1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Two-Carbon Compounds and Fatty Acids as Carbon Sources

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: David P. Clark1, and John E. Cronan2
  • Editor: Valley Stewart3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901; 2: Departments of Microbiology and Biochemistry, University of Illinois, B103 CLSL, 601 S. Goodwin Avenue, Urbana, Illinois 61801; 3: University of California, Davis, Davis, CA
  • Received 05 April 2004 Accepted 21 June 2005 Published 07 October 2005
  • Address correspondence to David P. Clark clark@micro.siu.edu
image of Two-Carbon Compounds and Fatty Acids as Carbon Sources
    Preview this reference work article:
    Zoom in
    Zoomout

    Two-Carbon Compounds and Fatty Acids as Carbon Sources, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/2/3_4_4_module-1.gif /docserver/preview/fulltext/ecosalplus/1/2/3_4_4_module-2.gif
  • Abstract:

    This review concerns the uptake and degradation of those molecules that are wholly or largely converted to acetyl-coenzyme A (CoA) in the first stage of metabolism in and . These include acetate, acetoacetate, butyrate and longer fatty acids in wild type cells plus ethanol and some longer alcohols in certain mutant strains. Entering metabolism as acetyl-CoA has two important general consequences. First, generation of energy from acetyl-CoA requires operation of both the citric acid cycle and the respiratory chain to oxidize the NADH produced. Hence, acetyl-CoA serves as an energy source only during aerobic growth or during anaerobic respiration with such alternative electron acceptors as nitrate or trimethylamine oxide. In the absence of a suitable oxidant, acetyl-CoA is converted to a mixture of acetic acid and ethanol by the pathways of anaerobic fermentation. Catabolism of acetyl-CoA via the citric acid cycle releases both carbon atoms of the acetyl moiety as carbon dioxide and growth on these substrates as sole carbon source therefore requires the operation of the glyoxylate bypass to generate cell material. The pair of related two-carbon compounds, glycolate and glyoxylate are also discussed. However, despite having two carbons, these are metabolized via malate and glycerate, not via acetyl-CoA. In addition, mutants of capable of growth on ethylene glycol metabolize it via the glycolate pathway, rather than via acetyl- CoA. Propionate metabolism is also discussed because in many respects its pathway is analogous to that of acetate. The transcriptional regulation of these pathways is discussed in detail.

  • Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4

Key Concept Ranking

Unsaturated Fatty Acids
0.40049776
Branched-Chain Amino Acid Biosynthesis
0.37879932
Outer Membrane Proteins
0.34486088
Amino Acid Synthesis
0.34346327
0.40049776

