PubMed][CrossRef]
51. Iverson TM, Luna-Chavez C, Cecchini G, Rees DC. 1999. Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284:1961–1966. [PubMed][CrossRef]
52. Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S. 2003. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704. [PubMed][CrossRef]
53. Weiner JH, Shaw G, Turner RJ, Trieber CA. 1993. The topology of the anchor subunit of dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem 268:3238–3244.[PubMed]
54. Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. [PubMed][CrossRef]
55. von Heijne G. 1992. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494. [PubMed][CrossRef]
56. Geijer P, Weiner JH. 2004. Glutamate 87 is important for menaquinol binding in DmsC of the DMSO reductase (DmsABC) from Escherichia coli. Biochim Biophys Acta 1660:66–74. [PubMed][CrossRef]
57. Zhao Z, Weiner JH. 1998. Interaction of 2-n-heptyl-4-hydroxyquinoline-N-oxide with dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem 273:20758–20763. [PubMed][CrossRef]
58. Guest JR. 1981. Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli. J Gen Microbiol 122:171–179.[PubMed]
59. Maklashina E, Hellwig P, Rothery RA, Kotlyar V, Sher Y, Weiner JH, Cecchini G. 2006. Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli. J Biol Chem 281:26655–26664. [PubMed][CrossRef]
60. Westenberg DJ, Gunsalus RP, Ackrell BA, Cecchini G. 1990. Electron transfer from menaquinol to fumarate. Fumarate reductase anchor polypeptide mutants of Escherichia coli. J Biol Chem 265:19560–19567.[PubMed]
61. Westenberg DJ, Gunsalus RP, Ackrell BA, Sices H, Cecchini G. 1993. Escherichia coli fumarate reductase frdC and frdD mutants. Identification of amino acid residues involved in catalytic activity with quinines. J Biol Chem 268:815–822.[PubMed]
62. Buc J, Santini CL, Giordani R, Czjzek M, Wu LF, Giordano G. 1999. Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli. Mol Microbiol 32:159–168. [PubMed][CrossRef]
63. Wallace BJ, Young IG. 1977. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA-menA-double quinone mutant. Biochim Biophys Acta 461:84–100. [PubMed][CrossRef]
64. Iverson TM, Luna-Chavez C, Croal LR, Cecchini G, Rees DC. 2002. Crystallographic studies of the Escherichia coli quinol-fumarate reductase with inhibitors bound to the quinol-binding site. J Biol Chem 277:16124–16130. [PubMed][CrossRef]
65. Bertero MG, Rothery RA, Boroumand N, Palak M, Blasco F, Ginet N, Weiner JH, Strynadka NC. 2005. Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A. J Biol Chem 280:14836–14843. [PubMed][CrossRef]
66. Rothery RA, Chatterjee I, Kiema G, McDermott MT, Weiner JH. 1998. Hydroxylated naphthoquinones as substrates for Escherichia coli anaerobic reductases. Biochem J 332(Pt 1):35–41.
67. Guigliarelli B, Magalon A, Asso M, Bertrand P, Frixon C, Giordano G, Blasco F. 1996. Complete coordination of the four Fe-S centers of the beta subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutants lacking the highest or lowest potential [4Fe-4S] clusters. Biochemistry 35:4828–4836. [PubMed][CrossRef]
68. Sambasivarao D, Turner RJ, Simala-Grant JL, Shaw G, Hu J, Weiner JH. 2000. Multiple roles for the twin arginine leader sequence of dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem 275:22526–22531. [PubMed][CrossRef]
69. Berks BC. 1996. A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22:393–404. [PubMed][CrossRef]
70. Sambasivarao D, Dawson HA, Zhang G, Shaw G, Hu J, Weiner JH. 2001. Investigation of Escherichia coli dimethyl sulfoxide reductase assembly and processing in strains defective for the sec-independent protein translocation system membrane targeting and translocation. J Biol Chem 276:20167–20174. [PubMed][CrossRef]
71. Ray N, Oates J, Turner RJ, Robinson C. 2003. DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus. FEBS Lett 534:156–160. [PubMed][CrossRef]
72. Ize B, Gerard F, Wu LF. 2002. In vivo assessment of the Tat signal peptide specificity in Escherichia coli. Arch Microbiol 178:548–553. [PubMed][CrossRef]
73. Sambasivarao D, Scraba DG, Trieber C, Weiner JH. 1990. Organization of dimethyl sulfoxide reductase in the plasma membrane of Escherichia coli. J Bacteriol 172:5938–5948.[PubMed]
74. Neu HC, Heppel LA. 1965. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692.[PubMed]
75. Ames GF, Prody C, Kustu S. 1984. Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160:1181–1183.[PubMed]
76. Rothery RA, Weiner JH. 1993. Topological characterization of Escherichia coli DMSO reductase by electron paramagnetic resonance spectroscopy of an engineered [3Fe-4S] cluster. Biochemistry 32:5855–5861. [PubMed][CrossRef]
77. Stanley NR, Sargent F, Buchanan G, Shi J, Stewart V, Palmer T, Berks BC. 2002. Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol Microbiol 43:1005–1021. [PubMed][CrossRef]
