1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: M.-A. Mandrand-Berthelot1, G. Condemine2, and N. Hugouvieux-Cotte-Pattat3
  • Editor: Valley Stewart4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Unité de Microbiologie et Génétique, Centre National de la Recherche Scientifique / Université Claude Bernard Lyon 1 / Institut National des Sciences Appliquées, Domaine Scientifique de la Doua, 10, rue Raphaël Dubois, 69622 Villeurbanne, France; 2: Unité de Microbiologie et Génétique, Centre National de la Recherche Scientifique / Université Claude Bernard Lyon 1 / Institut National des Sciences Appliquées, Domaine Scientifique de la Doua, 10, rue Raphaël Dubois, 69622 Villeurbanne, France; 3: Unité de Microbiologie et Génétique, Centre National de la Recherche Scientifique / Université Claude Bernard Lyon 1 / Institut National des Sciences Appliquées, Domaine Scientifique de la Doua, 10, rue Raphaël Dubois, 69622 Villeurbanne, France; 4: University of California, Davis, Davis, CA
  • Received 03 February 2004 Accepted 16 April 2004 Published 06 July 2004
  • Address correspondence to M.-A. Mandrand-Berthelot Marie-Andree.Mandrand@insa-lyon.fr
image of Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates
    Preview this reference work article:
    Zoom in
    Zoomout

    Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/1/3_4_2_module-1.gif /docserver/preview/fulltext/ecosalplus/1/1/3_4_2_module-2.gif
  • Abstract:

    Following elucidation of the regulation of the lactose operon in , studies on the metabolism of many sugars were initiated in the early 1960s. The catabolic pathways of D-gluconate and of the two hexuronates, D-glucuronate and D-galacturonate, were investigated. The post genomic era has renewed interest in the study of these sugar acids and allowed the complete characterization of the D-gluconate pathway and the discovery of the catabolic pathways for L-idonate, D-glucarate, galactarate, and ketogluconates. Among the various sugar acids that are utilized as sole carbon and energy sources to support growth of , galacturonate, glucuronate, and gluconate were shown to play an important role in the colonization of the mammalian large intestine. In the case of sugar acid degradation, the regulators often mediate negative control and are inactivated by interaction with a specific inducer, which is either the substrate or an intermediate of the catabolism. These regulators coordinate the synthesis of all the proteins involved in the same pathway and, in some cases, exert crosspathway control between related catabolic pathways. This is particularly well illustrated in the case of hexuronide and hexuronate catabolism. The structural genes encoding the different steps of hexuronate catabolism were identified by analysis of numerous mutants affected for growth with galacturonate or glucuronate. is able to use the diacid sugars D-glucarate and galactarate (an achiral compound) as sole carbon source for growth. Pyruvate and 2-phosphoglycerate are the final products of the D-glucarate/galactarate catabolism.

  • Citation: Mandrand-Berthelot M, Condemine G, Hugouvieux-Cotte-Pattat N. 2004. Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.4.2

Key Concept Ranking

Major Facilitator Superfamily
0.50884956
Transcription Start Point
0.41625285
Plant Pathogenic Bacteria
0.363009
RNA Polymerase
0.325789
0.50884956

