1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Hexose/Pentose and Hexitol/Pentitol Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Christoph Mayer1, and Winfried Boos
  • Editor: Valley Stewart2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany; 2: University of California, Davis, Davis, CA
  • Received 08 December 2004 Accepted 10 January 2005 Published 29 March 2005
  • Address correspondence to Christoph Mayer ch.mayer@uni-konstanz.de
image of Hexose/Pentose and Hexitol/Pentitol Metabolism
    Preview this reference work article:
    Zoom in
    Zoomout

    Hexose/Pentose and Hexitol/Pentitol Metabolism, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/2/3_4_1_module-1.gif /docserver/preview/fulltext/ecosalplus/1/2/3_4_1_module-2.gif
  • Abstract:

    and serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.

  • Citation: Mayer C, Boos W. 2005. Hexose/Pentose and Hexitol/Pentitol Metabolism, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.1

References

1. Busch W, Saier MH, Jr. 2002. The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol 37:287–337. [PubMed][CrossRef]
2. Sahin-Tóth M, Frillingos S, Lengeler JW, Kaback HR. 1995. Active transport by the CscB permease in Escherichia coli K-12. Biochem Biophys Res Commun 208:1116–1123. [PubMed][CrossRef]
3. Taylor G, Vimr E, Garman E, Laver G. 1992. Purification, crystallization and preliminary crystallographic study of neuraminidase from Vibrio cholerae and Salmonella typhimurium LT2. J Mol Biol 226:1287–1290. [PubMed][CrossRef]
4. Dahl U, Jaeger T, Nguyen BT, Sattler JM, Mayer C. 2004. Identification of a phosphotransferase system of Escherichia coli required for growth on N-acetylmuramic acid. J Bacteriol 186:2385–2392. [PubMed][CrossRef]
5. Peri KG, Waygood EB. 1988. Sequence of cloned enzyme II N-acetylglucosamine of the phosphoenolpyruvate:N-acetylglucosamine phosphotransferase system of Escherichia coli. Biochemistry 27:6054–6061. [PubMed][CrossRef]
6. Saier MH, Crasnier M. 1996. Inducer exclusion and the regulation of sugar transport. Res Microbiol 147:482–489. [PubMed][CrossRef]
7. Saier MH Jr, Roseman S. 1976. Sugar transport. The crr mutation: its effect on repression of enzyme synthesis. J Biol Chem 251:6598–6605.[PubMed]
8. Szmelcman S, Schwartz M, Silhavy TJ, Boos W. 1976. Maltose transport in Escherichia coli K-12. A comparison of transport kinetics in wild-type and λ-resistant mutants with the dissociation constants of the maltose binding protein as measured by fluorescence quenching. Eur J Biochem 65:13–19. [PubMed][CrossRef]
9. Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Aiba H, Postma PW. 1998. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 30:487–498. [PubMed][CrossRef]
10. Postma PW, Keizer HG, Koolwijk P. 1986. Transport of trehalose in Salmonella typhimurium. J Bacteriol 168:1107–1111.[PubMed]
11. Sahin-Toth M, Lengyel Z, Tsunekawa H. 1999. Cloning, sequencing, and expression of cscA invertase from Escherichia coli B-62. Can J Microbiol 45:418–422.[PubMed][CrossRef]
12. Saier MH. 2000. Families of transmembrane sugar transport proteins. Mol Microbiol 35:699–710.[PubMed][CrossRef]
13. Buhr A, Flukiger K, Erni B. 1994. The glucose transporter of Escherichia coli. Overexpression, purification, and characterization of functional domains. J Biol Chem 269:23437–23443.[PubMed]
14. Eberstadt M, Grdadolnik SG, Gemmecker G, Kessler H, Buhr A, Erni B. 1996. Solution structure of the IIB domain of the glucose transporter of Escherichia coli. Biochemistry 35:11286–11292. [PubMed][CrossRef]
15. Erni B, Zanolari B. 1986. Glucose permease of the bacterial phosphotransferase system; gene cloning, overproduction, and amino acid sequence of enzyme IIGlc. J Biol Chem 261:16398–16403.[PubMed]
16. Kurahashi K, Sigumura A. 1960. Purification and properties of galactose-1-phosphate uridyltransferase from Escherichia coli. J Biol Chem 235:940–946.
17. Vyas MN, Vyas NK, Quiocho FA. 1994. Crystallographic analysis of the epimeric and anomeric specificity of the periplasmic transport chemosensory protein receptor for D-glucose and D-galactose. Biochemistry 33:4762–4768. [PubMed][CrossRef]
18. Feese MD, Comolli L, Meadow ND, Roseman S, Remington SJ. 1997. Structural studies of the Escherichia coli signal transducing protein IIAGlc: implications for target recognition. Biochemistry 36:16087–16096. [PubMed][CrossRef]
19. Curtis SJ, Epstein W. 1975. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol 122:1189–1199.[PubMed]
20. Hosono K, Kakuda H, Ichihara S. 1995. Decreasing accumulation of acetate in a rich medium by Escherichia coli on introduction of genes on a multicopy plasmid. Biosci Biotech Biochem 59:256–261. [PubMed][CrossRef]
21. Plumbridge J. 2000. A mutation which affects both the specificity of PtsG sugar transport and the regulation of ptsG expression by Mlc in Escherichia coli. Microbiology 2655–2663.
22. Lee LV, Gerratana B, Cleland WW. 2001. Substrate specificity and kinetic mechanism of Escherichia coli ribulokinase. Arch Biochem Biophys 396:219–224. [PubMed][CrossRef]
23. Nagao Y, Nakada T, Imoto M, Shimamoto T, Sakai S, Tsuda M, Tsuchiya T. 1988. Purification and analysis of the structure of α-galactosidase from Escherichia coli. Biochem Biophys Res Commun 151:236–241. [PubMed][CrossRef]
24. Sebastian J, Asensio C. 1972. Purification and properties of the mannokinase from Escherichia coli. Arch Biochem Biophys 151:227–233. [PubMed][CrossRef]
25. Tamai E, Shimamoto T, Tsuda M, Mizushima T, Tsuchiya T. 1998. Conversion of temperature-sensitive to -resistant gene expression due to mutations in the promoter region of the melibiose operon in Escherichia coli. J Biol Chem 273:16860–16864. [PubMed][CrossRef]
26. Kimata K, Takahashi H, Inada T, Postma P, Aiba H. 1997. cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc Natl Acad Sci USA 94:12914–12919. [PubMed][CrossRef]
27. Tsuchiya T, Oho M, Shiota-Niiya S. 1983. Lithium ion-sugar cotransport via the melibiose transport system in Escherichia coli. Measurement of Li+ transport and specificity. J Biol Chem 258:12765–12767.[PubMed]
28. Scripture JB, Voelker C, Miller S, O’Donnell RT, Polgar L, Rade J, Horazdovsky BF, Hogg RW. 1987. High-affinity L-arabinose transport operon. Nucleotide sequence and analysis of gene products. J Mol Biol 197:37–46. [PubMed][CrossRef]
29. Shilton BH, Flocco MM, Nilsson M, Mowbray SL. 1996. Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins. J Mol Biol 264:350–363.[PubMed][CrossRef]
30. Nobelmann B, Lengeler JW. 1995. Sequence of the gat operon for galactitol utilization from a wild-type strain EC3132 of Escherichia coli. Biochim Biophys Acta 1262:69–72.[PubMed]
31. Plumbridge J. 1996. How to achieve constitutive expression of a gene within an inducible operon: the example of the nagC gene of Escherichia coli. J Bacteriol 178:2629–2636.[PubMed]
32. Zabin I, Kepes A, Monod J. 1962. Thiogalactoside transacetylase. J Biol Chem 237:253–257.[PubMed]
33. Jeong JY, Kim YJ, Cho N, Shin D, Nam TW, Ryu S, Seok YJ. 2004. Expression of ptsG encoding the major glucose transporter is regulated by ArcA in Escherichia coli. J Biol Chem 279:38513–38518. [PubMed][CrossRef]
34. Death A, Ferenci T. 1993. The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res Microbiol 144:529–537. [PubMed][CrossRef]
35. Death A, Notley L, Ferenci T. 1993. Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress. J Bacteriol 175:1475–1483.[PubMed]
36. Lilley GG, von Itzstein M, Ivancic N. 1992. High-level production and purification of Escherichia coli N-acetylneuraminic acid aldolase (EC 4.1.3.3). Protein Expr Purif 3:434–440. [PubMed][CrossRef]
37. Ferenci T, Kornberg HL. 1974. The role of phosphotransferase-mediated syntheses of fructose 1-phosphate and fructose 6-phosphate in the growth of Escherichia coli on fructose. Proc R Soc Lond B Biol Sci 187:105–119. [PubMed][CrossRef]
38. Preiss J, Romeo T. 1994. Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol 47:299–329. [PubMed][CrossRef]
39. Charbit A, Reizer J, Saier MH. 1996. Function of the duplicated IIB domain and oligomeric structure of the fructose permease of Escherichia coli. J Biol Chem 271:9997–10003. [PubMed][CrossRef]
40. Reizer J, Michotey V, Reizer A, Saier MH. 1994. Novel phosphotransferase system genes revealed by bacterial genome analysis—unique, putative fructose-specific and glucoside-specific systems. Protein Sci 3:440–450.[PubMed]
41. Geerse RH, Izzo F, Postma PW. 1989. The PEP:fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Mol Gen Genet 216:517–525. [PubMed][CrossRef]
42. Geerse RH, Ruig CR, Schuitema ARJ, Postma PW. 1986. Relationship between pseudo-HPr and the PEP: fructose phosphotransferase system in Salmonellaty phimurium and Escherichia coli. Mol Gen Genet 203:435–444. [PubMed][CrossRef]
43. Wang K, Rodgers ME, Toptygin D, Munsen VA, Brand L. 1998. Fluorescence study of the multiple binding equilibria of the galactose repressor. Biochemistry 37:41–50. [PubMed][CrossRef]
44. Oliva G, Fontes MR, Garratt RC, Altamirano MM, Calcagno ML, Horjales E. 1995. Structure and catalytic mechanism of glucosamine 6-phosphate deaminase from Escherichia coli at 2.1 Å resolution. Structure 3:1323–1332. [PubMed][CrossRef]
45. Wu HC, Wu TC. 1971. Isolation and characterization of a glucosamine-requiring mutant of Escherichia coli K-12 defective in glucosamine-6-phosphate synthetase. J Bacteriol 105:455–466.[PubMed]
46. Jahreis K, Postma WP, Lengeler JW. 1991. Nucleotide sequence of the ilvH-fruR region of Escherichia coli K-12 and Salmonella typhimurium LT2. Mol Gen Genet 226:332–336. [PubMed][CrossRef]
47. Casadaban MJ. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–555.[PubMed][CrossRef]
48. Su TZ, Qi S, Yun WH, Xiu L. 1989. Regulation in the expression of α−galactosidase gene in raf operon in Escherichia coli. Wei Sheng Wu Xue Bao 29:180–186.[PubMed]
49. Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW. 1991. Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 5:2913–2922. [PubMed][CrossRef]
50. Anderson RL, Sapico VL. 1975. D-fructose (D-mannose) kinase. Methods Enzymol 42:39–43. [PubMed][CrossRef]
51. Schwartz M, Hofnung M. 1967. La maltodextrin phosphorylase d’Escherichia coli. Eur J Biochem 2:132–145. [PubMed][CrossRef]
52. Spiess S, Happersberger HP, Glocker MO, Spiess E, Rippe K, Ehrmann M. 1997. Biochemical characterization and mass spectrometric disulfide bond mapping of periplasmic α-amylase of Escherichia coli. J Biol Chem 272:22125–22133. [PubMed][CrossRef]
53. Schleif R. 2000. Regulation of the L-arabinose operon of Escherichia coli. Trends Genet 16:559–565. [PubMed][CrossRef]
54. Bockmann J, Heuel H, Lengeler JW. 1992. Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Mol Gen Genet 235:22–32. [PubMed][CrossRef]
55. Postma PW, Lengeler JW, Jacobson GR. 1996. Phosphoenolpyruvate:carbohydrate phosphotransferase system, p 1149–1174. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
56. Reizer J, Charbit A, Reizer A, Saier MH, Jr. 1996. Novel phosphotransferase genes revealed by bacterial genome analysis: operons encoding homologues of sugar-specific permease domains of the phosphotransferase system and pentose catabolic enzymes. Genome Sci Technol 1:53–75.