78. Sone M, Kishigami S, Yoshihisa T, Ito K. 1997. Roles of disulfide bonds in bacterial alkaline phosphatase. J Biol Chem 272:6174–6178. [PubMed][CrossRef]
79. Halbig D, Wiegert T, Blaudeck N, Freudl R, Sprenger GA. 1999. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur J Biochem 263:543–551. [PubMed][CrossRef]
80. Roffey RA, Theg SM. 1996. Analysis of the import of carboxyl-terminal truncations of the 23-kilodalton subunit of the oxygen-evolving complex suggests that its structure is an important determinant for thylakoid transport. Plant Physiol 111:1329–1338.[PubMed]
81. Sanders C, Wethkamp N, Lill H. 2001. Transport of cytochrome c derivatives by the bacterial Tat protein translocation system. Mol Microbiol 41:241–246. [PubMed][CrossRef]
82. Santini CL, Ize B, Chanal A, Muller M, Giordano G, Wu LF. 1998. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J 17:101–112. [PubMed][CrossRef]
83. Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ. 1998. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93:93–101. [PubMed][CrossRef]
84. Rothery RA, Kalra N, Turner RJ, Weiner JH. 2002. Sequence similarity as a predictor of the transmembrane topology of membrane-intrinsic subunits of bacterial respiratory chain enzymes. J Mol Microbiol Biotechnol 4:133–150.[PubMed]
85. Lindenstrauss U, Bruser T. 2006. Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems. J Bacteriol 188:7807–7814. [PubMed][CrossRef]
86. McNicholas PM, Chiang RC, Gunsalus RP. 1998. Anaerobic regulation of the Escherichia coli dmsABC operon requires the molybdate-responsive regulator ModE. Mol Microbiol 27:197–208. [PubMed][CrossRef]
87. Bearson SM, Albrecht JA, Gunsalus RP. 2002. Oxygen- and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: sites for Fnr and NarL protein interactions. BMC Microbiol 2:13. [CrossRef]
88. Cotter PA, Gunsalus RP. 1989. Oxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli. J Bacteriol 171:3817–3823.[PubMed]
89. Stewart V. 1994. Dual interacting two-component regulatory systems mediate nitrate- and nitrite-regulated gene expression in Escherichia coli. Res Microbiol 145:450–454. [PubMed][CrossRef]
90. Grunden AM, Ray RM, Rosentel JK, Healy FG, Shanmugam KT. 1996. Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J Bacteriol 178:735–744.[PubMed]
91. McNicholas PM, Rech SA, Gunsalus RP. 1997. Characterization of the ModE DNA-binding sites in the control regions of modABCD and moaABCDE of Escherichia coli. Mol Microbiol 23:515–524. [PubMed][CrossRef]
92. Walkenhorst HM, Hemschemeier SK, Eichenlaub R. 1995. Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. Microbiol Res 150:347–361.[PubMed]
93. Lubitz SP, Weiner JH. 2003. The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch Biochem Biophys 418:205–216. [PubMed][CrossRef]
94. del Campillo Campbell A, Campbell A. 1996. Alternative gene for biotin sulfoxide reduction in Escherichia coli K-12. J Mol Evol 42:85–90. [PubMed][CrossRef]
95. Gon S, Patte JC, Mejean V, Iobbi-Nivol C. 2000. The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli. J Bacteriol 182:5779–5786. [PubMed][CrossRef]
96. Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V, Chippaux M. 1990. Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol Gen Genet 222:104–111.[PubMed]
97. Iobbi C, Santini CL, Bonnefoy V, Giordano G. 1987. Biochemical and immunological evidence for a second nitrate reductase in Escherichia coli K12. Eur J Biochem 168:451–459. [PubMed][CrossRef]
98. Sambasivarao D, Weiner JH. 1991. Dimethyl sulfoxide reductase of Escherichia coli: an investigation of function and assembly by use of in vivo complementation. J Bacteriol 173:5935–5943.[PubMed]
99. McCrindle SL, Kappler U, McEwan AG. 2005. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Microb Physiol 50:147–198. [PubMed][CrossRef]
100. Quandt K, Frech K, Karas H, Wingender E, Werner T. 1995. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23:4878–4884. [PubMed][CrossRef]
101. Salgado H, Santos-Zavaleta A, Gama-Castro S, Millan-Zarate D, Diaz-Peredo E, Sanchez-Solano F, Perez-Rueda E, Bonavides-Martinez C, Collado-Vides J. 2001. RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res 29:72–74. [PubMed][CrossRef]
102. Robison K, McGuire AM, Church GM. 1998. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 284:241–254. [PubMed][CrossRef]
103. Papish AL, Ladner CL, Turner RJ. 2003. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. J Biol Chem 278:32501–32506. [PubMed][CrossRef]
104. Oresnik IJ, Ladner CL, Turner RJ. 2001. Identification of a twin-arginine leader-binding protein. Mol Microbiol 40:323–331. [PubMed][CrossRef]
105. Winstone TL, Workentine ML, Sarfo KJ, Binding AJ, Haslam BD, Turner RJ. 2006. Physical nature of signal peptide binding to DmsD. Arch Biochem Biophys 455:89–97. [PubMed][CrossRef]