References

1. Salyers AA, Leedle JAZ. 1983. Carbohydrate metabolism in the human colon, p 129–146. In Hentges DJ (ed), Human Intestinal Microflora in Health and Disease. Academic Press, Inc., New York, N.Y.
2. Dutton GJ. 1980. Glucuronidation of Drugs and Other Compounds. CRC Press, Boca Raton, Fla.
3. Ashwell G. 1962. Enzymes of glucuronic and galacturonic acid metabolism in bacteria. Methods Enzymol 5:190–208. [CrossRef]
4. Stoeber F, Lagarde A, Némoz G, Novel G, Novel M, Portalier R, Pouysségur J, Robert-Baudouy J. 1974. Le métabolisme des hexuronides et des hexuronates chez Escherichia coli K-12: aspects physiologiques et génétiques de sa régulation. Biochimie 56:199–213. [CrossRef]
5. Stoeber F. 1961. Etudes des propriétés et de la biosynthèse de la glucuronidase et de la glucuronide perméase chez Escherichia coli. Thèse de Docteur-es-Sciences. Paris, France.
6. Liang W-J. 1989. Studies on the glucuronide operon of Escherichia coli. M. SC. Thesis. Cambridge University, Cambridge, United Kingdom.
7. Wilson KJ, Hughes SG, Jefferson RA. 1992. The Escherichia coli gus operon: induction and expression of the gus operon in E. coli and the occurrence and use of gus in other bacteria, p 7–22. In Gallagher SR (ed), GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, Inc., San Diego, Calif.
8. Didier-Fichet ML, Stoeber F. 1968. Sur les propriétés et la biosynthèse de la β-glucuronidase d'Escherichia coli K12. C R Acad Sci 266:2021–2024.
9. Baudouy-Robert J, Didier-Fichet ML, Jimeno-Abendano J, Novel G, Portalier R, Stoeber F. 1970. Modalités de l'induction des six premières enzymes dégradant les hexuronides et les hexuronates chez E. coli K-12 C R Acad Sci 271:255–258.
10. Novel M, Novel G. 1974. Mutants d'Escherichia coli K-12 capables de croître sur méthyl-β-D-galacturonide: mutants simples constitutifs pour la synthèse de la β-glucuronidase et mutants doubles déréprimés aussi pour la synthèse de deux enzymes d'utilisation du glucuronate. C R Acad Sci 279:695–698.
11. Jefferson RA, Burgess SM, Hirsh D. 1986. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451.[CrossRef]
12. Kim DH, Jin YH, Jung EA, Han MJ, Kobashi K. 1995. Purification and characterization of beta-glucuronidase from Escherichia coli HGU-3, a human intestinal bacterium. Biol Pharm Bull 18:1184–1188.
13. Novel G. 1973. Le métabolisme des hexuronides chez Escherichia coli K12: étude biochimique, physiologique et génétique des premières étapes. Thèse de Docteur-ès-Sciences. Université Claude Bernard de Lyon, France.
14. Blanco C, Nemoz G. 1987. One step purification of Escherichia coli beta-glucuronidase. Biochimie 69:157–161. [CrossRef]
15. Jefferson RA. 1985. DNA transformation of Caenorhabditis elegans: development and application of a new gene fusion system. Ph.D. Dissertation, University of Colorado, Boulder.
16. Gallagher SR. 1992. GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, Inc., San Diego, Calif.
17. Bardonnet N, Blanco C. 1992. 'uidA-antibiotic-resistance cassettes for insertion mutagenesis, gene fusions and genetic constructions. FEMS Microbiol Lett 72:243–247. [CrossRef]
18. Bardonnet N, Trautwetter A, Couchoux-Luthaud G, Blanco C. 1988. Plasmids with the uidA reporter gene for the detection of promoters and transcription signals. Mol Gen Genet 212:390–392. [CrossRef]
19. Jefferson RA, Kavanah TA, Bevan MW. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907.
20. Marathe SV, McEwen JE. 1995. Vectors with the gus reporter gene for identifying and quantitating promoter regions in Saccharomyces cerevisiae. Gene 154:105–107. [CrossRef]
21. Novel G, Novel M. 1973. Mutants d'Escherichia coli affectés pour leur croissance sur méthyl β-glucuronide: localisation du gène de structure de la β-glucuronidase. Mol Gen Genet 120:319–335.
22. Blanco C, Ritzenthaler P, Mata-Gilsinger M. 1982. Cloning and endonuclease restriction analysis of uidA and uidR genes in Escherichia coli K-12: determination of transcription direction for the uidA gene. J Bacteriol 149:587–594.
23. Novel M, Novel G. 1976. Regulation of β-glucuronidase synthesis in Escherichia coli K-12: constitutive mutants specifically derepressed for uidA expression. J Bacteriol 127:406–417.
24. Blanco C, Mata-Gilsinger M, Ritzenthaler P. uidR, a negative regulatory gene of Escherichia coli. Gene 36:159–167. [CrossRef]
25. Blanco C, Ritzenthaler P, Mata-Gilsinger M. 1986. Negative dominant mutations of the uidR gene in Escherichia coli: genetic proof for a cooperative regulation of uidA expression. Genetics 112:173–182.