57. Tate CG, Muiry JAR, Henderson PJF. 1992. Mapping, cloning, expression, and sequencing of the rhaT gene, which encodes a novel L-rhamnose-H+ transport protein in Salmonella typhimurium and Escherichia coli. J Biol Chem 267:6923–6932.[PubMed]
58. Reizer J, Reizer A, Merrick MJ, Plunkett G, Rose DJ, Saier MH. 1996. Novel phosphotransferase-encoding genes revealed by analysis of the Escherichia coli genome: a chimeric gene encoding an Enzyme I homologue that possesses a putative sensory transduction domain. Gene 181:103–108. [PubMed][CrossRef]
59. Samanta S, Ayvaz T, Reyes M, Shuman HA, Chen J, Davidson AL. 2003. Disulfide cross-linking reveals a site of stable interaction between C-terminal regulatory domains of the two MalK subunits in the maltose transport complex. J Biol Chem 278:35265–35271. [PubMed][CrossRef]
60. Erni B, Zanolari B, Kocher HP. 1987. The mannose permease of Escherichia coli consists of three different proteins; amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262:5238–5247.[PubMed]
61. Gschwind RM, Gemmecker G, Leutner M, Kessler H, Gutknecht R, Lanz R, Flükiger K, Erni B. 1997. Secondary structure of the IIB domain of the Escherichia coli mannose transporter, a new fold in the class of α/β twisted open-sheet structures. FEBS Lett 404:45–50. [PubMed][CrossRef]
62. Stewart JB, Hermodson MA. 2003. Topology of RbsC, the membrane component of the Escherichia coli ribose transporter. J Bacteriol 185:5234–5239. [PubMed][CrossRef]
63. Gutknecht R, Flükiger K, Lanz R, Erni B. 1999. Mechanism of phosphoryl transfer in the dimeric IIABMan subunit of the Escherichia coli mannose transporter. J Biol Chem 274:6091–6096. [PubMed][CrossRef]
64. Novotny MJ, Reizer J, Esch F, Saier MH, Jr. 1984. Purification and properties of D-mannitol-1-phosphate dehydrogenase and D-glucitol-6-phosphate dehydrogenase from Escherichia coli. J Bacteriol 159:986–990.[PubMed]
65. Elliott J, Arber W. 1978. E. coli K-12 pel mutants, which block phage lambda DNA injection, coincide with ptsM, which determines a component of a sugar transport system. Mol Gen Genet 161:1–8. [PubMed][CrossRef]
66. Enomoto M, Stocker BAD. 1974. Transduction by P1Kc in Salmonella typhimurium. Virology 60:503–517. [PubMed][CrossRef]
67. Garcia-Alles LF, Zahn A, Erni B. 2002. Sugar recognition by the glucose and mannose permeases of Escherichia coli. Steady-state kinetics and inhibition studies. Biochemistry 41:10077–10086. [PubMed][CrossRef]
68. Brinkkötter A, Kloss H, Alpert CA, Lengeler JW. 2000. Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Mol Microbiol 37:125–135. [PubMed][CrossRef]
69. Reizer J, Reizer A, Saier MH, Jr. 1995. Novel phosphotransferase system genes revealed by bacterial genome analysis—a gene cluster encoding a unique enzyme I and the proteins of a fructose-like permease system. Microbiology 141:961–971. [PubMed][CrossRef]
70. Midelfort CF, Rose IA. 1977. Studies on the mechanism of Escherichia coli glucosamine-6-phosphate isomerase. Biochemistry 16:1590–1596. [PubMed][CrossRef]
71. Weickert MJ, Adhya S. 1993. The galactose regulon of Escherichia coli. Mol Microbiol 10:245–251. [PubMed][CrossRef]
72. Stevens FJ, Stevens PW, Hovis JG, Wu TT. 1981. Some properties of D-mannose isomerase from Escherichia coli K-12. J Gen Microbiol 124:219–223.[PubMed]
73. Fraser AD, Yamazaki H. 1980. Mannose utilization in Escherichia coli requires cyclic AMP but not an exogenous inducer. Can J Microbiol 26:1508–1511.[PubMed]
74. Plumbridge J. 1995. Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. EMBO J 14:3958–3965.[PubMed]
75. Wolfe JB, Britton BB, Nakada HI. 1957. Glucosamine degradation by Escherichia coli. III. Isolation and studies of phosphoglucosaminisomerase. Arch Biochem Biophys 66:333–339. [PubMed][CrossRef]
76. Waygood EB. 1980. Resolution of the phosphoenolpyruvate:fructose phosphotransferase system of Escherichia coli into two components: enzyme IIfructose and fructose-induced HPr-like protein (FPr). Can J Biochem 58:1144–1146. [PubMed][CrossRef]
77. Lengeler J, Lin EC. 1972. Reversal of the mannitol sorbitol diauxie in Escherichia coli. J Bacteriol 112:840–848.[PubMed]
78. Watson KA, Schinzel R, Palm D, Johnson LN. 1997. The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase. EMBO J 16:1–14. [PubMed][CrossRef]
79. Wilson DM, Ottina K, Newman MJ, Tsuchiya T, Ito S, Wilson TH. 1985. Reconstitution of the melibiose carrier of Escherichia coli. Membr Biochem 5:269–290. [PubMed][CrossRef]
80. Boer H, ten Hoeve-Duurkens RH, Schuurman-Wolters GK, Dijkstra A, Robillard GT. 1994. Expression, purification, and kinetic characterization of the mannitol transport domain of the phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli. Kinetic evidence that the E coli mannitol transport protein is a functional dimer. J Biol Chem 269:17863–17871.[PubMed]
81. LoLeggio L, DalDegan F, Poulsen P, Andersen SM, Larsen S. 2003. The structure and specificity of Escherichia coli maltose acetyltransferase give new insight into the LacA family of acyltransferases. Biochemistry 42:5225–5235. [PubMed][CrossRef]
82. Uehara T, Park JT. 2004. The N-acetyl-D-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol 186:7273–7279. [PubMed][CrossRef]
83. Jiang W, Wu LF, Tomich J, Saier MH, Niehaus WG. 1990. Corrected sequence of the mannitol (mtl) operon in Escherichia coli. Mol Microbiol 4:2003–2006. [PubMed][CrossRef]
84. Novotny CP, Englesberg E. 1966. The L-arabinose permease system in Escherichia coli B/r. Biochim Biophys Acta 117:217–230.[PubMed]
85. Figge RM, Ramseier TM, Saier MH. 1994. The mannitol repressor (Mtlr) of Escherichia coli. J Bacteriol 176:840–847.[PubMed]
86. Ros J, Aguilar J. 1985. Propanediol oxidoreductases of Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Aspects of interspecies structural and regulatory differentiation. Biochem J 231:145–149.[PubMed]
87. Rosenberg H, Hardy CM. 1984. Conversion of D-mannitol to D-ribose: a newly discovered pathway in Escherichia coli. J Bacteriol 158:69–72.[PubMed]
88. Böhringer J, Fischer D, Mosler G, Hengge-Aronis R. 1995. UDP-glucose is a potential intracellular signal molecule in the control of expression of σS and σS-dependent genes in Escherichia coli. J Bacteriol 177:413–422.[PubMed]
89. Kadner RJ, Murphy GP, Stephens CM. 1992. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J Gen Microbiol 138:2007–2014.[PubMed]
90. Rohr TE, Troy FA. 1980. Structure and biosynthesis of surface polymers containing polysialic acid in Escherichia coli. J Biol Chem 255:2332–2342.[PubMed]
91. Saint Pierre ML. 1968. Isolation and mapping of Salmonella typhimurium mutants defective in the utilization of trehalose. J Bacteriol 95:1185–1186.[PubMed]
92. Sørensen KI, Hove-Jensen B. 1996. Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression. J Bacteriol 178:1003–1011.[PubMed]
93. Lengeler J. 1975. Mutations affecting transport of hexitols D-mannitol, D-glucitol and galactitol in Escherichia coli K-12: isolation and mapping. J Bacteriol 124:26–38.[PubMed]
94. Lengeler J. 1975. Nature and properties of hexitol transport systems in Escherichia coli. J Bacteriol 124:39–47.[PubMed]
95. Lengeler J. 1980. Characterisation of mutants of Escherichia coli K-12, selected by resistance to streptozotocin. Mol Gen Genet 179:49–54. [PubMed][CrossRef]
96. Wu LF, Reizer A, Reizer J, Cai B, Tomich JM, Saier MH. 1991. Nucleotide sequence of the Rhodobacter capsulatus fruK gene, which encodes fructose-1-phosphate kinase: evidence for a kinase superfamily including both phosphofructokinases of Escherichia coli. J Bacteriol 173:3117–3127.[PubMed]
97. Wu TT. 1976. Growth on D-arabitol of a mutant strain of Escherichia coli K-12 using a novel dehydrogenase and enzymes related to L-1,2-propanediol and D-xylose metabolism. J Gen Microbiol 94:246–256.[PubMed]
98. Wu TT. 1976. Growth of a mutant of Escherichia coli K-12 on xylitol by recruiting enzymes for D-xylose and L-1,2-propanediol metabolism. Biochim Biophys Acta 428:656–663.[PubMed]
99. Jones-Mortimer MC, Kornberg HL. 1976. Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli. J Gen Microbiol 96:383–391.[PubMed]
100. Tchieu JH, Norris V, Edwards JS, Saier MH, Jr. 2001. The complete phosphotransferase system in Escherichia coli. J Mol Microbiol Biotechnol 3:329–346.[PubMed]
101. Brinkkötter A, Shakeri-Garakani A, Lengeler JW. 2002. Two class II D-tagatose-bisphosphate aldolases from enteric bacteria. Pol J Vet Sci 5:51–56.[PubMed]
102. Nobelmann B, Lengeler JW. 1996. Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 178:6790–6795.[PubMed]
103. Lee S-J, Boos W, Bouché J-P, Plumbridge J. 2000. Signal transduction between a membrane bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J 19:5353–5361. [PubMed][CrossRef]