References

1. Brown TD, Jones-Mortimer MC, Kornberg HL. 1977. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol 102:327–336.[PubMed]
2. LeVine SM, Ardeshir F, Ames GF. 1980. Isolation and Characterization of acetate kinase and phosphotransacetylase mutants of Escherichia coli and Salmonella typhimurium. J Bacteriol 143:1081–1085.[PubMed]
3. Clark D, Cronan JE, Jr. 1980. Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol 141:177–183.[PubMed]
4. Clark DP. 1992. Evolution of bacterial alcohol metabolism, p 105–114. In Mortlock RP (ed), The Evolution of Metabolic Function. CRC Press, Boca Raton, Fla.
5. Fraenkel DG. 1992. Genetics and intermediary metabolism. Annu Rev Genet 26:159–177. [PubMed][CrossRef]
6. Kornberg HL. 1966. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99:1–11.[PubMed]
7. Vanderwinkel E, De Vlieghere M. 1968. Physiologie et génétique de l’isocitritase et des malate synthases chez Escherichia col. Eur J Biochem 5:81–90. [PubMed][CrossRef]
8. Gui L, Sunnarborg A, LaPorte DC. 1996. Regulated expression of a repressor protein: FadR activates iclR. J Bacteriol 178:4704–4709.[PubMed]
9. Gimenez R, Nunez MF, Badia J, Aguilar J, Baldoma L. 2003. The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185:6448–6455. [PubMed][CrossRef]
10. Kwan HS, Chui HW, Wong KK. 1988. ack:Mu d1-8 (Apr lac) operon fusions of Salmonella typhimurium LT2. Mol Gen Genet 211:183–185. [PubMed][CrossRef]
11. Brown TD, Pereira CR, Stormer FC. 1972. Studies of the acetate kinase-phosphotransacetylase and the butanediol-forming systems in Aerobacter aerogenes. J Bacteriol 112:1106–1111.[PubMed]
12. Kumari S, Tishel R, Eisenbach M, Wolfe AJ. 1995. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 177:2878–2886.[PubMed]
13. Brock M, Maerker C, Schutz A, Volker U, Buckel W. 2002. Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase. Eur J Biochem 269:6184–6194. [PubMed][CrossRef]
14. Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. 2003. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163:545–555.[PubMed]
15. Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, Wolfe AJ. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:4173–4179. [PubMed][CrossRef]
16. Kumari S, Simel EJ, Wolfe AJ. 2000. Sigma(70) is the principal sigma factor responsible for transcription of acs, which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:551–554. [PubMed][CrossRef]
17. Shin S, Song SG, Lee DS, Pan JG, Park C. 1997. Involvement of iclR and rpoS in the induction of acs, the gene for acetyl coenzyme A synthetase of Escherichia coli K-12. FEMS Microbiol Lett 146:103–108. [PubMed][CrossRef]
18. Beatty CM, Browning DF, Busby SJ, Wolfe AJ. 2003. Cyclic AMP receptor protein-dependent activation of the Escherichia coli acsP2 promoter by a synergistic class III mechanism. J Bacteriol 185:5148–5157. [PubMed][CrossRef]
19. Browning DF, Beatty CM, Sanstad EA, Gunn KE, Busby SJ, Wolfe AJ. 2004. Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol 51:241–254. [PubMed][CrossRef]
20. Browning DF, Beatty CM, Wolfe AJ, Cole JA, Busby SJ. 2002. Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Mol Microbiol 43:687–701. [PubMed][CrossRef]
21. Wei B, Shin S, LaPorte D, Wolfe AJ, Romeo T. 2000. Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J Bacteriol 182:1632–1640. [PubMed][CrossRef]
22. Starai VJ, Escalante-Semerena JC. 2004. Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci 61:2020–2030. [PubMed][CrossRef]
23. Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. 2004. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase. Curr Opin Microbiol 7:115–119. [PubMed][CrossRef]
24. Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL. 2001. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40:15456–15463. [PubMed][CrossRef]
25. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392. [PubMed][CrossRef]
26. Starai VJ, Escalante-Semerena JC. 2004. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J Mol Biol 340:1005–1012. [PubMed][CrossRef]
27. Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC. 2003. The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42:2866–2873. [PubMed][CrossRef]
28. Barak R, Welch M, Yanovsky A, Oosawa K, Eisenbach M. 1992. Acetyladenylate or its derivative acetylates the chemotaxis protein CheY in vitro and increases its activity at the flagellar switch. Biochemistry 31:10099–10107.[PubMed][CrossRef]
29. Barak R, Eisenbach M. 2001. Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis. Mol Microbiol 40:731–743. [PubMed][CrossRef]
30. Barak R, Eisenbach M. 2004. Co-regulation of acetylation and phosphorylation of CheY, a response regulator in chemotaxis of Escherichia coli. J Mol Biol 342:375–381. [PubMed][CrossRef]
31. Barak R, Prasad K, Shainskaya A, Wolfe AJ, Eisenbach M. 2004. Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. J Mol Biol 342:383–401. [PubMed][CrossRef]
32. Farmer WR, Liao JC. 1997. Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63:3205–3210.[PubMed]
33. Noronha SB, Yeh HJ, Spande TF, Shiloach J. 2000. Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using (13)C-NMR/MS. Biotechnol Bioeng 68:316–327. [PubMed][CrossRef]
34. Phue JN, Shiloach J. 2004. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109:21–30. [PubMed][CrossRef]
35. Marshall E. 2004. Getting the noise out of gene arrays. Science 306:630–631. [PubMed][CrossRef]
36. Oh MK, Liao JC. 2000. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286. [PubMed][CrossRef]