26. Novel M, Novel G. 1976. Regulation of β-glucuronidase synthesis in Escherichia coli K-12: pleiotropic constitutive mutations affecting uxu and uidA expression. J Bacteriol 127:418–432.
27. Mandrand-Berthelot M-A, Novel G, Novel M. 1977. L'induction gratuite de la β-glucuronidase d'Escherichia coli K12 et son double mécanisme de répression. Biochimie 59:163–170. [CrossRef]
28. Novel G, Didier-Fichet ML, Stoeber F. 1974. Inducibility of β-glucuronidase in wild-type and hexuronate-negative mutants of Escherichia coli K-12. J Bacteriol 120:89–95.
29. Ritzenthaler P, Blanco C, Mata-Gilsinger M. 1983. Interchangeability of repressors for the control of the uxu and uid operons in E. coli K-12. Mol Gen Genet 191:263–270. [CrossRef]
30. Blanco C. 1987. Transcriptional and translational signals of the uidA gene in Escherichia coli K12. Mol Gen Genet 208:490–498. [CrossRef]
31. Rodionov DA, Mironov AA, Rakhmaninova AB, Gelfand MS. 2000. Transcriptional regulation of transport and utilization systems for hexuronides, hexuronates and hexonates in gamma purple bacteria. Mol Microbiol 38:673–683. [CrossRef]
32. Cleuziat P, Robert-Baudouy J. 1990. Specific detection of Escherichia coli and Shigella species using fragments of genes coding for beta-glucuronidase. FEMS Microbiol Lett 60:315–322. [CrossRef]
33. Russell WM, Klaenhammer TR. 2001. Identification and cloning of gusA, encoding a new beta-glucuronidase from Lactobacillus gasseri ADH. Appl Environ Microbiol 67:1253–1261. [CrossRef]
34. Jimeno-Abendano J, Kepes A. 1973. Sensitization of D-glucuronic acid transport system of Escherichia coli to protein group reagents in presence of substrate or absence of energy source. Biochem Biophys Res Commun 54:1342–1346. [CrossRef]
35. Nemoz G, Robert-Baudouy J, Stoeber F. 1976. Physiological and genetic regulation of the aldohexuronate transport system in Escherichia coli K-12. J Bacteriol 127:706–718.
36. Ashwell G, Wahba AJ, Hickman J. 1960. Uronic acid metabolism in bacteria. I. Purification and properties of uronic acid isomerase in Escherichia coli. J Biol Chem 235:1559–1565.
37. Novel G, Stoeber F. 1973. Individualité de la D-glucuronate-cétol isomérase d'E. coli K-12. Biochimie 55:1057–1070. [CrossRef]
38. Wahba AJ, Hickman J, Ashwell G. 1958. Enzymatic formation of D-tagaturonic acid and D-fructuronic acid. J Am Chem Soc 80:2594–2595. [CrossRef]
39. Hickman J, Ashwell G. 1960. Uronic acid metabolism in bacteria. II. Purification and properties of D-altronic acid and D-mannonic acid dehydrogenases in Escherichia coli. J Biol Chem 235:1566–1570.
40. Portalier R. 1972. La D-altronate:NAD-oxydoréductase d'E. coli K-12: étude cinétique. Eur J Biochem 30:211–219. [CrossRef]
41. Portalier R, Stoeber F. 1972. La D-altronate:NAD-oxydoréductase d'E. coli K-12: purification, propriétés et individualité. Eur J Biochem 26:50–61. [CrossRef]
42. Portalier R. 1972. La D-mannonate:NAD-oxydoréductase d'E. coli K-12: étude cinétique du mécanisme enzymatique. Eur J Biochem 30:220–233. [CrossRef]
43. Portalier R, Stoeber F. 1972. La D-mannonate:NAD-oxydoréductase d'E. coli K-12: purification, propriétés et individualité. Eur J Biochem 26:290–300. [CrossRef]
44. Robert-Baudouy J, Jimeno-Abendano J, Stoeber F. 1975. Individualité des hydrolyases mannonique et altronique chez E. coli K-12. Biochimie 57:1–8. [CrossRef]
45. Robert-Baudouy J, Jimeno-Abendano J, Stoeber F. 1982. D-Mannonate and D-altronate dehydratases of Escherichia coli K-12. Methods Enzymol 90:288–294. [CrossRef]
46. Smiley J, Ashwell G. 1960. Uronic acid metabolism in bacteria. III. Purification and properties of D-altronic acid and D-mannonic acid dehydrases in Escherichia coli. J Biol Chem 235:1571–1575.
47. Dreyer JL. 1987. The role of iron in the activation of mannonic and altronic acid hydratases, two Fe-requiring hydro-lyases. Eur J Biochem 166:623–630. [CrossRef]
48. Robert-Baudouy J, Stoeber F. 1973. Purification et propriétés de la D-mannonate hydrolyase d'E. coli. Biochim Biophys Acta 309:473–485.
49. Hugouvieux-Cotte-Pattat N, Robert-Baudouy J. 1981. Isolation of fusions between the lac genes and several genes of the exu regulon: analysis of their regulation, determination of the transcription direction of the uxaC-uxaA operon, in Escherichia coli K-12. Mol Gen Genet 182:279–287. [CrossRef]
50. Hugouvieux-Cotte-Pattat N, Robert-Baudouy J. 1982. Determination of the transcription direction of the exuT gene in Escherichia coli K-12: divergent transcription of the exuT-uxaCA operons. J Bacteriol 151:480–484.