104. Nishitani J, Wilcox G. 1991. Cloning and characterization of the L-rhamnose regulon in Salmonella typhimurium LT2. Gene 105:37–42. [PubMed][CrossRef]
105. Jones-Mortimer MC, Kornberg HL. 1980. Amino-sugar transport systems of Escherichia coli K-12. J Gen Microbiol 117:369–376.[PubMed]
106. Weisser P, Krämer R, Sprenger GA. 1996. Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker. Appl Environ Microbiol 62:4155–4161.[PubMed]
107. Lengeler J. Analysis of mutations affecting the dissmilation of galactitol (dulcitol) in Escherichia coli K 12. Mol. Gen. Genet. 152:83–91. [CrossRef]
108. West I, Mitchell P. 1972. Proton-coupled β-galactoside translocation in non-metabolizing Escherichia coli. J Bioenerg 3:445–462. [PubMed][CrossRef]
109. Plumbridge J, Vimr E. 1999. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol 181:47–54.[PubMed]
110. Weissborn AC, Liu Q, Rumley MK, Kennedy EP. 1994. UTP:α-D-glucose-1-phosphate uridylyltransferase of Escherichia coli: isolation and DNA sequence of the galU gene and purification of the enzyme. J Bacteriol 176:2611–2618.[PubMed]
111. White RJ. 1968. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars. Biochem J 106:847–858.[PubMed]
112. Comb DG, Roseman S. 1958. Glucosamine metabolism. IV. Glucosamine-6-phosphate deaminase. J Biol Chem 232:807–827.[PubMed]
113. Comb DG, Roseman S. 1956. Glucosamine-6-phosphate deaminase. Biochim Biophys Acta 21:193–194. [PubMed][CrossRef]
114. Wilson DM, Wilson TH. 1987. Cation specificity for sugar substrates of the melibiose carrier in Escherichia coli. Biochim Biophys Acta 904:191–200. [PubMed][CrossRef]
115. Wilson TH, Ding PZ. 2001. Sodium-substrate cotransport in bacteria. Biochim Biophys Acta 1505:121–130. [PubMed][CrossRef]
116. Wöhrl BM, Lengeler JW. 1990. Cloning and physical mapping of the sor genes for L-sorbose transport and metabolism from Klebsiella pneumoniae. Mol Microbiol 4:1557–1565. [PubMed][CrossRef]
117. Altamirano MM, Plumbridge JA, Horjales E, Calcagno ML. 1995. Asymmetric allosteric activation of Escherichia coli glucosamine-6-phosphate deaminase produced by replacements of Tyr 121. Biochemistry 34:6074–6082. [PubMed][CrossRef]
118. Calcagno M, Campos PJ, Mulliert G, Suastegui J. 1984. Purification, molecular and kinetic properties of glucosamine-6-phosphate isomerase (deaminase) from Escherichia coli. Biochim Biophys Acta 787:165–173.[PubMed]
119. Oehler S, Amouyal M, Kolkhof P, Von Wilcken-Bergmann B, Müller-Hill B. 1994. Quality and position of the three lac operators of E. coli define efficiency of repression. EMBO J 13:3348–3355.[PubMed]
120. Meyer D, Schneider-Fresenius C, Horlacher R, Peist R, Boos W. 1997. Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 179:1298–1306.[PubMed]
121. Horjales E, Altamirano MM, Calcagno ML, Garratt RC, Oliva G. 1999. The allosteric transition of glucosamine-6-phosphate deaminase: the structure of the T state at 2.3 Å resolution. Struct Fold Des 7:527–537. [CrossRef]
122. Lanz R, Erni B. 1998. The glucose transporter of the Escherichia coli phosphotransferase system. Mutant analysis of the invariant arginines, histidines, and domain linker. J Biol Chem 273:12239–12243. [PubMed][CrossRef]
123. Moniruzzaman M, Lai X, York SW, Ingram LO. 1997. Extracellular melibiose and fructose are intermediates in raffinose catabolism during fermentation to ethanol by engineered enteric bacteria. J Bacteriol 179:1880–1886.[PubMed]
124. Montero-Moran GM, Horjales E, Calcagno ML, Altamirano MM. 1998. Tyr254 hydroxyl group acts as a two-way switch mechanism in the coupling of heterotropic and homotropic effects in Escherichia coli glucosamine-6-phosphate deaminase. Biochemistry 37:7844–7849. [PubMed][CrossRef]
125. Rousset J-P, Gilson E, Hofnung M. 1986. malM, a new gene of the maltose regulon in Escherichia coli K-12. II. Mutations affecting the signal peptide of the MalM protein. J Mol Biol 191:313–320. [PubMed][CrossRef]
126. Bustos-Jaimes I, Sosa-Peinado A, Rudino-Pinera E, Horjales E, Calcagno ML. 2002. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase. J Mol Biol 319:183–189. [PubMed][CrossRef]
127. Cisneros DA, Montero-Moran GM, Lara-Gonzalez S, Calcagno ML. 2004. Inversion of the allosteric response of Escherichia coli glucosamine-6-P deaminase to N-acetylglucosamine 6-P, by single amino acid replacements. Arch Biochem Biophys 421:77–84. [PubMed][CrossRef]
128. Peist R, Koch A, Bolek P, Sewitz S, Kolbus T, Boos W. 1997. Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. J Bacteriol 179:7679–7686.[PubMed]
129. Peri KG, Goldie H, Waygood EB. 1990. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Biochem Cell Biol 68:123–137.[PubMed]
130. Roepe PD, Kaback HR. 1990. Isolation and functional reconstitution of soluble melibiose permease from Escherichia coli. Biochemistry 29:2572–2577. [PubMed][CrossRef]
131. Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM. 2004. Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153. [PubMed][CrossRef]
132. Gosh S, Roseman S. 1962. L-Glutamine-D-fructose 6-phosphate transaminase from Escherichia coli. Methods Enzymol 5:414–422. [CrossRef]
133. Plumbridge JA. 1989. Sequence of the nagBACD operon in Escherichia coli K-12 and pattern of transcription within the nag regulon. Mol Microbiol 3:505–515. [PubMed][CrossRef]
134. Sampaio M-M, Santos H, Boos W. 2003. Synthesis of GDP-mannose and mannosylglycerate from labeled mannose by genetically engineered Escherichia coli without loss of specific isotopic enrichment. Appl Environ Microbiol 69:233–240. [PubMed][CrossRef]
135. Wolfe JB, Morita RY, Nakada HI. 1956. Glucosamine degradation by Escherichia coli. Observation with lasting cells and dry-cell preparations. Arch Biochem Biophys 63:480–488. [PubMed][CrossRef]
136. Vimr ER, Troy FA. 1985. Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol 164:845–853.[PubMed]
137. Bernheim NJ, Dobrogosz WJ. 1970. Amino sugar sensitivity in Escherichia coli mutants unable to grow on N-acetylglucosamine. J Bacteriol 101:384–391.[PubMed]
138. Peterkofsky A, Svenson I, Amin N. 1989. Regulation of Escherichia coli adenylate cyclase activity by the phosphoenolpyruvate:sugar phosphotransferase system. FEMS Microbiol Rev 63:103–108.[CrossRef]
139. Plumbridge J. 2002. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr Opin Microbiol 5:187–193. [PubMed][CrossRef]
140. Plumbridge J. 1998. Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS. Mol Microbiol 27:369–380. [PubMed][CrossRef]
141. Parker LL, Hall BG. 1990. Mechanisms of activation of the cryptic cel operon of Escherichia coli K-12. Genetics 124:473–482.[PubMed]
142. Reizer J, Reizer A, Kornberg HL, Saier MH. 1994. Sequence of the fruB gene of Escherichia coli encoding the diphosphoryl transfer protein (DTP) of the phosphoenolpyruvate:sugar phosphotransferase system. FEMS Microbiol Lett 118:159–162. [PubMed][CrossRef]
143. Rapin A, Kalckar HM, Alberico L. 1968. The metabolic basis for masking of receptor-sites of E. coli K-12 for C21, a lipopolysaccaride core-specific phage. Arch Biochem Biophys 128:95–105. [PubMed][CrossRef]
144. Plumbridge J, Pellegrini O. 2004. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol 52:437–449. [PubMed][CrossRef]
145. Rephaeli AW, Saier MH, Jr. 1980. Substrate specificity and kinetic characterization of sugar uptake and phosphorylation, catalyzed by the mannose enzyme II of the phosphotransferase system in Salmonella typhimurium. J Biol Chem 255:8585–8591.[PubMed]
146. Revilla-Nuin B, Reglero A, Ferrero MA, Rodriguez-Aparicio LB. 1999. Uptake of N-acetyl-D-mannosamine: an essential intermediate in polysialic acid biosynthesis by Escherichia coli K92. FEBS Lett 449:183–186. [PubMed][CrossRef]
147. Lengeler JW, Jahreis K, Wehmeier UF. 1994. Enzymes II of the phosphoenolpyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta 1188:1–28. [PubMed][CrossRef]
148. Giæver HM, Styrvold OB, Kaasen I, Strøm AR. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849.[PubMed]
149. Kaasen I, Falkenberg P, Styrvold OB, Strøm AR. 1992. Molecular cloning and physical mapping of the A genes, which encode the osmoregulatory trehalose pathway of Escherichia coli. Evidence that transcription is activated by KatF (AppR). J Bacteriol 174:889–898.[PubMed]
150. Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W. 1991. Trehalose synthesis genes are controlled by the putative sigma-factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924.[PubMed]
151. Hengge-Aronis R. 2000. The general stress response in Escherichia coli, p 161–178. In Storz G and Hengge-Aronis R (ed), Bacterial Stress Responses. ASM Press, Washington, D.C.