37. Oh MK, Rohlin L, Kao KC, Liao JC. 2002. Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 277:13175–13183. [PubMed][CrossRef]
38. Tseng GC, Oh MK, Rohlin L, Liao JC, Wong WH. 2001. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res 29:2549–2557. [PubMed][CrossRef]
39. Polen T, Rittmann D, Wendisch VF, Sahm H. 2003. DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774. [PubMed][CrossRef]
40. Lesley JA, Waldburger CD. 2003. Repression of Escherichia coli PhoP-PhoQ signaling by acetate reveals a regulatory role for acetyl coenzyme A. J Bacteriol 185:2563–2570. [PubMed][CrossRef]
41. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E. 2004. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619. [PubMed][CrossRef]
42. Zhu G, Golding GB, Dean AM. 2005. The selective cause of an ancient adaptation. Science 307:1279–1282. [CrossRef]
43. Dailey FE, Cronan JE, Jr. 1986. Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source. J Bacteriol 165:453–460.[PubMed]
44. Dailey FE, Cronan JE, Jr, Maloy SR. 1987. Acetohydroxy acid synthase I is required for isoleucine and valine biosynthesis by Salmonella typhimurium LT2 during growth on acetate or long-chain fatty acids. J Bacteriol 169:917–919.[PubMed]
45. Barak Z, Chipman DM, Gollop N. 1987. Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. J Bacteriol 169:3750–3756.[PubMed]
46. Gollop N, Damri B, Chipman DM, Barak Z. 1990. Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms. J Bacteriol 172:3444–3449.[PubMed]
47. Epelbaum S, LaRossa RA, VanDyk TK, Elkayam T, Chipman DM, Barak ZW. 1998. Branched-chain amino acid biosynthesis in Salmonella typhimurium: a quantitative analysis. J Bacteriol 180:4056–4067.[PubMed]
48. Hong JS, Hunt AG, Masters PS, Lieberman MA. 1979. Requirements of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli. Proc Natl Acad Sci USA 76:1213–1217. [PubMed][CrossRef]
49. Fox DK, Meadow ND, Roseman S. 1986. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J Biol Chem 261:13498–13503.[PubMed]
50. Diaz-Guerra M, Esteban M, Martinez JL. 1997. Growth of Escherichia coli in acetate as a sole carbon source is inhibited by ankyrin-like repeats present in the 2′,5′-linked oligoadenylate-dependent human RNase L enzyme. FEMS Microbiol Lett 149:107–113. [PubMed][CrossRef]
51. Pandey M, Rath PC. 2004. Expression of interferon-inducible recombinant human RNase L causes RNA degradation and inhibition of cell growth in Escherichia coli. Biochem Biophys Res Commun 317:586–597. [PubMed][CrossRef]
52. Nelson K, Wang FS, Boyd EF, Selander RK. 1997. Size and sequence polymorphism in the isocitrate dehydrogenase kinase/phosphatase gene (aceK) and flanking regions in Salmonella enterica and Escherichia coli. Genetics 147:1509–1520.[PubMed]
53. Clermont O, Bonacorsi S, Bingen E. 2004. Characterization of an anonymous molecular marker strongly linked to Escherichia coli strains causing neonatal meningitis. J Clin Microbiol 42:1770–1772.[PubMed][CrossRef]
54. Lorenz MC, Fink GR. 2002. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662. [PubMed][CrossRef]
55. Cunningham PR, Clark DP. 1986. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. Mol Gen Genet 205:487–493. [PubMed][CrossRef]
56. Goodlove PE, Cunningham PR, Parker J, Clark DP. 1989. Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene 85:209–214. [PubMed][CrossRef]
57. Clark DP, Rod ML. 1987. Regulatory mutations that allow the growth of Escherichia coli on butanol as carbon source. J Mol Evol 25:151–158. [PubMed][CrossRef]
58. Kaga N, Umitsuki G, Clark DP, Nagai K, Wachi M. 2002. Extensive overproduction of the AdhE protein by rng mutations depends on mutations in the cra gene or in the Cra-box of the adhE promoter. Biochem Biophys Res Commun 295:92–87. [PubMed][CrossRef]
59. Holland-Staley CA, Lee K, Clark DP, Cunningham PR. 2000. Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid. J Bacteriol 182:6049–6054. [PubMed][CrossRef]
60. Membrillo-Hernandez J, Echave P, Cabiscol E, Tamarit J, Ros J, Lin EC. 2000. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins. J Biol Chem 275:33869–33875. [PubMed][CrossRef]
61. Echave P, Esparza-Ceron MA, Cabiscol E, Tamarit J, Ros J, Membrillo-Hernandez J, Lin EC. 2002. DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci USA 99:4626–4631. [PubMed][CrossRef]
62. Wachi M, Kaga N, Umitsuki G, Clark DP, Nagai K. 2001. A novel RNase G mutant that is defective in degradation of adhE mRNA but proficient in the processing of 16S rRNA precursor. Biochem Biophys Res Commun 289:1301–1306. [PubMed][CrossRef]
63. Gutnick D, Calvo JM, Klopotowski T, Ames BN. 1969. Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J Bacteriol 100:215–219.[PubMed]
64. Quintilla FX, Baldoma L, Badia J, Aguilar J. 1991. Aldehyde dehydrogenase induction by glutamate in Escherichia coli. Role of 2-oxoglutarate. Eur J Biochem 202:1321–1325. [PubMed][CrossRef]
65. Ornston MK, Ornston LN. 1969. Regulation of glyoxylate metabolism in Escherichia coli K12. J Bacteriol 97:1098–1108.
66. Vanderwinkel E, De Vlieghere M, Van de Meersshe J. 1971. Mutation habilitant Escherichia coli a croître sur acides gras moyens. Eur J Biochem 22:115–120. [PubMed][CrossRef]
67. Chang YY, Wang AY, Cronan JE, Jr. 1993. Molecular cloning, DNA sequencing, and biochemical analyses of Escherichia coli glyoxylate carboligase. An enzyme of the acetohydroxy acid synthase-pyruvate oxidase family. J Biol Chem 268:3911–3919.[PubMed]
68. Pellicer MT, Badia J, Aguilar J, Baldoma L. 1996. glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol 178:2051–2059.[PubMed]