106. Sarfo KJ, Winstone TL, Papish AL, Howell JM, Kadir H, Vogel HJ, Turner RJ. 2004. Folding forms of Escherichia coli DmsD, a twin-arginine leader binding protein. Biochem Biophys Res Commun 315:397–403. [PubMed][CrossRef]
107. Ilbert M, Mejean V, Giudici-Orticoni MT, Samama JP, Iobbi-Nivol C. 2003. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 278:28787–28792. [PubMed][CrossRef]
108. Pommier J, Mejean V, Giordano G, Iobbi-Nivol C. 1998. TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli. J Biol Chem 273:16615–16620. [PubMed][CrossRef]
109. Wang A, Bolen DW. 1997. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36:9101–9108. [PubMed][CrossRef]
110. Tulla-Puche J, Getun IV, Woodward C, Barany G. 2004. Native-like conformations are sampled by partially folded and disordered variants of bovine pancreatic trypsin inhibitor. Biochemistry 43:1591–1598. [PubMed][CrossRef]
111. Dos Santos JP, Iobbi-Nivol C, Couillault C, Giordano G, Mejean V. 1998. Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species. J Mol Biol 284:421–433. [PubMed][CrossRef]
112. Kim KE, Chang GW. 1974. Trimethylamine oxide reducation by Salmonella. Can J Microbiol 20:1745–1748.[PubMed]
113. Takagi M, Tsuchiya T, Ishimoto M. 1981. Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli. J Bacteriol 148:762–768.[PubMed]
114. Mejean V, Iobbi-Nivol C, Lepelletier M, Giordano G, Chippaux M, Pascal MC. 1994. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 11:1169–1179. [PubMed][CrossRef]
115. Palmer T, Sargent F, Berks BC. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180. [PubMed][CrossRef]
116. Gon S, Giudici-Orticoni MT, Mejean V, Iobbi-Nivol C. 2001. Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. J Biol Chem 276:11545–11551. [PubMed][CrossRef]
117. Thony-Meyer L, Kunzler P. 1997. Translocation to the periplasm and signal sequence cleavage of preapocytochrome c depend on sec and lep, but not on the ccm gene products. Eur J Biochem 246:794–799. [PubMed][CrossRef]
118. Kranz R, Lill R, Goldman B, Bonnard G, Merchant S. 1998. Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol 29:383–396. [PubMed][CrossRef]
119. Allen JW, Barker PD, Ferguson SJ. 2003. A cytochrome b562 variant with a c-type cytochrome CXXCH heme-binding motif as a probe of the Escherichia coli cytochrome c maturation system. J Biol Chem 278:52075–52083. [PubMed][CrossRef]
120. Shaw AL, Hochkoeppler A, Bonora P, Zannoni D, Hanson GR, McEwan AG. 1999. Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethyl sulfoxide reductase. J Biol Chem 274:9911–9914. [PubMed][CrossRef]
121. Ilbert M, Mejean V, Iobbi-Nivol C. 2004. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. Microbiology 150:935–943. [PubMed][CrossRef]
122. McDevitt CA, Hugenholtz P, Hanson GR, McEwan AG. 2002. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol 44:1575–1587. [PubMed][CrossRef]
123. Shaw AL, Hanson GR, McEwan AG. 1996. Cloning and sequence analysis of the dimethylsulfoxide reductase structural gene from Rhodobacter capsulatus. Biochim Biophys Acta 1276:176–180. [PubMed][CrossRef]
124. Mouncey NJ, Choudhary M, Kaplan S. 1997. Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4.1T: an essential metabolic gene function encoded on chromosome II. J Bacteriol 179:7617–7624.[PubMed]
125. Tranier S, Mortier-Barriere I, Ilbert M, Birck C, Iobbi-Nivol C, Mejean V, Samama JP. 2002. Characterization and multiple molecular forms of TorD from Shewanella massilia, the putative chaperone of the molybdoenzyme TorA. Protein Sci 11:2148–2157. [PubMed][CrossRef]
126. Tranier S, Iobbi-Nivol C, Birck C, Ilbert M, Mortier-Barriere I, Mejean V, Samama JP. 2003. A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia. Structure 11:165–174. [PubMed][CrossRef]
127. Genest O, Ilbert M, Mejean V, Iobbi-Nivol C. 2005. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. J Biol Chem 280:15644–15648. [PubMed][CrossRef]
128. Hatzixanthis K, Clarke TA, Oubrie A, Richardson DJ, Turner RJ, Sargent F. 2005. Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc Natl Acad Sci USA 102:8460–8465. [PubMed][CrossRef]
129. Genest O, Seduk F, Ilbert M, Mejean V, Iobbi-Nivol C. 2006. Signal peptide protection by specific chaperone. Biochem Biophys Res Commun 339:991–995. [PubMed][CrossRef]
130. Genest O, Seduk F, Theraulaz L, Mejean V, Iobbi-Nivol C. 2006. Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation. FEMS Microbiol Lett 265:51–55. [PubMed][CrossRef]
131. Berks BC, Sargent F, Palmer T. 2000. The Tat protein export pathway. Mol Microbiol 35:260–274. [PubMed][CrossRef]
132. Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F. 2004. Coordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–3972. [PubMed][CrossRef]