51. Hugouvieux-Cotte-Pattat N, Robert-Baudouy J. 1983. Determination of the transcription direction of the uxaB gene in E. coli K-12. Mol Gen Genet 189:334–336. [CrossRef]
52. Hugouvieux-Cotte-Pattat N, Robert-Baudouy J. 1983. Regulation of expression of the uxu operon and of the uxuR regulatory gene in E. coli K-12. J Gen Microbiol 129:3345–3354.
53. Portalier R, Robert-Baudouy J, Stoeber F. 1972. Localisation génétique et caractérisation biochimique de mutations affectant le gène de structure de l'hydrolyase altronique chez E. coli K-12. Mol Gen Genet 118:335–350. [CrossRef]
54. Robert-Baudouy J, Portalier R. 1974. Mutations affectant le catabolisme du glucuronate chez E. coli K-12. Mol Gen Genet 131:31–46. [CrossRef]
55. Robert-Baudouy J, Portalier R, Stoeber F. 1972. Localisation génétique et caractérisation biochimique de mutations affectant le gène de structure de l'hydrolyase mannonique chez E. coli K-12. Mol Gen Genet 118:351–362. [CrossRef]
56. Pouysségur J, Stoeber F. 1970. Production de 2-céto-3-désoxy-6-phospho-gluconate par un mutant d'Escherichia coli K12. Bull Soc Chim Biol 52:1407–1418.
57. Portalier R, Robert-Baudouy J, Nemoz G. 1974. Etude des mutations affectant les gènes de structure de l'isomérase uronique et de l'oxydoréductase altronique chez Escherichia coli K-12. Mol Gen Genet 128:301–319. [CrossRef]
58. Portalier R, Stoeber F. 1970. Modalités de l'induction des six premières enzymes dégradant les hexuronides et les hexuronates chez E. coli K-12. C R Acad Sci 271:255–258.
59. Robert-Baudouy J, Portalier R, Stoeber F. 1974. Régulation du métabolisme des hexuronates chez E. coli K-12: modalités de l'induction des enzymes du système hexuronate. Eur J Biochem 43:1–15. [CrossRef]
60. Portalier R, Robert-Baudouy J Stoeber F. 1980. Regulation of hexuronate metabolism in Escherichia coli K-12. I. The exu regulon. J Bacteriol 143:1095–1107.
61. Robert-Baudouy J, Portalier R, Stoeber F. 1981. Regulation of hexuronate metabolism in Escherichia coli K-12: multiple regulation of the uxu operon by the exuR and uxuR gene products. J Bacteriol 145:211–220.
62. Hugouvieux-Cotte-Pattat N, Robert-Baudouy J. 1982. Regulation and transcription direction of exuR, a self-regulated repressor in Escherichia coli K-12. J Mol Biol 156:221–228. [CrossRef]
63. Mata-Gilsinger M, Ritzenthaler P, Blanco C. 1983. Characterization of the operator sites of the exu regulon in Escherichia coli K-12 by operator-constitutive mutations and repressor titration. Genetics 105:829–842.
64. Ritzenthaler P, Mata-Gilsinger M. 1983. Multiple regulation involved in the expression of the uxuR regulatory gene in Escherichia coli K-12. Mol Gen Genet 189:351–354. [CrossRef]
65. Ritzenthaler P, Mata-Gilsinger M. 1982. Use of in vitro gene fusions to study the exuR regulatory gene in Escherichia coli K-12: direction of transcription and regulation of its expression. J Bacteriol 50:1040–1047.
66. Ritzenthaler P, Blanco C, Mata-Gilsinger M. 1985. Genetic analysis of uxuR and exuR: evidence for ExuR and UxuR monomer repressor interactions. Mol Gen Genet 199:507–511. [CrossRef]
67. Mata M, Delstanche M, Robert-Baudouy J. 1978. Isolation of specialized transducing bacteriophages carrying the structural genes of the hexuronate system in Escherichia coli K-12: exu region. J Bacteriol 133:549–557.
68. Mata-Gilsinger M, Ritzenthaler P. 1983. Physical mapping of the exuT and uxaC operators by use of exu plasmids and generation of deletion mutants in vitro. J Bacteriol 155:973–982.
69. Ritzenthaler P, Mata-Gilsinger M, Stoeber F. 1981. Molecular cloning of Escherichia coli K-12 hexuronate system genes: exu region. J Bacteriol 145:181–190.
70. Blanco C, Mata-Gilsinger M, Ritzenthaler P. 1983. Construction of hybrid plasmids containing Escherichia coli K-12 uxaB gene: analysis of its regulation and direction of transcription. J Bacteriol 153:747–755.
71. Ritzenthaler P, Mata-Gilsinger M, Stoeber F. 1980. Construction and expression of hybrid plasmids containing the Escherichia coli K-12 uxu genes. J Bacteriol 143:1116–1126.
72. Clarke L, Carbon J. 1976. A colony bank containing synthetic hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99. [CrossRef]
73. Blanco C, Mata-Gilsinger M. 1986. A DNA sequence containing the control sites for uxaB gene of E. coli K-12. J Gen Microbiol 132:697–705.
74. Blanco C, Ritzenthaler P, Kolb A. 1986. The regulatory region of uxuAB operon in E. coli K-12. Mol Gen Genet 202:112–119. [CrossRef]