69. Pellicer MT, Fernandez C, Badia J, Aguilar J, Lin EC, Baldom L. 1999. Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. J Biol Chem 274:1745–1752. [PubMed][CrossRef]
70. Nunez MF, Kwon O, Wilson TH, Aguilar J, Baldoma L, Lin EC. 2002. Transport of L-lactate, D-lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli. Biochem Biophys Res Commun 290:824–829. [PubMed][CrossRef]
71. Molina I, Pellicer MT, Badia J, Aguilar J, Baldoma L. 1994. Molecular characterization of Escherichia coli malate synthase G. Differentiation with the malate synthase A isoenzyme. Eur J Biochem 224:541–548. [PubMed][CrossRef]
72. Pellicer MT, Felisa Nunez M, Aguilar J, Badia J, Baldoma L. 2003. Role of 2-phosphoglycolate phosphatase of Escherichia coli in metabolism of the 2-phosphoglycolate formed in DNA repair. J Bacteriol 185:5815–5821. [PubMed][CrossRef]
73. Cusa E, Obradors N, Baldoma L, Badia J, Aguilar J. 1999. Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli. J Bacteriol 181:7479–7484.[PubMed]
74. Njau RK, Herndon CA, Hawes JW. 2000. Novel β-hydroxyacid dehydrogenases in Escherichia coli and Haemophilus influenzae. J Biol Chem 275:38780–38786. [PubMed][CrossRef]
75. Ashiuchi M, Misono H. 1999. Biochemical evidence that Escherichia coli hyi (orf b0508, gip) gene encodes hydroxypyruvate isomerase. Biochim Biophys Acta 1435:153–159.[PubMed]
76. Sandigursky M, Franklin WA. 1993. Exonuclease I of Escherichia coli removes phosphoglycolate 3′-end groups from DNA. Radiat Res 135:229–233. [PubMed][CrossRef]
77. Sandigursky M, Franklin WA. 1998. Exonuclease IX of Escherichia coli removes 3′ phosphoglycolate end groups from DNA. Radiat Res 150:609–611. [PubMed][CrossRef]
78. Cromartie TH, Walsh CT. 1976. Escherichia coli glyoxalate carboligase. Properties and reconstitution with 5-deazaFAD and 1,5-dihydrodeazaFADH2. J Biol Chem 251:329–333.[PubMed]
79. Chang YY, Cronan JE, Jr. 1988. Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. J Bacteriol 170:3937–3945.[PubMed]
80. Tittmann K, Schroder K, Golbik R, McCourt J, Kaplun A, Duggleby RG, Barak Z, Chipman DM, Hubner G. 2004. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (α-hydroxyethyl)thiamin diphosphate in a “nonredox” flavoenzyme. Biochemistry 43:8652–8661. [PubMed][CrossRef]
81. Hubbard BK, Koch M, Palmer DR, Babbitt PC, Gerlt JA. 1998. Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Biochemistry 37:14369–14375. [PubMed][CrossRef]
82. Monterrubio R, Baldoma L, Obradors N, Aguilar J, Badia J. 2000. A common regulator for the operons encoding the enzymes involved in D-galactarate, D-glucarate, and D-glycerate utilization in Escherichia coli. J Bacteriol 182:2672–2674. [PubMed][CrossRef]
83. Blumenthal HJ, Fish DC. 1963. Bacterial conversion of D-glucarate to glycerate and pyruvate. Biochem Biophys Res Commun 11:239–243. [PubMed][CrossRef]
84. Nunez MF, Pellicer MT, Badia J, Aguilar J, Baldoma L. 2001. The gene yghK linked to the glc operon of Escherichia coli encodes a permease for glycolate that is structurally and functionally similar to L-lactate permease. Microbiology 147:1069–1077.[PubMed]
85. Brock M, Darley D, Textor S, Buckel W. 2001. 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans: characterization and comparison of both enzymes. Eur J Biochem 268:3577–3586. [PubMed][CrossRef]
86. Kim Y, Skarina T, Beasley S, Laskowski R, Arrowsmith C, Joachimiak A, Edwards A, Savchenko A. 2002. Crystal structure of Escherichia coli EC1530, a glyoxylate induced protein YgbM. Proteins 48:427–430. [PubMed][CrossRef]
87. Nunez MF, Pellicer MT, Badia J, Aguilar J, Baldoma L. 2001. Biochemical characterization of the 2-ketoacid reductases encoded by ycdW and yiaE genes in Escherichia coli. Biochem J 354:707–715. [PubMed][CrossRef]
88. Yum DY, Lee BY, Hahm DH, Pan JG. 1998. The yiaE gene, located at 80.1 minutes on the Escherichia coli chromosome, encodes a 2-ketoaldonate reductase. J Bacteriol 180:5984–5988.[PubMed]
89. Rintoul MR, Cusa E, Baldoma L, Badia J, Reitzer L, Aguilar J. 2002. Regulation of the Escherichia coli allantoin regulon: coordinated function of the repressor AllR and the activator AllS. J Mol Biol 324:599–610. [PubMed][CrossRef]
90. Boronat A, Caballero E, Aguilar J. 1983. Experimental evolution of a metabolic pathway for ethylene glycol utilization by Escherichia coli. J Bacteriol 153:134–139.[PubMed]
91. Caballero E, Baldoma L, Ros J, Boronat A, Aguilar J. 1983. Identification of lactaldehyde dehydrogenase and glycolaldehyde dehydrogenase as functions of the same protein in Escherichia coli. J Biol Chem 258:7788–7792.[PubMed]
92. Chen YM, Zhu Y, Lin EC. 1987. NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli. J Bacteriol 169:3289–3294.[PubMed]
93. Baldoma L, Aguilar J. 1987. Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. J Biol Chem 262:13991–13996.[PubMed]
94. Allison MJ, Dawson KA, Mayberry WR, Foss JG. 1985. Oxalobacter formigenes gen. nov., sp nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141:1–7. [PubMed][CrossRef]
95. Stewart CS, Duncan SH, Cave DR. 2004. Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiol Lett 230:1–7. [PubMed][CrossRef]
96. Gruez A, Roig-Zamboni V, Grisel S, Salomoni A, Valencia C, Campanacci V, Tegoni M, Cambillau C. 2004. Crystal structure and kinetics identify Escherichia coli YdcW gene product as a medium-chain aldehyde dehydrogenase. J Mol Biol 343:29–41. [PubMed][CrossRef]
97. Textor S, Wendisch VF, De Graaf AA, Muller U, Linder MI, Linder D, Buckel W. 1997. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol 168:428–436. [PubMed][CrossRef]