133. Grovc J, Busby S, Cole J. 1996. The role of the genes nrf EFG and ccmFH in cytochrome c biosynthesis in Escherichia coli. Mol Gen Genet 252:332–341. [PubMed][CrossRef]
134. Pascal MC, Burini JF, Chippaux M. 1984. Regulation of the trimethylamine N-oxide (TMAO) reductase in Escherichia coli: analysis of tor::Mud1 operon fusion. Mol Gen Genet 195:351–355. [PubMed][CrossRef]
135. Iobbi-Nivol C, Pommier J, Simala-Grant J, Mejean V, Giordano G. 1996. High substrate specificity and induction characteristics of trimethylamine-N-oxide reductase of Escherichia coli. Biochim Biophys Acta 1294:77–82.[PubMed]
136. Simon G, Mejean V, Jourlin C, Chippaux M, Pascal MC. 1994. The torR gene of Escherichia coli encodes a response regulator protein involved in the expression of the trimethylamine N-oxide reductase genes. J Bacteriol 176:5601–5606.[PubMed]
137. Spiro S, Guest JR. 1990. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev 6:399–428. [PubMed][CrossRef]
138. Iuchi S, Lin EC. 1988. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA 85:1888–1892. [PubMed][CrossRef]
139. Simon G, Mejean V, Jourlin C, Chippaux M, Pascal MC. 1995. The torR gene of Escherichia coli encodes a response regulator protein involved in the expression of the trimethylamine N-oxide reductase genes. J Bacteriol 177:275. (Erratum.) [CrossRef]
140. Stewart V, Parales J, Jr. 1988. Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J Bacteriol 170:1589–1597.[PubMed]
141. Goh EB, Bledsoe PJ, Chen LL, Gyaneshwar P, Stewart V, Igo MM. 2005. Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system. J Bacteriol 187:4890–4899. [PubMed][CrossRef]
142. Stock JB, Ninfa AJ, Stock AM. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490.[PubMed]
143. Jourlin C, Bengrine A, Chippaux M, Mejean V. 1996. An unorthodox sensor protein (TorS) mediates the induction of the tor structural genes in response to trimethylamine N-oxide in Escherichia coli. Mol Microbiol 20:1297–1306. [PubMed][CrossRef]
144. Stock AM, Mowbray SL. 1995. Bacterial chemotaxis: a field in motion. Curr Opin Struct Biol 5:744–751. [PubMed][CrossRef]
145. Dutta R, Qin L, Inouye M. 1999. Histidine kinases: diversity of domain organization. Mol Microbiol 34:633–640. [PubMed][CrossRef]
146. Jourlin C, Ansaldi M, Mejean V. 1997. Transphosphorylation of the TorR response regulator requires the three phosphorylation sites of the TorS unorthodox sensor in Escherichia coli. J Mol Biol 267:770–777. [PubMed][CrossRef]
147. Ishige K, Nagasawa S, Tokishita S, Mizuno T. 1994. A novel device of bacterial signal transducers. EMBO J 13:5195–5202.[PubMed]
148. Ansaldi M, Jourlin-Castelli C, Lepelletier M, Theraulaz L, Mejean V. 2001. Rapid dephosphorylation of the TorR response regulator by the TorS unorthodox sensor in Escherichia coli. J Bacteriol 183:2691–2695. [PubMed][CrossRef]
149. Ansaldi M, Theraulaz L, Mejean V. 2004. TorI, a response regulator inhibitor of phage origin in Escherichia coli. Proc Natl Acad Sci USA 101:9423–9428. [PubMed][CrossRef]
150. Elantak L, Ansaldi M, Guerlesquin F, Mejean V, Morelli X. 2005. Structural and genetic analyses reveal a key role in prophage excision for the TorI response regulator inhibitor. J Biol Chem 280:36802–36808. [PubMed][CrossRef]
151. Gon S, Jourlin-Castelli C, Theraulaz L, Mejean V. 2001. An unsuspected autoregulatory pathway involving apocytochrome TorC and sensor TorS in Escherichia coli. Proc Natl Acad Sci USA 98:11615–11620. [PubMed][CrossRef]
152. Simon G, Jourlin C, Ansaldi M, Pascal MC, Chippaux M, Mejean V. 1995. Binding of the TorR regulator to cis-acting direct repeats activates tor operon expression. Mol Microbiol 17:971–980. [PubMed][CrossRef]
153. Itou H, Tanaka I. 2001. The OmpR-family of proteins: insight into the tertiary structure and functions of two-component regulator proteins. J Biochem (Tokyo) 129:343–350.[PubMed]
154. Kondo H, Nakagawa A, Nishihira J, Nishimura Y, Mizuno T, Tanaka I. 1997. Escherichia coli positive regulator OmpR has a large loop structure at the putative RNA polymerase interaction site. Nat Struct Biol 4:28–31. [PubMed][CrossRef]
155. Martinez-Hackert E, Stock AM. 1997. Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol 269:301–312. [PubMed][CrossRef]
156. Ansaldi M, Simon G, Lepelletier M, Mejean V. 2000. The TorR high-affinity binding site plays a key role in both torR autoregulation and torCAD operon expression in Escherichia coli. J Bacteriol 182:961–966. [PubMed][CrossRef]
157. Jourlin C, Simon G, Pommier J, Chippaux M, Mejean V. 1996. The periplasmic TorT protein is required for trimethylamine N-oxide reductase gene induction in Escherichia coli. J Bacteriol 178:1219–1223.[PubMed]
ecosalplus.3.2.8.citations
ecosalplus/2/2
content/journal/ecosalplus/10.1128/ecosalplus.3.2.8
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.2.8
2007-08-31
2017-07-20