75. Blanco C, Mata-Gilsinger M. 1986. Identification of cyclic AMP-CRP binding sites in the intercistronic regulatory uxaCA-exuR region of E. coli. FEMS Microbiol Lett 33:205–209. [CrossRef]
76. Mata-Gilsinger M, Ritzenthaler P. 1983. Isolation of a functional ExuR repressor β-galactosidase hybrid protein by use of in vitro gene fusions. Gene 25:9–20. [CrossRef]
77. Le Minor L, Buissière J, Brault G. 1979. Diagnostic value of the acid production from galacturonate to differentiate strains of Salmonella sub-genus I and monophasic sub-genus III from the other Salmonella strains belonging to sub-genus diphasic III, IV, Citrobacter and Havnia alvei. Ann Microbiol 130:305–312.
78. Hugouvieux-Cotte-Pattat N, Reverchon S. 2001. Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937. Mol Microbiol 41:1125–1132. [CrossRef]
79. Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W, Reverchon S. 1996. Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol 50:213–257. [CrossRef]
80. Hugouvieux-Cotte-Pattat N, Robert-Baudouy J. 1987. Hexuronate catabolism in Erwinia chrysanthemi. J Bacteriol 169:1223–1231.
81. Entner N, Doudoroff M. 1952. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem 196:853–862.
82. Peekhaus N, Conway T. 1998. Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol 180:1777–1785.
83. Peekhaus N, Conway T. 2000. What’s for dinner?: Entner-Doudoroff metabolism in Escherichia coli. J Bacteriol 180:3495–3502.
84. Pouysségur J, Stoeber F. 1974. Genetic control of the 2-keto-3-deoxy-D-gluconate metabolism in Escherichia coli K-12: kdg regulon. J Bacteriol 117:641–651.
85. Hantz O. 1977. La voie dégradative secondaire du 2-céto-3-désoxygluconate chez Escherichia coli. Oxydation enzymatique du 2-céto-3-désoxygluconate. Thesis. Université Claude Bernard-Lyon I, Lyon, France.
86. Pouysségur J, Stoeber F. 1972. Rameau dégradatif commun des hexuronates chez Escherichia coli K 12. Mécanisme d'induction des enzymes assurant le métabolisme du 2-céto-3-désoxy-gluconate. Eur J Biochem 30:479–494. [CrossRef]
87. Pouysségur J, Lagarde A. 1973. Système de transport du 2-céto-3-désoxy-gluconate chez E. coli K 12: localisation d'un gène de structure et de son opérateur. Mol Gen Genet 121:163–170. [CrossRef]
88. Condemine G, Robert-Baudouy J. 1987. 2-Keto-3-deoxygluconate transport system in Erwinia chrysanthemi. J Bacteriol 169:1972–1978.
89. Lagarde AE, Pousségur M, Stoeber F. 1973. A transport system for 2-keto-3-deoxy-D-gluconate in Escherichia coli K 12. Biochemical and physiological studies in whole cells. Eur J Biochem 36:328–341. [CrossRef]
90. Lagarde AE, Stoeber F. 1974. Transport of 2-keto-3-deoxy-D-gluconate in isolated membrane vesicles of Escherichia coli K 12. Eur J Biochem 43:197–208. [CrossRef]
91. Lagarde AE, Stoeber F. 1975. The energy-coupling controlled efflux of 2-keto-3-deoxy-D-gluconate in Escherichia coli K 12. Eur J Biochem 55:343–354. [CrossRef]
92. Lagarde AE, Haddock BA. 1977. Proton uptake linked to the 3-deoxy-2-oxo-D-gluconate-transport system of Escherichia coli. Biochem J 162:183–187.
93. Lagarde A. 1977. Evidence for an electrogenic 3-deoxy-2-oxo-D-gluconate-proton co-transport driven by the protonmotive force in Escherichia coli K 12. Biochem J 168:211–221.
94. Mandrand-Berthelot M-A, Lagarde AE. 1982. Altered transport properties in Escherichia coli mutants selected for pH-conditional growth on 3-deoxy-2-oxo-D-gluconate. J Biol Chem 257:8806–8816.
95. Pouysségur J, Stoeber F. 1971. Etude du rameau dégradatif commun des hexuronates chez Escherichia coli K 12. Purification, propriétés et individualité de la 2-céto-3-désoxy-D-gluconokinase. Biochimie 53:771–781. [CrossRef]
96. Cynkin MA, Ashwell G. 1960. Uronic acid metabolism in bacteria. IV. Purification and properties of 2-keto-3-deoxy-D-gluconokinase in Escherichia coli. J Biol Chem 235:1576–1579.
97. Conway T. 1992. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 103:1–28. [CrossRef]
98. Pouysségur J, Stoeber F. 1971. Etude du rameau dégradatif commun des hexuronates chez Escherichia coli K 12. Purification, propriétés et individualité de la 2-céto-3-désoxy-6-phospho-D-gluconate aldolase. Eur J Biochem 21:363–373. [CrossRef]
99. Vlahos CJ, Dekker EE. 1988. The complete amino acid sequence and identification of the active-site arginine peptide of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. J Biol Chem 263:11683–11691.
100. Patil RV, Dekker EE. 1992. Cloning, nucleotide sequence, overexpression, and inactivation of the Escherichia coli 2-keto-4-hydroxyglutarate aldolase gene. J Bacteriol 174:102–107.