98. Horswill AR, Escalante-Semerena JC. 1999. Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181:5615–5623.
99. Tsang AW, Horswill AR, Escalante-Semerena JC. 1998. Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J Bacteriol 180:6511–6518.[PubMed]
100. Gerike U, Hough DW, Russell NJ, Dyall-Smith ML, Danson MJ. 1998. Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. Microbiology 144(Pt 4):929–935. [CrossRef]
101. London RE, Allen DL, Gabel SA, DeRose EF. 1999. Carbon-13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli. J Bacteriol 181:3562–3570.[PubMed]
102. Kay WW. 1972. Genetic control of the metabolism of propionate by Escherichia coli K12. Biochim Biophys Acta 264:508–521.[PubMed]
103. Klein K. 1973. Acyl-CoA-Dehydrogenasen und ETF in Escherichia coli: Studien zum Fettsäureabbau. Ph.D. thesis. Universität zu Köln, Cologne, Germany.
104. Klein K, Steinberg R, Fiethen B, Overath P. 1971. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem 19:442–450. [PubMed][CrossRef]
105. Blank L, Green J, Guest JR. 2002. AcnC of Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates. Microbiology 148:133–146.[PubMed]
106. Liu S, Lu Z, Han Y, Melamud E, Dunaway-Mariano D, Herzberg O. 2005. Crystal structures of 2-methylisocitrate lyase in complex with product and with isocitrate inhibitor provide insight into lyase substrate specificity, catalysis and evolution. Biochemistry 44:2949–2962. [PubMed][CrossRef]
107. Palacios S, Starai VJ, Escalante-Semerena JC. 2003. Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol. J Bacteriol 185:2802–2810. [PubMed][CrossRef]
108. Hughes KT, Simons RW, Nunn WD. 1988. Regulation of fatty acid degradation in Escherichia coli: fadR superrepressor mutants are unable to utilize fatty acids as the sole carbon source. J Bacteriol 170:1666–1671.[PubMed]
109. Palacios S, Escalante-Semerena JC. 2004. 2-Methylcitrate-dependent activation of the propionate catabolic operon (prpBCDE) of Salmonella enterica by the PrpR protein. Microbiology 150:3877–3887. [PubMed][CrossRef]
110. Kameda K, Suzuki LK, Imai Y. 1987. Transport of fatty acid is obligatory coupled with H+ entry in spheroplasts of Escherichia coli K12. Biochem Int 14:227–234.[PubMed]
111. Horswill AR, Dudding AR, Escalante-Semerena JC. 2001. Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 276:19094–19101. [PubMed][CrossRef]
112. Nunn WD. 1986. A molecular view of fatty acid catabolism in Escherichia coli. Microbiol Rev 50:179–192.[PubMed]
113. Nunn WD. 1987. Two-carbon compounds and fatty acids as carbon sources, p 285–301. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
114. Overath P, Pauli G, Schairer HU. 1969. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem 7:559–574.[PubMed]
115. Overath P, Raufuss EM. 1967. The induction of the enzymes of fatty acid degradation in Escherichia coli. Biochem Biophys Res Commun 29:28–33. [PubMed][CrossRef]
116. Simons RW, Egan PA, Chute HT, Nunn WD. 1980. Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR. J Bacteriol 142:621–632.[PubMed]
117. Weeks G, Shapiro M, Burns RO, Wakil SJ. 1969. Control of fatty acid metabolism. I. Induction of the enzymes of fatty acid oxidation in Escherichia coli. J Bacteriol 97:827–836.[PubMed]
118. Kameda K, Nunn WD. 1981. Purification and characterization of acyl coenzyme A synthetase from Escherichia coli. J Biol Chem 256:5702–5707.[PubMed]
119. Mangroo D, Gerber GE. 1993. Fatty acid uptake in Escherichia coli: regulation by recruitment of fatty acyl-CoA synthetase to the plasma membrane. Biochem Cell Biol 71:51–56.[PubMed]
120. Morgan-Kiss RM, Cronan JE. 2004. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem 279:37324–37333. [PubMed][CrossRef]
121. Samuel D, Estroumza J, Ailhaud G. 1970. Partial purification and properties of acyl-CoA synthetase of Escherichia coli. Eur J Biochem 12:576–582. [PubMed][CrossRef]
122. Yoo JH, Cheng OH, Gerber GE. 2001. Determination of the native form of FadD, the Escherichia coli fatty acyl-CoA synthetase, and characterization of limited proteolysis by outer membrane protease OmpT. Biochem J 360:699–706. [PubMed][CrossRef]
123. Black PN, DiRusso CC, Metzger AK, Heimert TL. 1992. Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase. J Biol Chem 267:25513–25520.[PubMed]
124. Weimar JD, DiRusso CC, Delio R, Black PN. 2002. Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport. J Biol Chem 277:29369–29376. [PubMed][CrossRef]
125. Campbell JW, Cronan JE, Jr. 2002. The enigmatic Escherichia coli fadE gene is yafH. J Bacteriol 184:3759–3764. [PubMed][CrossRef]
126. Spector MP, DiRusso CC, Pallen MJ, Garcia del Portillo F, Dougan G, Finlay BB. 1999. The medium-/long-chain fatty acyl-CoA dehydrogenase (fadF) gene of Salmonella typhimurium is a phase 1 starvation-stress response (SSR) locus. Microbiology 145(Pt 1):15–31. [CrossRef]
127. Spector MP, DiRusso CC, Pallen MJ, Garcia del Portillo F, Dougan G, Finlay BB. 1999. The medium-/long-chain fatty acyl-CoA dehydrogenase (fadF) gene of Salmonella typhimurium is a phase 1 starvation-stress response (SSR) locus. Microbiology 145:15–31. [PubMed][CrossRef]
128. Binstock JF, Pramanik A, Schulz H. 1977. Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc Natl Acad Sci USA 74:492–495. [PubMed][CrossRef]
129. Binstock JF, Schulz H. 1981. Fatty acid oxidation complex from Escherichia coli. Methods Enzymol 71(Pt C):403–411. [CrossRef]