152. Klein W, Boos W. 1993. Induction of the λ receptor is essential for the effective uptake of trehalose in Escherichia coli. J Bacteriol 175:1682–1686.[PubMed]
153. Boos W, Ehmann U, Forkl H, Klein W, Rimmele M, Postma P. 1990. Trehalose transport and metabolism in Escherichia coli. J Bacteriol 172:3450–3461.[PubMed]
154. Rickenberg HV, Cohen GN, Buttin G, Monod J. 1956. Galactoside permease in Escherichia coli. Ann Inst Pasteur (Paris) 91:829–857.[PubMed]
155. Horlacher R, Boos W. 1997. Characterization of TreR, the major regulator of the Escherichia coli trehalose system. J Biol Chem 272:13026–13032. [PubMed][CrossRef]
156. Hars U, Horlacher R, Boos W, Welte W, Diederichs K. 1998. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose. Protein Sci 7:2511–2521. [PubMed][CrossRef]
157. Mengin-Lecreulx D, van Heijenoort J, Park JT. 1996. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol 178:5347–5352.[PubMed]
158. Boos W, Ehmann U, Bremer E, Middendorf A, Postma P. 1987. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem 262:13212–13218.[PubMed]
159. Stolz B, Huber M, Markovic-Housley Z, Erni B. 1993. The mannose transporter of Escherichia coli. Structure and function of the IIABMan subunit. J Biol Chem 268:27094–27099.[PubMed]
160. Horlacher R, Uhland K, Klein W, Ehrmann M, Boos W. 1996. Characterization of a cytoplasmic trehalase of Escherichia coli. J Bacteriol 178:6250–6257.[PubMed]
161. Manson MD, Boos W, Bassford PJ, Rasmussen BA. 1985. Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. J Biol Chem 260:9727–9733.[PubMed]
162. Saier MH, Ramseier TM. 1996. The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol 178:3411–3417.[PubMed]
163. Plumbridge JA, Cochet O, Souza JM, Altamirano MM, Calcagno ML, Badet B. 1993. Coordinated regulation of amino sugar-synthesizing and -degrading enzymes in Escherichia coli K-12. J Bacteriol 175:4951–4956.[PubMed]
164. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. 1994. Bergey’s Manual of Determinative Bacteriology, 9th ed. Lippincott Williams and Wilkins, Philadelphia, Pa.
165. Jahreis K, Bentler L, Bockmann J, Hans S, Meyer A, Siepelmeyer J, Lengeler JW. 2002. Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132. J Bacteriol 184:5307–5316. [PubMed][CrossRef]
166. Doroshenko VG, Danilevich VN, Karataev GI, Livshits VA. 1988. Structural and functional organization of the transposon Tn2555 carrying saccharose utilization genes. Mol Biol (Engl Trans Mol Biol [Mosc]) 22:645–658.
167. Doroshenko VG, Danilevich VN, Livshits VA. 1988. Sucrose utilization determinants of transposon Tn2555. Mol Gen Mikrobiol Virusol 11:29–35.[PubMed]
168. Doroshenko VG, Livshits VA. 1987. Properties of transposon Tn2555 carrying the genes for sucrose utilization. Mol Gen Mikrobiol Virusol 6:23–28.[PubMed]
169. Doroshenko VG, Livshits VA. 2004. Structure and mode of transposition of Tn2555 carrying sucrose utilization genes. FEMS Microbiol Lett 233:353–359. [PubMed][CrossRef]
170. Ebner R, Lengeler JW. 1988. DNA sequence of the gene scrA encoding the sucrose transport protein enzymeIISrc of the phosphotransferase system from enteric bacteria: homology of the enzymeIIScr and enzymeIIBgl proteins. Mol Microbiol 2:9–17. [PubMed][CrossRef]
171. Thompson J, Ruvinov SB, Freedberg DI, Hall BG. 1999. Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases. J Bacteriol 181:7339–7345.[PubMed]
172. Cowan PJ, Nagesha H, Leonard L, Howard JL, Pittard AJ. 1991. Characterization of the major promoter for the plasmid-encoded sucrose gene scrY, gene scrA, and gene scrB. J Bacteriol 173:7464–7470.[PubMed]
173. Schmid K, Ebner R, Jahreis K, Lengeler JW, Titgemeyer F. 1991. A sugar-specific porin, scrY, is involved in sucrose uptake in enteric bacteria. Mol Microbiol 5:941–950. [PubMed][CrossRef]
174. Jahreis K, Lengeler JW. 1993. Molecular analysis of 2 ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria. Mol Microbiol 9:195–209.[PubMed][CrossRef]
175. Hardesty C, Ferran C, Dirienzo JM. 1991. Plasmid-mediated sucrose metabolism in Escherichia coli. Characterization of scrY, the structural gene for a phosphoenolpyruvate-dependent sucrose phosphotransferase system outer membrane porin. J Bacteriol 173:449–456.[PubMed]
176. Schleif R. 1996. Two positively regulated systems, ara and mal, p 1300–1309. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
177. Schreiber V, Steegborn C, Clausen T, Boos W, Richet E. 2000. A new mechanism for the control of a prokaryotic transcriptional regulator: antagonistic binding of positive and negative effectors. Mol Microbiol 35:765–776. [PubMed][CrossRef]
178. Forst D, Schulein K, Wacker T, Diederichs K, Kreutz W, Benz R, Welte W. 1993. Crystallization and preliminary X-ray diffraction analysis of ScrY, a specific bacterial outer membrane porin. J Mol Biol 229:258–262.[PubMed][CrossRef]
179. Schaefler S, Maas WK. 1967. Inducible system for the utilization of β-glucosides in Escherichia coli. II. Description of mutant types and genetic analysis. J Bacteriol 93:264–272.[PubMed]
180. Pugsley AP, Dubreuil C. 1988. Molecular characterization of malQ, the structural gene for the Escherichia coli enzyme amylomaltase. Mol Microbiol 2:473–479. [PubMed][CrossRef]
181. Montero-Moran GM, Lara-Gonzalez S, Alvarez-Anorve LI, Plumbridge JA, Calcagno ML. 2001. On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase. Biochemistry 40:10187–10196.[PubMed][CrossRef]
182. Reidl J, Boos W. 1991. The malX malY operon of Escherichia coli encodes a novel enzyme II of the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing the endogenous induction of the maltose system. J Bacteriol 173:4862–4876.[PubMed]
183. Yep A, Ballicora MA, Sivak MN, Preiss J. 2004. Identification and characterization of a critical region in the glycogen synthase from Escherichia coli. J Biol Chem 279:8359–8367. [PubMed][CrossRef]
184. Reeder T, Schleif R. 1991. Mapping, sequence, and apparent lack of function of araJ, a gene of the Escherichia-coli arabinose regulon. J Bacteriol 173:7765–7771.[PubMed]
185. Bouma CL, Roseman S. 1996. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the glucose and N-acetylglucosamine permeases. J Biol Chem 271:33457–33467. [PubMed][CrossRef]
186. Clausen T, Schlegel A, Peist R, Schneider E, Steegborn C, Chang Y-S, Haase A, Bourenkov GP, Bartunik HD, Boos W. 2000. X-ray structure of MalY from Escherichia coli: a pyridoxal 5′-phosphate-dependent enzyme acting as a modulator in mal gene expression. EMBO J 19:831–842. [PubMed][CrossRef]
187. Schnetz K, Toloczyki C, Rak B. 1987. β-Glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 169:2579–2590.[PubMed]
188. Kharat AS. 2001. Phenotypic variability of β−glucoside utilization and its correlation to pathogenesis process in a few enteric bacteria. FEMS Microbiol Lett 199:241–246. [PubMed][CrossRef]
189. Hall BG, Betts PW, Kricker M. 1986. Maintenance of the cellobiose utilization genes of Escherichia coli in a cryptic state. Mol Biol Evol 3:389–402.[PubMed]
190. Hall BG, Betts PW. 1987. Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli. Genetics 115:431–439.[PubMed]
191. Parker LL, Hall BG. 1990. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli. Genetics 124:455–471.[PubMed]
192. Reyes M, Treptow NA, Shuman HA. 1986. Transport of p-nitrophenyl-α-maltoside by the maltose transport system of Escherichia coli and its subsequent hydrolysis by a cytoplasmic maltosidase. J Bacteriol 165:918–922.[PubMed]