Abstract:

is a versatile facultative anaerobe that can respire on a number of terminal electron acceptors, including oxygen, fumarate, nitrate, and - and -oxides. Anaerobic respiration using - and -oxides is accomplished by enzymatic reduction of these substrates by dimethyl sulfoxide reductase (DmsABC) and trimethylamine -oxide reductase (TorCA). Both DmsABC and TorCA are membrane-associated redox enzymes that couple the oxidation of menaquinol to the reduction of - and -oxides in the periplasm. DmsABC is membrane bound and is composed of a membrane-extrinsic dimer with a 90.4-kDa catalytic subunit (DmsA) and a 23.1-kDa electron transfer subunit (DmsB). These subunits face the periplasm and are held to the membrane by a 30.8-kDa membrane anchor subunit (DmsC). The enzyme provides the scaffold for an electron transfer relay composed of a quinol binding site, five [4Fe-4S] clusters, and a molybdo-bis(molybdopterin guanine dinucleotide) (present nomenclature: Mo-bis-pyranopterin) (Mo-bisMGD) cofactor. TorCA is composed of a soluble periplasmic subunit (TorA, 92.5 kDa) containing a Mo-bis-MGD. TorA is coupled to the quinone pool via a pentaheme subunit (TorC, 40.4 kDa) in the membrane. Both DmsABC and TorCA require system-specific chaperones (DmsD or TorD) for assembly, cofactor insertion, and/or targeting to the Tat translocon. In this chapter, we discuss the complex regulation of the and operons, the poorly understood paralogues, and what is known about the assembly and translocation to the periplasmic space by the Tat translocon.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