130. O'Brien WJ, Frerman FE. 1977. Evidence for a complex of three beta-oxidation enzymes in Escherichia coli: induction and localization. J Bacteriol 132:532–340.[PubMed]
131. Pawar S, Schulz H. 1981. The structure of the multienzyme complex of fatty acid oxidation from Escherichia coli. J Biol Chem 256:3894–3899.[PubMed]
132. Pramanik A, Pawar S, Antonian E, Schulz H. 1979. Five different enzymatic activities are associated with the multienzyme complex of fatty acid oxidation from Escherichia coli. J Bacteriol 137:469–473.[PubMed]
133. Yang SY, He XY, Schulz H. 1995. Glutamate 139 of the large alpha-subunit is the catalytic base in the dehydration of both D- and L-3-hydroxyacyl-coenzyme A but not in the isomerization of Δ3, Δ2-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli. Biochemistry 34:6441–6447. [PubMed][CrossRef]
134. Spratt SK, Ginsburgh CL, Nunn WD. 1981. Isolation and genetic characterization of Escherichia coli mutants defective in propionate metabolism. J Bacteriol 146:1166–1169.[PubMed]
135. Yang SY, Bittman R, Schulz H. 1985. Channeling of a ß-oxidation intermediate on the large subunit of the fatty acid oxidation complex from Escherichia coli. J Biol Chem 260:2862–2868.[PubMed]
136. Yang SY, Cuebas D, Schulz H. 1986. 3-Hydroxyacyl-CoA epimerases of rat liver peroxisomes and Escherichia coli function as auxiliary enzymes in the beta-oxidation of polyunsaturated fatty acids. J Biol Chem 261:12238–12243.[PubMed]
137. Smeland TE, Cuebas D, Schulz H. 1991. Epimerization of 3-hydroxy-4-trans-decenoyl coenzyme A by a dehydration/hydration mechanism catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli. J Biol Chem 266:23904–23908.[PubMed]
138. Ren Y, Aguirre J, Ntamack AG, Chu C, Schulz H. 2004. An alternative pathway of oleate ß-oxidation in Escherichia coli involving the hydrolysis of a dead end intermediate by a thioesterase. J Biol Chem 279:11042–11050. [PubMed][CrossRef]
139. You SY, Cosloy S, Schulz H. 1989. Evidence for the essential function of 2,4-dienoyl-coenzyme A reductase in the beta-oxidation of unsaturated fatty acids in vivo. Isolation and characterization of an Escherichia coli mutant with a defective 2,4-dienoyl-coenzyme A reductase. J Biol Chem 264:16489–16495.
140. Hubbard PA, Liang X, Schulz H, Kim JJ. 2003. The crystal structure and reaction mechanism of Escherichia coli 2,4-dienoyl-CoA reductase. J Biol Chem 278:37553–37560. [PubMed][CrossRef]
141. Campbell JW, Morgan-Kiss RM, Cronan JE, Jr. 2003. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol 47:793–805. [PubMed][CrossRef]
142. Iuchi S, Lin ECC. 1988. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA 85:1888–1892. [PubMed][CrossRef]
143. Haller T, Buckel T, Retey J, Gerlt JA. 2000. Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 39:4622–4629. [PubMed][CrossRef]
144. Campbell JW. 2000. Total genomic transcriptional analysis of the fatty acid degradation regulon of Escherichia coli. Ph.D. thesis. University of Illinois at Urbana-Champaign, Urbana, Ill.
145. Snell KD, Feng F, Zhong L, Martin D, Madison LL. 2002. YfcX enables medium-chain-length poly(3-hydroxyalkanoate) formation from fatty acids in recombinant Escherichia coli fadB strains. J Bacteriol 184:5696–5705. [PubMed][CrossRef]
146. van den Berg B, Black PN, Clemons WM, Jr, Rapoport TA. 2004. Crystal structure of the long-chain fatty acid transporter FadL. Science 304:1506–1509. [PubMed][CrossRef]
147. Ginsburgh CL, Black PN, Nunn WD. 1984. Transport of long chain fatty acids in Escherichia coli. Identification of a membrane protein associated with the fadL gene. J Biol Chem 259:8437–8443.[PubMed]
148. Morona R, Henning U. 1986. New locus (ttr) in Escherichia coli K-12 affecting sensitivity to bacteriophage T2 and growth on oleate as the sole carbon source. J Bacteriol 168:534–540.[PubMed]
149. Black PN. 1988. The fadL gene product of Escherichia coli is an outer membrane protein required for uptake of long-chain fatty acids and involved in sensitivity to bacteriophage T2. J Bacteriol 170:2850–2834.[PubMed]
150. Black PN. 1991. Primary sequence of the Escherichia coli fadL gene encoding an outer membrane protein required for long-chain fatty acid transport. J Bacteriol 173:435–442.[PubMed]
151. Kumar GB, Black PN. 1993. Bacterial long-chain fatty acid transport. Identification of amino acid residues within the outer membrane protein FadL required for activity. J Biol Chem 268:15469–15476.[PubMed]
152. Oehring R, Bisswanger H. 1992. Incorporation of the enantiomers of lipoic acid into the pyruvate dehydrogenase complex from Escherichia coli in vivo. Biol Chem Hoppe Seyler 373:333–335.[PubMed]
153. Higashitani A, Nishimura Y, Hara H, Aiba H, Mizuno T, Horiuchi K. 1993. Osmoregulation of the fatty acid receptor gene fadL in Escherichia coli. Mol Gen Genet 240:339–347.[PubMed]
154. Maloy SR, Ginsburgh CL, Simons RW, Nunn WD. 1981. Transport of long and medium chain fatty acids by Escherichia coli K12. J Biol Chem 256:3735–3742.[PubMed]
155. Nunn WD, Simons RW. 1978. Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the fadL gene. Proc Natl Acad Sci USA 75:3377–3381. [PubMed][CrossRef]
156. Schmelter T, Trigatti BL, Gerber GE, Mangroo D. 2004. Biochemical demonstration of the involvement of fatty acyl-CoA synthetase in fatty acid translocation across the plasma membrane. J Biol Chem 279:24163–24170. [PubMed][CrossRef]
157. Hamilton JA, Guo W, Kamp F. 2002. Mechanism of cellular uptake of long-chain fatty acids: do we need cellular proteins? Mol Cell Biochem 239:17–23. [PubMed][CrossRef]