193. Quiocho FA, Spurlino JC, Rodseth LE. 1997. Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure 5:997–1015. [PubMed][CrossRef]
194. Hall BG. 1998. Activation of the bgl operon by adaptive mutation. Mol Biol Evol 15:1–5.[PubMed]
195. Sawada H, Takagi Y. 1964. The metabolism of L-rhamnose in Escherichia coli. 3. L-Rhamulose-phosphate aldolase. Biochim Biophys Acta 92:26–32.[PubMed]
196. Scangos GA, Reiner AM. 1978. Acquisition of ability to utilize xylitol: disadvantages of a constitutive catabolic pathway in Escherichia coli. J Bacteriol 134:501–505.[PubMed]
197. Schneider E, Freundlieb S, Tapio S, Boos W. 1992. Molecular characterization of the MalT-dependent periplasmic α-amylase of Escherichia coli encoded by malS. J Biol Chem 267:5148–5154.[PubMed]
198. Pourcher T, Deckert M, Bassilana M, Leblanc G. 1991. Melibiose permease of Escherichia coli: mutation of aspartic acid 55 in putative helix II abolishes activation of sugar binding by Na+ ions. Biochem Biophys Res Commun 178:1176–1181. [PubMed][CrossRef]
199. Houman F, Diaztorres MR, Wright A. 1990. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell 62:1153–1163. [PubMed][CrossRef]
200. Magnusson U, Chaudhuri BN, Ko J, Park C, Jones TA, Mowbray SL. 2002. Hinge-bending motion of D-allose-binding protein from Escherichia coli: three open conformations. J Biol Chem 277:14077–14084. [PubMed][CrossRef]
201. Schneider E, Francoz E, Dassa E. 1992. Completion of the nucleotide sequence of the ‘maltose B’ region in Salmonella typhimurium: the high conservation of the malM gene suggests a selected physiological role for its product. Biochim Biophys Acta 1129:223–227.[PubMed]
202. Dole S, Kuhn S, Schnetz K. 2002. Post-transcriptional enhancement of Escherichia coli bgl operon silencing by limitation of BglG-mediated antitermination at low transcription rates. Mol Microbiol 43:217–226. [PubMed][CrossRef]
203. Gulati A, Mahadevan S. 2001. The Escherichia coli antiterminator protein BglG stabilizes the 5′region of the bgl mRNA. J Biosci 26:193–203. [PubMed][CrossRef]
204. Amster-Choder O, Wright A. 1992. Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. Science 257:1395–1398. [PubMed][CrossRef]
205. Görke B, Rak B. 1999. Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J 18:3370–3379. [PubMed][CrossRef]
206. Chen Q, Arents JC, Bader R, Postma PW, Amster-Choder O. 1997. BglF, the sensor of the E. coli bgl system, uses the same site to phosphorylate both a sugar and a regulatory protein. EMBO J 16:4617–4627.[PubMed][CrossRef]
207. Gorke B. 2003. Regulation of the Escherichia coli antiterminator protein BglG by phosphorylation at multiple sites and evidence for transfer of phosphoryl groups between monomers. J Biol Chem 278:46219–46229.[PubMed][CrossRef]
208. Chen Q, Nussbaum-Shochat A, Amster-Choder O. 2001. A novel sugar-stimulated covalent switch in a sugar sensor. J Biol Chem 276:44751–44756.[PubMed][CrossRef]
209. Fux L, Nussbaum-Shochat A, Amster-Choder O. 2003. A fraction of the BglG transcriptional antiterminator from Escherichia coli exists as a compact monomer. J Biol Chem 278:50978–50984. [PubMed][CrossRef]
210. Fux L, Nussbaum-Shochat A, Amster-Choder O. 2003. Interactions between the PTS regulation domains of the BglG transcriptional antiterminator from Escherichia coli. J Biol Chem 278:46203–46209. [PubMed][CrossRef]
211. Vanderpool CK, Gottesman S. 2004. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol 54:1076–1089. [CrossRef]
212. Yamamoto H, Serizawa M, Thompson J, Sekiguchi J. 2001. Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. J Bacteriol 183:5110–5121. [PubMed][CrossRef]
213. Ulmke C, Lengeler JW, Schmid K. 1997. Identification of a new porin, RafY, encoded by raffinose plasmid pRSD2 of Escherichia coli. J Bacteriol 179:5783–5788.[PubMed]
214. Gulati A, Mahadevan S. 2000. Mechanism of catabolite repression in the bgl operon of Escherichia coli: involvement of the anti-terminator BglG, CRP-cAMP and EIIAGlc in mediating glucose effect downstream of transcription initiation. Genes Cells 5:239–250. [PubMed][CrossRef]
215. Defez R, De Felice M. 1981. Cryptic operon for β-glucoside metabolism in Escherichia coli K-12: genetic evidence for a regulatory protein. Genetics 97:11–25.[PubMed]
216. Brescia CC, Kaw MK, Sledjeski DD. 2004. The DNA binding protein H-NS binds to and alters the stability of RNA in vitro and in vivo. J Mol Biol 339:505–514. [PubMed][CrossRef]
217. Dole S, Nagarajavel V, Schnetz K. 2004. The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol Microbiol 52:589–600. [PubMed][CrossRef]
218. Dole S, Klingen Y, Nagarajavel V, Schnetz K. 2004. The protease Lon and the RNA-binding protein Hfq reduce silencing of the Escherichia coli bgl operon by H-NS. J Bacteriol 186:2708–2716. [PubMed][CrossRef]
219. Hall BG, Xu L. 1992. Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K-12. Mol Biol Evol 9:688–706.[PubMed]
220. Hall BG, Yokoyama S, Calhoun DH. 1983. Role of cryptic genes in microbial evolution. Mol Biol Evol 1:109–124.[PubMed]
221. van Tilbeurgh H, Declerck N. 2001. Structural insights into the regulation of bacterial signalling proteins containing PRDs. Curr Opin Struct Biol 11:685–693. [PubMed][CrossRef]
222. Yamada M, Saier MH, Jr. 1987. Physical and genetic characterization of the glucitol operon in Escherichia coli. J Bacteriol 169:2990–2994.[PubMed]
223. Yamada M, Saier MH, Jr. 1988. Positive and negative regulators for glucitol (gut) operon expression in Escherichia coli. J Mol Biol 203:569–583.[PubMed][CrossRef]
224. Klein W, Horlacher R, Boos W. 1995. Molecular analysis of treB encoding the Escherichia coli enzyme II specific for trehalose. J Bacteriol 177:4043–4052.[PubMed]
225. Park JT. 1995. Why does Escherichia coli recycle its cell wall peptides? Mol Microbiol 17:421–426. [PubMed][CrossRef]
226. Parker LL, Hall BG. 1988. A fourth Escherichia coli gene system with the potential to evolve β-glucoside utilization. Genetics 119:485–490.[PubMed]
227. Keyhani NO, Roseman S. 1997. Wild-type Escherichia coli grows on the chitin disaccharide, N,N'-diacetylchitobiose, by expressing the cel operon. Proc Natl Acad Sci USA 94:14367–14371. [PubMed][CrossRef]
228. Kricker M, Hall BG. 1987. Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K-12. Genetics 115:419–429.[PubMed]
229. Plumbridge J, Kolb A. 1998. DNA bending and expression of the divergent nagE-B operons. Nucleic Acids Res 26:1254–1260. [PubMed][CrossRef]
230. O’Reilly M, Watson KA, Schinzel R, Palm D, Johnson LN. 1997. Oligosaccharide substrate binding in Escherichia coli maltodextrin phosphorylase. Nat Struct Biol 4:405–412. [PubMed][CrossRef]
231. Francetic O, Belin D, Badaut C, Pugsley AP. 2000. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. EMBO J 19:6697–6703. [PubMed][CrossRef]
232. Keyhani NO, Roseman S. 1996. The chitin catabolic cascade in the marine bacterium Vibriofurnissii. Molecular cloning, isolation, and characterization of a periplasmic chitodextrinase. J Biol Chem 271:33414–33424. [PubMed][CrossRef]
233. Keyhani N, Wang L-X, Lee YC, Roseman S. 2000. The chitin disaccharide, N,N'-diacetylchitobiose, is catabolized by Escherichia coli and is transported/phosphorylated by the phosphoenolpyruvate:glycose phosphotransferase system. J Biol Chem 275:33084–33090. [PubMed][CrossRef]