MQ and MQH are the oxidized and reduced forms of menaquinol-8. FS1 to FS4 are the four [4Fe-4S] clusters in DmsB. The topology of DmsAB is shown directed to the periplasm, but see the text for further discussion.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The molybdenum is coordinated by two dithiolene sulfurs from each of the two molybdopterin guanine dinucleotides (MGDs).

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5A
Figure 5A

This panel shows a “side” view, whereas Fig. 5B shows a “top” view looking into the active-site funnel. Domain I, green; Domain II, purple; Domain III, orange; Domain IV, black. The Mo atom is yellow, and the MGD portions are shown as sticks. Images were generated using PyMol.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5B
Figure 5B

This panel B shows a “top” view, whereas Fig. 5A shows a “side” view looking into the active-site funnel. Domain I, green; Domain II, purple; Domain III, orange; Domain IV, black. The Mo atom is yellow, and the MGD portions are shown as sticks. Images were generated using PyMol.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6A
Figure 6A

Shown in purple are the oxo ligands to the Mo atom. The sliced view shows the active-site funnel leading to the Mo-bisMGD cofactor.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6B
Figure 6B

Shown in purple are the oxo ligands to the Mo atom. The view is directed straight into the active funnel to show the accessibility of the Mo-bisMGD.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7A
Figure 7A

The Mo atom is coordinated by four dithiolene sulfurs from two molybdopterin molecules, one oxo ligand, and the oxygen atom from the side chain of Ser147. The bond lengths are taken from reference 22 .

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7B
Figure 7B

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Figure 8 is reprinted from Johnson and Rajagopalan ( 13178–13185, 2001), with permission.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

The midpoint potential (mV) of each cluster is indicated.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

The four [4Fe-4S] clusters FS1 to FS4 are shown from top to bottom ( 50 ).

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

The altered profile due to mutation of DmsB Cys102Ser is shown by the blue solid (normal electron transfer) and dotted (electron transfer abolished) lines.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Acidic residues are in red, and basic residues are in blue. His65 and Glu87 known to be required for quinol oxidation are enlarged. Figure 12 was adapted from Fig. 6 in Weiner et al. ( 3238–3244, 1993), with permission.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

The known promoter P1 is marked, as is the putative promoter P2. The −10 and −35 promoter regions are shown in blue boxes. Three direct-repeat NarL boxes are noted by the orange arrows. The Fnr box centered at −41.5 is shown in green. The integration host factor consensus sequence is underlined in blue, and the ModE consensus is shown in red.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Two sulfate molecules (red/yellow) and five di(hydroxyethyl)ether molecules were cocrystallized. The dotted yellow line shows residues 117 to 122, which are disordered in the crystals.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 16
Figure 16

Two oxo ligands (red), the Mo atom (blue), and the two MGD molecules can be seen when looking directly into the active site.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17
Figure 17

The −10 and −35 promoter regions are shown in blue boxes. Four direct decameric boxes are noted by an orange bar. The thickness of the bar roughly approximates the affinity of TorR for the DNA.

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Summary of attributes for the four enzymes discussed in this review

Citation: Cheng V, Weiner J. 2007. - and -Oxide Reductases, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.2.8

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error