158. Kleinfeld AM. 2000. Lipid phase fatty acid flip-flop, is it fast enough for cellular transport? J Membr Biol 175:79–86. [PubMed][CrossRef]
159. Knoll LJ, Gordon JI. 1993. Use of Escherichia coli strains containing fad mutations plus a triple plasmid expression system to study the import of myristate, its activation by Saccharomyces cerevisiae acyl-CoA synthetase, and its utilization by S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J Biol Chem 268:4281–4290.[PubMed]
160. Kameda K. 1986. Partial purification and characterization of fatty acid binding protein(s) in Escherichia coli membranes and reconstitution of fatty acid transport system. Biochem Int 13:343–350.
161. Jackowski S, Rock CO. 1986. Transfer of fatty acids from the 1-position of phosphatidylethanolamine to the major outer membrane lipoprotein of Escherichia coli. J Biol Chem 261:11328–11333.[PubMed]
162. Rock CO, Jackowski S. 1985. Pathways for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli. J Biol Chem 260:12720–12724.[PubMed]
163. Fulda M, Heinz E, Wolter FP. 1994. The fadD gene of Escherichia coli K12 is located close to rnd at 39.6 min of the chromosomal map and is a new member of the AMP-binding protein family. Mol Gen Genet 242:241–249. [PubMed][CrossRef]
164. Pauli G, Overath P. 1972. ato Operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. Eur J Biochem 29:553–562. [PubMed][CrossRef]
165. Frerman FE. 1973. The role of acetyl coenzyme A: butyrate coenzyme A in the transferase uptake of butyrate by isolated membrane vesicles of Escherichia coli. Arch Biochem Biophys 159:444–452. [PubMed][CrossRef]
166. Frerman FE, Bennett W. 1973. Studies on the uptake of fatty acids by Escherichia coli. Arch Biochem Biophys 159:434–443. [PubMed][CrossRef]
167. Sramek SJ, Frerman FE. 1975. Escherichia coli coenzyme A-transferase: kinetics, catalytic pathway and structure. Arch Biochem Biophys 171:27–35. [PubMed][CrossRef]
168. Sramek SJ, Frerman FE. 1975. Purification and properties of Escherichia coli coenzyme A-transferase. Arch Biochem Biophys 171:14–26. [PubMed][CrossRef]
169. Frerman FE, Duncombe GR. 1979. Studies on the subunits of Escherichia coli coenzyme A transferase. Reconstitution of an active enzyme. Biochim Biophys Acta 580:289–297.[PubMed]
170. Duncombe GR, Frerman FE. 1976. Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli. Arch Biochem Biophys 176:159–170. [PubMed][CrossRef]
171. Clark DP. 1981. Regulation of fatty acid degradation in Escherichia coli analysis by operon fusion. J Bacteriol 148:521–526.[PubMed]
172. Jenkins LS, Nunn WD. 1987. Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system. J Bacteriol 169:42–52.[PubMed]
173. Jenkins LS, Nunn WD. 1987. Regulation of the ato operon by the atoC gene in Escherichia coli. J Bacteriol 169:2096–2102.[PubMed]
174. Sramek SJ, Frerman FE. 1977. Steady state kinetic mechanism of the Escherichia coli coenzyme A transferase. Arch Biochem Biophys 181:178–184. [PubMed][CrossRef]
175. Sato S, Imamura S, Ozeki Y, Kawaguchi A. 1992. Induction of enzymes involved in fatty acid ß-oxidation in Pseudomonas fragi B-0771 cells grown in media supplemented with fatty acid. J Biochem (Tokyo) 111:16–19.[PubMed]
176. Cronan JE Jr, Subrahmanyam S. 1998. FadR, transcriptional co-ordination of metabolic expediency. Mol Microbiol 29:937–943. [PubMed][CrossRef]
177. Pauli G, Ehring R, Overath P. 1974. Fatty acid degradation in Escherichia coli: requirement of cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein for enzyme synthesis. J Bacteriol 117:1178–1183.[PubMed]
178. DiRusso CC, Black PN. 1999. Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process. Mol Cell Biochem 192:41–52. [PubMed][CrossRef]
179. Henry MF, Cronan JE, Jr. 1992. A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell 70:671–679. [PubMed][CrossRef]
180. Maloy SR, Nunn WD. 1981. Role of gene fadR in Escherichia coli acetate metabolism. J Bacteriol 148:83–90.[PubMed]
181. Campbell JW, Cronan JE, Jr. 2001. Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J Bacteriol 183:5982–5990. [PubMed][CrossRef]
182. Simons RW, Hughes KT, Nunn WD. 1980. Regulation of fatty acid degradation in Escherichia coli: dominance studies with strains merodiploid in gene fadR. J Bacteriol 143:726–730.[PubMed]
183. DiRusso CC, Nunn WD. 1985. Cloning and characterization of a gene (fadR) involved in regulation of fatty acid metabolism in Escherichia coli. J Bacteriol 161:583–588.[PubMed]
184. DiRusso CC, Heimert TL, Metzger AK. 1992. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem 267:8685–8691.[PubMed]
185. DiRusso CC, Metzger AK, Heimert TL. 1993. Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR. Mol Microbiol 7:311–322. [PubMed][CrossRef]
186. Cronan JE, Jr. 1997. In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor. J Bacteriol 179:1819–1823.[PubMed]
187. Xu Y, Heath RJ, Li Z, Rock CO, White SW. 2001. The FadR.DNA complex. Transcriptional control of fatty acid metabolism in Escherichia coli. J Biol Chem 276:17373–17379. [PubMed][CrossRef]
188. van Aalten DM, DiRusso CC, Knudsen J. 2001. The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. EMBO J 20:2041–2050. [PubMed][CrossRef]
189. van Aalten DM, DiRusso CC, Knudsen J, Wierenga RK. 2000. Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. EMBO J 19:5167–5177. [PubMed][CrossRef]
ecosalplus.3.4.4.citations
ecosalplus/1/2
content/journal/ecosalplus/10.1128/ecosalplus.3.4.4
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.4.4
2005-10-07
2017-11-22