234. Keyhani NO, Bacia K, Roseman S. 2000. The transport/phosphorylation of N,N'-diacetylchitobiose in Escherichia coli. Characterization of phospho-IIBChb and of a potential transition state analogue in the phosphotransfer reaction between the proteins IIAChb and IIBChb. J Biol Chem 275:33102–33109. [PubMed][CrossRef]
235. Keyhani NO, Boudker O, Roseman S. 2000. Isolation and characterization of IIAChb, a soluble protein of the enzyme II complex required for the transport/phosphorylation of N,N′- diacetylchitobiose in Escherichia coli. J Biol Chem 275:33091–33101. [PubMed][CrossRef]
236. Thoden JB, Holden HM. 1998. Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli. Biochemistry 37:11469–11477. [PubMed][CrossRef]
237. Higgins CF. 1992. ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113. [PubMed][CrossRef]
238. Björkman AJ, Binnie RA, Zhang H, Cole LB, Hermodson MA, Mowbray SL. 1994. Probing protein-protein interactions. The ribose-binding protein in bacterial transport and chemotaxis. J Biol Chem 269:30206–30211.[PubMed]
239. Hazelbauer GL. 1975. The maltose chemoreceptor of Escherichia coli. J Bacteriol 122:206–214.[PubMed]
240. Hazelbauer GL, Adler J. 1971. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nat New Biol 230:101–104.[PubMed]
241. Kalckar HM. 1971. The periplasmic galactose-binding protein of Escherichia coli. Science 174:557–565. [PubMed][CrossRef]
242. MacPherson AJS, Jones-Mortimer MC, Horne P, Henderson PJF. 1983. Identification of the GalP galactose transport protein of Escherichia coli. J Biol Chem 258:4390–4396.[PubMed]
243. Mourez M, Hofnung M, Dassa E. 1997. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J 16:3066–3077.[PubMed][CrossRef]
244. Mannering DE, Sharma S, Davidson AL. 2001. Demonstration of conformational changes associated with activation of the maltose transport complex. J Biol Chem 276:12362–12368. [PubMed][CrossRef]
245. Björkman AJ, Mowbray SL. 1998. Multiple open forms of ribose-binding protein trace the path of its conformational change. J Mol Biol 279:651–664. [PubMed][CrossRef]
246. Quiocho FA, Gilliland GL, Phillips GN, Jr. 1977. The 2.8-Å resolution structure of the L-arabinose-binding protein from Escherichia coli. Polypeptide chain folding, domain similarity, and probable location of sugar-binding site. J Biol Chem 252:5142–5149.[PubMed]
247. Morgenroth A, Duguid JP. 1968. Demonstration of different mutational sites controlling rhamnose fermentation in FIRN and non-FIRN rha-strains of Salmonella typhimurium: an essay in bacterial archaeology. Genet Res 11:151–169. [PubMed][CrossRef]
248. Raibaud O, Roa M, Braun-Breton C, Schwartz M. 1979. Structure of the malB region in Escherichia coli K-12. I. Genetic map of the malK-lamB operon. Mol Gen Genet 174:241–248. [PubMed][CrossRef]
249. Richet E. 2000. Synergistic transcription activation: a dual role for CRP in the activation of an Escherichia coli promoter depending on MalT and CRP. EMBO J 19:5222–5232. [PubMed][CrossRef]
250. Raibaud O, Debarbouille M, Cossart P. 1982. Clonage of the “malA” region of “Escherichia coli” K-12: nucleotide sequence of the regulatory region and the promoters, identification and purification of the MalT-activator protein (author’s translation). Ann Microbiol (Paris) 133A:59–63.
251. Schnetz K, Rak B. 1990. β-Glucoside permease represses the bgl operon by phosphorylation of the antiterminator protein and also interacts with with glucose-specific enzyme III, the key element in catabolite control. Proc Natl Acad Sci USA 87:5074–5078. [PubMed][CrossRef]
252. Chapon C. 1982. Expression of malT, the regulator gene of the maltose region in Escherichia coli, is limited both at transcription and translation. EMBO J 1:369–374.[PubMed]
253. Richard JP, Westerfeld JG, Lin S, Beard J. 1995. Structure-reactivity relationships for β-galactosidase (Escherichia coli, lacZ). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion. Biochemistry 34:11713–11724. [PubMed][CrossRef]
254. Benz R, Francis G, Nakae T, Ferenci T. 1992. Investigation of the selectivity of maltoporin channels using mutant LamB proteins—mutations changing the maltodextrin binding site. Biochim Biophys Acta 1104:299–307. [PubMed][CrossRef]
255. Dutzler R, Wang Y-F, Rizkallah PJ, Rosenbusch JP, Schirmer T. 1996. Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure 4:127–134. [PubMed][CrossRef]
256. Freundlieb S, Ehmann U, Boos W. 1988. Facilitated diffusion of p-nitrophenyl-α-D-maltohexaoside through the outer membrane of Escherichia coli. J Biol Chem 263:314–320.[PubMed]
257. Raibaud O, Vidal-Ingigliardi D, Richet E. 1989. A complex nucleoprotein structure involved in activation of transcription of two divergent Escherichia coli promoters. J Mol Biol 205:471–485. [PubMed][CrossRef]
258. Schreiber V, Richet E. 1999. Self-association of the Escherichia coli transcription activator MalT in the presence of maltotriose and ATP. J Biol Chem 274:33220–33226. [PubMed][CrossRef]
259. Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJF. 1995. Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF, in Escherichia coli. Receptors Channels 3:117–128.[PubMed]
260. Andersen C, Bachmeyer C, Täuber H, Benz R, Wang J, Michel V, Newton SMC, Hofnung M, Charbit A. 1999. In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K-12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding. Mol Microbiol 32:851–867.[PubMed][CrossRef]
261. Jordy M, Andersen C, Schülein K, Ferenci T, Benz R. 1996. Rate constants of sugar transport through two LamB mutants of Escherichia coli: comparison with wild-type maltoporin and LamB of Salmonella typhimurium. J Mol Biol 259:666–678. [PubMed][CrossRef]
262. Niiya S, Yamasaki K, Wilson TH, Tsuchiya T. 1982. Altered cation coupling to melibiose transport in mutants of Escherichia coli. J Biol Chem 257:8902–8906.[PubMed]
263. Hor L-I, Shuman HA. 1993. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. J Mol Biol 233:659–670. [PubMed][CrossRef]
264. Kellermann O, Szmelcman S. 1974. Active transport of maltose in Escherichia coli K-12. Involvement of a “periplasmic” maltose binding protein. Eur J Biochem 47:139–149. [PubMed][CrossRef]
265. Quiocho FA, Phillips GN, Jr, Parsons RG, Hogg RW. 1974. Letter: crystallographic data of an L-arabinose-binding protein from Escherichia coli. J Mol Biol 86:491–493. [PubMed][CrossRef]
266. Sherman JR, Adler J. 1963. Galactokinase from Escherichia coli. J Biol Chem 238:873–878.[PubMed]
267. Sprenger GA. 1993. Two open reading frames adjacent to the Escherichia coli K-12 transketolase (tkt) gene show high similarity to the mannitol phosphotransferase system enzymes from Escherichia coli and various Gram-positive bacteria. Biochim Biophys Acta 1158:103–106.[PubMed]
268. Brass JM, Manson MD, Larson TJ. 1984. Transposon Tn10-dependent expression of the lamB gene in Escherichia coli. J Bacteriol 159:93–99.[PubMed]
269. Tobin JF, Schleif RF. 1990. Transcription from the rha operon psr promoter. J Mol Biol 211:1–4. [PubMed][CrossRef]
270. Froshauer S, Beckwith J. 1984. The nucleotide sequence of the gene for MalF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. J Biol Chem 259:10896–10903.[PubMed]
271. Froshauer S, Green GN, Boyd D, McGovern K, Beckwith J. 1988. Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. J Mol Biol 200:501–511. [PubMed][CrossRef]
272. Boyd D. 1994. Use of gene fusions to determine membrane protein topology, p 144–163. In White S (ed), Membrane Protein Structure: Experimental Approaches. Oxford University Press, New York, N.Y.