101. Egan SE, Fliege R, Tong S, Shibata A, Wolf RE Jr, Conway T. 1992. Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli: sequence analysis and localization of promoters for the edd-eda operon. J Bacteriol 174:4638–4646.
102. Gupta SC, Dekker EE. 1984. Malyl-CoA formation in the NAD+-, CoASH-, and α-ketoglutarate dehydrogenase-dependent oxidation of 2-keto-4-hydroxyglutarate. Possible coupled role of this reaction with 2-keto-4-hydroxyglutarate aldolase activity in a pyruvate-catalyzed cyclic oxidation of glyoxalate. J Biol Chem 259:10012–10019.
103. Allard J, Grochulski P, Sygusch J. 2001. Covalent intermediate trapped in 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase structure at 1.95 Á resolution. Proc Natl Acad Sci USA 98:3679–3684. [CrossRef]
104. Fong S, Machajewski TD, Mak CC, Wong C-H. 2000. Directed evolution of 2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D- and L-sugars. Chem Biol 7:873–883. [CrossRef]
105. Wymer N, Buchanan LV, Henderson D, Mehta N, Botting CH, Pocivavsek L, Fierke CA, Toone EJ, Naismith JH. 2001. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Structure 10:1–9. [CrossRef]
106. Pouysségur J. 1971. Localisation génétique de mutations 2-céto-3-désoxy-6-P-gluconate aldolase négatives chez E. coli K 12. Mol Gen Genet 113:31–42.
107. Lagarde AE, Stoeber F. 1977. Escherichia coli K-12 structural kdgT mutants exhibiting thermosensitive 2-keto-3-deoxy-D-gluconate uptake. J Bacteriol 129:606–615.
108. Pouysségur J, Stoeber F. 1972. Mutations affectant le gène de structure de la 2-céto-3-désoxy-6-P-gluconate aldolase chez E. coli K 12. Mol Gen Genet 114:305–311. [CrossRef]
109. Mandrand-Berthelot M-A, Ritzenthaler P, Mata-Gilsinger M. 1984. Construction and expression of hybrid plasmids containing the structural gene of the Escherichia coli K12 3-deoxy-2-oxo-D-gluconate transport system. J Bacteriol 160:600–606.
110. Fradkin, Fraenkel JE , DG. 1971. 2-Keto-3-deoxy-gluconate-6-phosphate aldolase mutants of Escherichia coli. J Bacteriol 108:1277–1283.
111. Hugouvieux-Cotte-Pattat N, Blot N, Reverchon S. 2001. Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol Microbiol 41:1113–1123. [CrossRef]
112. Robert-Baudouy J, Nasser W, Condemine G, Reverchon S, Shevchik VE, Hugouvieux-Cotte-Pattat N. 2000. Regulation of pectinase gene expression in Erwinia chrysanthemi, p 221–268. In Stacey G and Keen NT (ed), Plant-Microbe Interactions. APS Press, St Paul, Minn.
113. Nasser W, Reverchon S, Condemine G, Robert-Baudouy J. 1994. Specific interactions of Erwinia chrysanthemi KdgR repressor with different operators of genes involved in pectinolysis. J Mol Biol 18:427–440. [CrossRef]
114. James V, Hugouvieux-Cotte-Pattat N. 1996. Regulatory systems modulating the transcription of the pectinase genes of Erwinia chrysanthemi are conserved in Escherichia coli. Microbiology 142:2613–2619. [CrossRef]
115. Thomson NR, Nasser W, McGowan S, Sebaihia M, Salmond GP. 1999. Erwinia carotovora has two KdgR-like proteins belonging to the IclR family of transcriptional regulators: identification and characterization of the RexZ activator and the KdgR repressor of pathogenesis. Microbiology 145:1531–1545. [CrossRef]
116. Rodionov DA, Gelfand MS, Hugouvieux-Cotte-Pattat N. 2004. Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria. Submitted for publication.
117. Rouanet C, Nomura K, Tsuyumu S, Nasser W. 1999. Regulation of pelD and pelE, encoding major pectate lyases in Erwinia chrysanthemi: involvement of the main transcriptional factors. J Bacteriol 181:5948–5957.
118. Porco A, Peekhaus N, Bausch C, Tong S, Isturiz T, Conway T. 1997. Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism. J Bacteriol 179:1584–1590.
119. Tong S, Porco A, Isturiz T, Conway T. 1996. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism. J Bacteriol 178:3260–3269.
120. Peekhaus N, Tong S, Reizer J, Saier MH Jr, Murray E, Conway T. 1997. Characterization of a novel transporter family that includes multiple Escherichia coli gluconate transporters and their homologues. FEMS Microbiol Lett 147:233–238. [CrossRef]
121. Klemm P, Tong S, Nielsen H, Conway T. 1996. The gntP gene of E. coli involved in gluconate uptake. J Bacteriol 178:61–67.
122. Izu H, Adachi O, Yamada M. 1996. Purification and characterization of the Escherichia coli thermoresistant glucokinase encoded by the gntK gene. FEBS Lett 394:14–16. [CrossRef]