273. Dassa E, Hofnung M. 1985. Sequence of gene malG in Escherichia coli K-12: homologies between integral membrane components from binding protein-dependent transport systems. EMBO J 4:2287–2293.[PubMed]
274. Tokuda H, Kaback HR. 1977. Sodium-dependent methyl 1-thio-β-D-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium. Biochemistry 16:2130–2136. [PubMed][CrossRef]
275. Bavoil P, Hofnung M, Nikaido H. 1980. Identification of a cytoplasmic membrane-associated component of the maltose transport system of Escherichia coli. J Biol Chem 255:8366–8369.[PubMed]
276. Chen J, Lu G, Lin J, Davidson AL, Quiocho FA. 2003. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12:651–661. [PubMed][CrossRef]
277. Shiota S, Yamane Y, Futai M, Tsuchiya T. 1985. Escherichia coli mutants possessing an Li+-resistant melibiose carrier. J Bacteriol 162:106–109.[PubMed]
278. Boos W, Shuman HA. 1998. The maltose/maltodextrin system of Escherichia coli; transport, metabolism and regulation. Microbiol Mol Biol Rev 62:204–229.[PubMed]
279. Davidson AL, Nikaido H. 1990. Overproduction, solubilization and reconstitution of the maltose transport system from Escherichia coli. J Biol Chem 265:4254–4260.[PubMed]
280. Chen J, Sharma S, Quiocho FA, Davidson AL. 2001. Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport. Proc Natl Acad Sci USA 98:1525–1530. [PubMed][CrossRef]
281. Mandrich L, Caputo E, Martin BM, Rossi M, Manco G. 2002. The Aes protein and the monomeric α-galactosidase from Escherichia coli form a non-covalent complex. Implications for the regulation of carbohydrate metabolism. J Biol Chem 277:48241–48247. [PubMed][CrossRef]
282. Saier MH, Ramseier TM, Reizer J. 1996. Regulation of carbon utilization, p 1325–1343. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
283. Sigrell JA, Cameron AD, Jones TA, Mowbray SL. 1998. Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 Å resolution: insights into a new family of kinase structures. Structure 6:183–193. [PubMed][CrossRef]
284. Raibaud O, Richet E. 1987. Maltotriose is the inducer of the maltose regulon. J Bacteriol 169:3059–3061.[PubMed]
285. Gilson E, Rousset J-P, Charbit A, Perrin D, Hofnung M. 1986. malM, a new gene of the maltose regulon in Escherichia coli K-12. I. malM is the last gene of the malK-lamB operon and encodes a periplasmic protein. J Mol Biol 191:303–311. [PubMed][CrossRef]
286. Rotman B, Ganesan AK, Guzman R. 1968. Transport systems for galactose and galactosides in Escherichia coli. II. Substrate and inducer specificities. J Mol Biol 36:247–260. [PubMed][CrossRef]
287. White RJ, Kent PW. 1970. An examination of the inhibitory effects of N-iodoacetylglucosamine on Escherichia coli and isolation of resistant mutants. Biochem J 118:81–87.[PubMed]
288. Prior TI, Kornberg HL. 1988. Nucleotide sequence of fruA, the gene specifying enzyme IIfru of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Escherichia coli K-12. J Gen Microbiol 134:2757–2568.[PubMed]
289. Nunn RS, Markovic-Housley Z, Genovesio-Taverne JC, Flukiger K, Rizkallah PJ, Jansonius JN, Schirmer T, Erni B. 1996. Structure of the IIA domain of the mannose transporter from Escherichia coli at 1.7 angstroms resolution. J Mol Biol 259:502–511. [PubMed][CrossRef]
290. Schulein K, Schmid K, Benz R. 1991. The sugar-specific outer membrane channel ScrY contains functional characteristics of general diffusion pores and substrate-specific porins. Mol Microbiol 5:2233–2241. [PubMed][CrossRef]
291. Wallenfels K, Zarnitz ML. 1957. Kristallisation der β-Galaktosidase aus Escherichia coli. Angew Chem 69:482. [CrossRef]
292. Raha M, Kawagishi I, Müller V, Kihara M, Macnab RM. 1992. Escherichia coli produces a cytoplasmic α-amylase, AmyA. J Bacteriol 174:6644–6652.[PubMed]
293. Gutierrez C, Raibaud O. 1984. Point mutations that reduce the expression of malPQ, a positively controlled operon of Escherichia coli. J Mol Biol 177:69–86. [PubMed][CrossRef]
294. Orskov I, Orskov F. 1973. Plasmid-determined H2S character in Escherichia coli and its relation to plasmid-carried raffinose fermentation and tetracycline resistance characters. Examination of 32 H2S-positive strains isolated during the years 1950 to 1971. J Gen Microbiol 77:487–499.[PubMed]
295. Schulein K, Benz R. 1990. LamB (maltoporin) of Salmonella typhimurium—isolation, purification and comparison of sugar binding with LamB of Escherichia coli. Mol Microbiol 4:625–632. [PubMed][CrossRef]
296. Lolkema JS, Robillard GT. 1990. Subunit structure and activity of the mannitol-specific enzyme-II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system solubilized in detergent. Biochemistry 29:10120–10125. [PubMed][CrossRef]
297. Reyes M, Shuman HA. 1988. Overproduction of MalK protein prevents expression of the Escherichia coli mal regulon. J Bacteriol 170:4598–4602.[PubMed]
298. Tanaka K, Niiya S, Tsuchiya T. 1980. Melibiose transport of Escherichia coli. J Bacteriol 141:1031–1036.[PubMed]
299. Parsons RG, Hogg RW. 1974. Crystallization and characterization of the L-arabinose-binding protein of Escherichia coli B-r. J Biol Chem 249:3602–3607.[PubMed]
300. Feederle R, Pajatsch M, Kremmer E, Böck A. 1996. Metabolism of cyclodextrins by Klebsiella oxytoca M5a1: purification and characterisation of a cytoplasmically located cyclodextrinase. Arch Microbiol 165:206–212. [PubMed][CrossRef]
301. Freundlieb S, Boos W. 1986. α-amylase of Escherichia coli, mapping and cloning of the structural gene, malS, and identification of its product as a periplasmic protein. J Biol Chem 261:2946–2953.[PubMed]
302. Schmid K, Schupfner M, Schmitt R. 1982. Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J Bacteriol 151:68–76.[PubMed]
303. Song S, Park C. 1998. Utilization of D-ribose through D-xylose transporter. FEMS Microbiol Lett 163:255–261. [PubMed][CrossRef]
304. Brand B, Boos W. 1991. Maltose transacetylase of Escherichia coli. Mapping and cloning of its structural gene, mac, and characterization of the enzyme as a dimer of identical polypeptides with a molecular weight of 20.000. J Biol Chem 266:14113–14118.[PubMed]
305. Liu X, Ferenci T. 1998. Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli. J Bacteriol 180:3917–3922.[PubMed]
306. Waeber U, Buhr A, Schunk T, Erni B. 1993. The glucose transporter of Escherichia coli. Purification and characterization by Ni+-chelate affinity chromatography of the IIBCGlc subunit. FEBS Lett 324:109–112. [PubMed][CrossRef]
307. Raghunand TR, Mahadevan S. 2003. The β-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli. FEMS Microbiol Lett 223:267–274. [PubMed][CrossRef]
308. Kimata K, Tanaka Y, Inada T, Aiba H. 2001. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli. EMBO J 20:3587–3595. [PubMed][CrossRef]
309. Decker K, Gerhardt F, Boos W. 1999. The role of the trehalose system in regulating the maltose regulon of Escherichia coli. Mol Microbiol 32:777–788. [PubMed][CrossRef]
310. Decker K, Peist R, Reidl J, Kossmann M, Brand B, Boos W. 1993. Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose-1-phosphate independently of enzymes of the maltose system. J Bacteriol 175:5655–5665.[PubMed]
311. Ehrmann M, Boos W. 1987. Identification of endogenous inducers of the mal system in Escherichia coli. J Bacteriol 169:3539–3545.[PubMed]
312. Prasad I, Schaefler S. 1974. Regulation of the β-glucoside system in Escherichia coli K-12. J Bacteriol 120:638–650.[PubMed]
313. Yang H, Liu MY, Romeo T. 1996. Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J Bacteriol 178:1012–1017.[PubMed]
314. Ballicora MA, Iglesias AA, Preiss J. 2003. ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67:213–225. [PubMed][CrossRef]
315. Baecker PA, Greenberg E, Preiss J. Escherichia coli 1,4-α-D-glucan:1,4-α-D-glucan 6-α-D-(1,4-α-D-glucano)-transferase as deduced from the nucleotide sequence of the glgB gene. J Biol Chem 261:8738–8743.
316. Yamada M, Saier MH, Jr. 1987. Glucitol-specific enzymes of the phosphotransferase system in Escherichia coli; nucleotide sequence of the gut operon. J Biol Chem 262:5455–5463.[PubMed]
317. Choi Y-L, Kawamukai M, Utsumi R, Sakai H, Komano T. 1989. Molecular cloning and sequencing of the glycogen phosphorylase gene from Escherichia coli. FEBS Lett 243:193–198. [PubMed][CrossRef]
318. Romeo T. 1998. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330. [PubMed][CrossRef]
319. Hengge-Aronis R, Fischer D. 1992. Identification and molecular analysis of glgS, a novel growth-phase-regulated and rpoS-dependent gene involved in glycogen synthesis in Escherichia coli. Mol Microbiol 6:1877–1886. [PubMed][CrossRef]
320. Rolls JP, Shuster CW. 1972. Amino sugar assimilation by Escherichia coli. J Bacteriol 112:894–902.[PubMed]
321. Seeto S, Notley-McRobb L, Ferenci T. 2004. The multifactorial influences of RpoS, Mlc and cAMP on ptsG expression under glucose-limited and anaerobic conditions. Res Microbiol 155:211–215. [PubMed][CrossRef]
322. Morbach S, Tebbe S, Schneider E. 1993. The ATP-binding cassette (ABC) transporter for maltose/ maltodextrins of Salmonella typhimurium. Characterization of the ATPase activity associated with the purified MalK subunit. J Biol Chem 268:18617–18621.[PubMed]
323. Revilla-Nuin B, Reglero A, Martinez-Blanco H, Bravo IG, Ferrero MA, Rodriguez-Aparicio LB. 2002. Transport of N-acetyl-D-mannosamine and N-acetyl-D-glucosamine in Escherichia coli K1: effect on capsular polysialic acid production. FEBS Lett 511:97–101. [PubMed][CrossRef]
324. Bukau B, Ehrmann M, Boos W. 1986. Osmoregulation of the maltose regulon in Escherichia coli. J Bacteriol 166:884–891.[PubMed]
325. Palva ET. 1978. Major outer membrane protein in Salmonella typhimurium induced by maltose. J Bacteriol 136:286–294.[PubMed]
326. Schauer R, Kelm S, Reuter G, Roggentin P, Shaw L. 1995. Biochemistry and role of sialic acids, p 7–68. In Rosenberg A (ed), Biology of the Sialic Acids. Plenum Press, New York, N.Y.
327. Böhm A, Diez J, Diederichs K, Welte W, Boos W. 2002. Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli. Implications for mal gene regulation, inducer exclusion, and subunit assembly. J Biol Chem 277:3708–3717. [PubMed][CrossRef]
328. Krishnan S, Hall BG, Sinnott ML. 1995. Catalytic consequences of experimental evolution: catalysis by a ‘third-generation’ evolvant of the second β-galactosidase of Escherichia coli, ebgabcde, and by ebgabcd, a ‘second-generation’ evolvant containing two supposedly ‘kinetically silent’ mutations. Biochem J 312:971–977.[PubMed]
329. Joly N, Böhm A, Boos W, Richet E. 2004. MalK, the ABC component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator MalT by antagonizing inducer binding. J Biol Chem 279:33123–33130. [PubMed][CrossRef]
330. Boos W, Böhm A. 2000. Learning new tricks from an old dog. MaIT of the Escherichia coli maltose system is part of a complex regulatory network. Trends Genet 16:404–409. [PubMed][CrossRef]
331. Peist H, Schneider-Fresenius C, Boos W. 1996. The MalT-dependent and malZ-encoded maltodextrin glucosidase of Escherichia coli can be converted into a dextrinyltransferase by a single mutation. J Biol Chem 271:10681–10689. [PubMed][CrossRef]
332. Haruki M, Oohashi Y, Mizuguchi S, Matsuo Y, Morikawa M, Kanaya S. 1999. Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis. FEBS Lett 454:262–266.[PubMed][CrossRef]
333. Kanaya S, Koyanagi T, Kanaya E. 1998. An esterase from Escherichia coli with a sequence similarity to hormone-sensitive lipase. Biochem J 332:75–80.[PubMed]
334. Joly N, Danot O, Schlegel A, Boos W, Richet E. 2002. The Aes protein directly controls the activity of MalT, the central transcriptional activator of the Escherichia coli maltose regulon. J Biol Chem 277:16606–16613.[PubMed][CrossRef]
335. Maiden MC, Jones-Mortimer MC, Henderson PJ. 1988. The cloning, DNA sequence, and overexpression of the gene araE coding for arabinose-proton symport in Escherichia coli K-12. J Biol Chem 263:8003–8010.[PubMed]
336. Decker K, Plumbridge J, Boos W. 1998. Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Mol Microbiol 27:381–390. [PubMed][CrossRef]
337. Dahl MK, Francoz E, Saurin W, Boos W, Manson MD, Hofnung M. 1989. Comparison of sequences from the malB regions of Salmonella typhimurium and Enterobacter aerogenes with Escherichia coli K-12: a potential new regulatory site in the intergenic region. Mol Gen Genet 218:199–207. [PubMed][CrossRef]
338. Monterrubio R, Baldoma L, Obradors N, Aguilar J, Badia J. 2000. A common regulator for the operons encoding the enzymes involved in D-galactarate, D-glucarate, and D-glycerate utilization in Escherichia coli. J Bacteriol 182:2672–2674. [PubMed][CrossRef]
339. Palmer NT, Ryman BE, Whelan WJ. 1976. The action pattern of amylomaltase from Escherichia coli. Eur J Biochem 69:105–115. [PubMed][CrossRef]
340. Schmid K, Schmitt R. 1976. Raffinose metabolism in Escherichia coli K-12. Purification and properties of a new α−galactosidase specified by a transmissible plasmid. Eur J Biochem 67:95–104. [PubMed][CrossRef]
341. Sridhara S, Wu TT. 1969. Purification and properties of lactaldehyde dehydrogenase from Escherichia coli. J Biol Chem 244:5233–5238.[PubMed]
342. Harayama S, Bollinger J, Iino T, Hazelbauer GL. 1983. Characterization of the mgl operon of Escherichia coli by transposon mutagenesis and molecular cloning. J Bacteriol 153:408–415.[PubMed]
343. Hogg RW, Voelker C, von Carlowitz I. 1991. Nucleotide sequence and analysis of the mgl operon of Escherichia coli K-12. Mol Gen Genet 229:453–459. [PubMed][CrossRef]
344. Rosenberg H, Pearce SM, Hardy CM, Jacomb PA. 1984. Rapid turnover of mannitol-1-phosphate in Escherichia coli. J Bacteriol 158:63–68.[PubMed]
345. Boos W. 1969. The galactose binding protein and its relationship to the β-methylgalactoside permease from Escherichia coli. Eur J Biochem 10:66–73.[PubMed]
346. Shuman HA, Silhavy TJ. 1981. Identification of the malK gene product. A peripheral membrane component of the Escherichia coli maltose transport system. J Biol Chem 256:560–562.[PubMed]
347. Geanacopoulos M, Adhya S. 1997. Functional characterization of roles of GalR and GalS as regulators of the gal regulon. J Bacteriol 179:228–234.[PubMed]
348. Wehmeier UF, Lengeler JW. 1994. Sequence of the sor operon for L-sorbose utilization from Klebsiella pneumoniae KAY2026. Biochim Biophys Acta 1208:348–351.[PubMed]
349. Wolfe JB, Nakada HI. 1957. Glucosamine degradation by Escherichia coli. II. The isomeric conversion of glucosamine 6-PO4 to fructose 6-PO4. Arch Biochem Biophys 64:489–497. [CrossRef]
350. Benner-Luger D, Boos W. 1988. The mglB sequence of Salmonella typhimurium LT2; promoter analysis by gene fusions and evidence for a divergently oriented gene coding for the mgl repressor. Mol Gen Genet 214:579–587.[PubMed][CrossRef]
351. Flocco MM, Mowbray SL. 1994. The 1.9 angstrom X-ray structure of a closed unliganded form of the periplasmic glucose/galactose receptor from Salmonella typhimurium. J Biol Chem 269:8931–8936.[PubMed]
352. Kim C, Song S, Park C. 1997. The D-allose operon of Escherichia coli K-12. J Bacteriol 179:7631–7637.[PubMed]
353. Chaudhuri BN, Ko J, Park J, Mowbray SL. 1999. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 Å resolution. J Mol Biol 286:1519–1531. [PubMed][CrossRef]
354. Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594.[PubMed]
355. Song S, Park C. 1997. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol 179:7025–7032.[PubMed]
356. Zdych E, Peist R, Reidl J, Boos W. 1995. MalY of Escherichia coli is an enzyme with the activity of a βC-S lyase (cystathionase). J Bacteriol 177:5035–5039.[PubMed]
357. Zhang RG, Andersson CE, Skarina T, Evdokimova E, Edwards AM, Joachimiak A, Savchenko A, Mowbray SL. 2003. The 2.2 Å resolution structure of RpiB/AlsB from Escherichia coli illustrates a new approach to the ribose-5-phosphate isomerase reaction. J Mol Biol 332:1083–1094. [PubMed][CrossRef]
358. Groarke JM, Mahoney WC, Hope JN, Furlong CE, Robb FT, Zalkin H, Hermodson MA. 1983. The amino acid sequence of D-ribose-binding protein from Escherichia coli K-12. J Biol Chem 258:12952–12956.[PubMed]
359. Bell AW, Buckel SD, Groarke JM, Hope JN, Kingsley DH, Hermodson MA. 1986. The nucleotide sequences of the rbsD, rbsA, and rbsC genes of Escherichia coli K-12. J Biol Chem 261:7652–7658.[PubMed]
360. Buckel SD, Bell AW, Rao JK, Hermodson MA. 1986. An analysis of the structure of the product of the rbsA gene of Escherichia coli K-12. J Biol Chem 261:7659–7662.[PubMed]
361. Hope JN, Bell AW, Hermodson MA, Groarke JM. 1986. Ribokinase from Escherichia coli K-12. Nucleotide sequence and overexpression of the rbsK gene and purification of ribokinase. J Biol Chem 261:7663–7668.[PubMed]
362. Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS. 1992. The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest 90:897–905. [PubMed][CrossRef]
363. Kim M-S, Oh H, Park C, Oh B-H. 2001. Crystallization and preliminary X-ray crystallographic analysis of Escherichia coli RbsD, a component of the ribose-transport system with unknown biochemical function. Acta Crystallogr D 57:728–730. [PubMed][CrossRef]
364. Rudino-Pinera E, Morales-Arrieta S, Rojas-Trejo SP, Horjales E. 2002. Structural flexibility, an essential component of the allosteric activation in Escherichia coli glucosamine-6-phosphate deaminase. Acta Crystallogr D Biol Crystallogr 58:10–20. [PubMed][CrossRef]
365. Seok Y-J, Sondej M, Badawi P, Lewis MS, Briggs MC, Jaffe H, Peterkofsky A. 1997. High affinity binding and allosteric regulation of Escherichia coli glycogen phosphorylase by the histidine phosphocarrier protein, HPr. J Biol Chem 272:26511–26521. [PubMed][CrossRef]
366. Mahadevan S, Wright A. 1987. A bacterial gene involved in transcription antitermination: regulation at a rho-independent terminator in the bgl operon of E. coli. Cell 50:485–494. [PubMed][CrossRef]
367. Mowbray SL. 1992. Ribose and glucose-galactose receptors. Competitors in bacterial chemotaxis. J Mol Biol 227:418–440. [PubMed][CrossRef]
368. Vollmer W, Höltje JV. 2001. Morphogenesis of Escherichia coli. Curr Opin Microbiol 4:625–633. [PubMed][CrossRef]
369. Stevens FJ, Wu TT. 1976. Growth on D-lyxose of a mutant strain of Escherichia coli K-12 using a novel isomerase and enzymes related to D-xylase metabolism. J Gen Microbiol 97:257–265.[PubMed]
370. Yazyu H, Shiota-Niiya S, Shimamoto T, Kanazawa H, Futai M, Tsuchiya T. 1984. Nucleotide sequence of the melB gene and characteristics of deduced amino acid sequence of the melibiose carrier in Escherichia coli. J Biol Chem 259:4320–4326.[PubMed]
371. David J, Wiesmeyer H. 1970. Regulation of ribose metabolism in Escherichia coli. I. The ribose catabolic pathway. Biochim Biophys Acta 208:45–55.[PubMed]
372. David J, Wiesmeyer H. 1970. Regulation of ribose metabolism in Escherichia coli. II. Evidence for two ribose-5-phosphate isomerase activities. Biochim Biophys Acta 208:56–67.[PubMed]
373. David J, Wiesmeyer H. 1970. Regulation of ribose metabolism in Escherichia coli. III. Regulation of ribose utilization in vivo. Biochim Biophys Acta 208:68–76.[PubMed]
374. Shiota S, Yazyu H, Tsuchiya T. 1984. Escherichia coli mutants with altered cation recognition by the melibiose carrier. J Bacteriol 160:445–447.