123. Izu H, Adachi O, Yamada M. 1997. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli. J Mol Biol 267:778–793. [CrossRef]
124. Izu H, Kaway T, Yamada Y, Aoshima H, Adachi O, Yamada M. 1997. Characterization of the gntT gene encoding a high-affinity gluconate permease in Escherichia coli. Gene 199:203–210. [CrossRef]
125. Conway T, Yi KC, Egan SE, Wolf RE Jr, Rowley DL. 1991. Locations of the zwf, edd, and eda genes on the Escherichia coli physical map. J Bacteriol 173:5247–5248.
126. Tsunedomi R, Izu H, Kawai T, Matsushita K, Ferenci T, Yamada M. 2003. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli. J Bacteriol 185:1783–1795. [CrossRef]
127. Bächi B, Kornberg HL. 1975. Genes involved in the uptake and catabolism of gluconate by Escherichia coli. J Gen Microbiol 90:321–335.
128. Bausch C, Peekhaus N, Utz C, Blais T, Murray E, Lowary T, Conway T. 1998. Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli. J Bacteriol 180:3704–3710.
129. Bausch C, Ramsey M, Conway T. 2004. Transcriptional organization and regulation of the L-idonic acid pathway (GntII system) in Escherichia coli. J Bacteriol 186:1388–1397. [CrossRef]
130. Tsunedomi R, Izu H, Kawai T, Yamada M. 2003. Dual control by regulators, GntH and GntR, of the genes for gluconate metabolism in Escherichia coli. J Mol Microbiol Biotechnol 6:41–56. [CrossRef]
131. Yum D-Y, Lee B-Y, Hahm D-H, Pan J-G. 1998. The yiaE gene, located at 80.1 minutes on the Escherichia coli chromosome, encodes a 2-ketoaldonate reductase. J Bacteriol 180:5984–5988.
132. Yum D-Y, Lee B-Y, Pan J-G. 1999. Identification of the yqhE and yafB genes encoding two 2,5-diketo-D-gluconate reductases in Escherichia coli. Appl Environ Microbiol 65:3341–3346.
133. Cooper RA. 1978. The utilization of D-galactonate and D-2-oxo-3-deoxygalactonate in Escherichia coli K-12. Arch Microbiol 118:199–206. [CrossRef]
134. Deacon J, Cooper RA. 1977. D-Galactonate utilization by enteric bacteria. The catabolic pathway in Escherichia coli. FEBS Lett 77:201–205. [CrossRef]
135. Cooper RA. 1979. The pathway for L-galactonate catabolism in Escherichia coli K-12. FEBS Lett 103:216–220. [CrossRef]
136. Cooper RA. 1980. The pathway for L-gulonate catabolism in Escherichia coli K-12 and Salmonella typhimurium LT-2. FEBS Lett 115:63–67. [CrossRef]
137. Blumenthal HJ, Fish DC. 1963. Bacterial conversion of D-glucarate to glycerate and pyruvate. Biochem Biophys Res Commun 11:239–243. [CrossRef]
138. Hubbard BK, Koch M, Palmer DR, Babbitt PC, Gerlt JA. 1998. Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Biochemistry 37:14369–14375. [CrossRef]
139. Blumenthal HJ. 1966. D-Glucarate dehydrase. Methods Enzymol 9:660–665. [CrossRef]
140. Blumenthal HJ, Epson T. 1966. D-Galactarate dehydrase. Methods Enzymol 9:665–669. [CrossRef]
141. Robertson AM, Sullivan PA, Jones-Mortimer MC, Kornberg HL. 1980. Two genes affecting glucarate utilization in Escherichia coli K12. J Gen Microbiol 117:377–382.
142. Gulick AM, Hubbard BK, Gerlt JA, Rayment I. 2000. Evolution of enzymatic activities in the enolase superfamily: crystallographic and mutagenesis studies of the reaction catalyzed by D-glucarate dehydratase from Escherichia coli. Biochemistry 39:4590–602. [CrossRef]
143. Gulick AM, Hubbard BK, Gerlt JA, Rayment I. 2001. Evolution of enzymatic activities in the enolase superfamily: identification of the general acid catalyst in the active site of D-glucarate dehydratase from Escherichia coli. Biochemistry 40:10054–10062. [CrossRef]
144. Blumenthal HJ, Epson T. 1964. Asymmetric dehydration of galactarate by bacterial galactarate dehydratase. Biochem Biophys Res Commun 17:282–287. [CrossRef]
145. Fish DC, Blumenthal HJ. 1966. 2-Keto-3-deoxy-D-glucarate aldolase. Methods Enzymol 9:529–534. [CrossRef]
146. Blackwell NC, Cullis PM, Cooper RA, Izard T. 1999. Rhombohedral crystals of 2-dehydro-3-deoxygalactarate aldolase from Escherichia coli. Acta Crystallogr D55:1368–1369.[PubMed]
147. Izard T, Blackwell NC. 2000. Crystal structures of the metal-dependent 2-dehydro-3-deoxy-galactarate aldolase suggest a novel reaction mechanism. EMBO J 19:3849–3856. [CrossRef]
148. Monterrubio R, Baldoma L, Obradors N, Aguilar J, Badia J. 2000. A common regulator for the operons encoding the enzymes involved in D-galactarate, D-glucarate, and D-glycerate utilization in Escherichia coli. J Bacteriol 182:2672–2674. [CrossRef]
ecosalplus.3.4.2.citations
ecosalplus/1/1
content/journal/ecosalplus/10.1128/ecosalplus.3.4.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.4.2
2004-07-06
2017-06-23

Abstract:

Following elucidation of the regulation of the lactose operon in , studies on the metabolism of many sugars were initiated in the early 1960s. The catabolic pathways of D-gluconate and of the two hexuronates, D-glucuronate and D-galacturonate, were investigated. The post genomic era has renewed interest in the study of these sugar acids and allowed the complete characterization of the D-gluconate pathway and the discovery of the catabolic pathways for L-idonate, D-glucarate, galactarate, and ketogluconates. Among the various sugar acids that are utilized as sole carbon and energy sources to support growth of , galacturonate, glucuronate, and gluconate were shown to play an important role in the colonization of the mammalian large intestine. In the case of sugar acid degradation, the regulators often mediate negative control and are inactivated by interaction with a specific inducer, which is either the substrate or an intermediate of the catabolism. These regulators coordinate the synthesis of all the proteins involved in the same pathway and, in some cases, exert crosspathway control between related catabolic pathways. This is particularly well illustrated in the case of hexuronide and hexuronate catabolism. The structural genes encoding the different steps of hexuronate catabolism were identified by analysis of numerous mutants affected for growth with galacturonate or glucuronate. is able to use the diacid sugars D-glucarate and galactarate (an achiral compound) as sole carbon source for growth. Pyruvate and 2-phosphoglycerate are the final products of the D-glucarate/galactarate catabolism.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Citation: Mandrand-Berthelot M, Condemine G, Hugouvieux-Cotte-Pattat N. 2004. Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.4.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Numbers refer to the position (min) of genes on the chromosome. The direction of the genes (represented by large arrows) shows their orientation on the bacterial chromosome (either clockwise or counterclockwise). The thin arrows represent the transcriptional effects of the regulators, with plain lines and broken lines to indicate primary and secondary levels of control, respectively. The + and – signs indicate positive and negative controls, respectively.

Citation: Mandrand-Berthelot M, Condemine G, Hugouvieux-Cotte-Pattat N. 2004. Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.4.2
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Metabolic genes and enzymes involved in sugar acid pathways of E. coli

Citation: Mandrand-Berthelot M, Condemine G, Hugouvieux-Cotte-Pattat N. 2004. Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.4.2
Generic image for table
Table 2

Transport systems involved in sugar acid pathways of E. coli

Citation: Mandrand-Berthelot M, Condemine G, Hugouvieux-Cotte-Pattat N. 2004. Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.4.2
Generic image for table
Table 3

Regulatory genes controlling sugar acid metabolism in E. coli

Citation: Mandrand-Berthelot M, Condemine G, Hugouvieux-Cotte-Pattat N. 2004. Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.4.2
Generic image for table
Table 4

Biochemical properties of the proteins involved in hexuronate catabolism

Citation: Mandrand-Berthelot M, Condemine G, Hugouvieux-Cotte-Pattat N. 2004. Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.4.2

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error