Abstract:

This review concerns the uptake and degradation of those molecules that are wholly or largely converted to acetyl-coenzyme A (CoA) in the first stage of metabolism in and . These include acetate, acetoacetate, butyrate and longer fatty acids in wild type cells plus ethanol and some longer alcohols in certain mutant strains. Entering metabolism as acetyl-CoA has two important general consequences. First, generation of energy from acetyl-CoA requires operation of both the citric acid cycle and the respiratory chain to oxidize the NADH produced. Hence, acetyl-CoA serves as an energy source only during aerobic growth or during anaerobic respiration with such alternative electron acceptors as nitrate or trimethylamine oxide. In the absence of a suitable oxidant, acetyl-CoA is converted to a mixture of acetic acid and ethanol by the pathways of anaerobic fermentation. Catabolism of acetyl-CoA via the citric acid cycle releases both carbon atoms of the acetyl moiety as carbon dioxide and growth on these substrates as sole carbon source therefore requires the operation of the glyoxylate bypass to generate cell material. The pair of related two-carbon compounds, glycolate and glyoxylate are also discussed. However, despite having two carbons, these are metabolized via malate and glycerate, not via acetyl-CoA. In addition, mutants of capable of growth on ethylene glycol metabolize it via the glycolate pathway, rather than via acetyl- CoA. Propionate metabolism is also discussed because in many respects its pathway is analogous to that of acetate. The transcriptional regulation of these pathways is discussed in detail.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The steps are catalyzed by: (1) glycolate oxidase; (2) glyoxylate carboligase; (3) tartronic semialdehyde dehydrogenase; (4) glycerate kinase; (5) malate synthase G.

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Homologues of FadA and FadB called FadJ and FadI, respectively, also catalyze the reactions targeted at the β-carbon atom and are responsible for a minor amount of fatty acid degradation. A second acyl-CoA synthetase FadK is induced under anaerobic growth conditions.

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

It seems likely that the operon encodes a similar enzyme complex.

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Acyl-ACP synthetase provides a minor pathway for the direct incorporation of fatty acids into phospholipid. For simplicity, the peptidoglycan layer is shown to be in contact only with the outer membrane, although it is also in contact with the inner membrane.

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Genes of glycolate and glyoxylate metabolism

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Generic image for table
Table 2

Genes of glycolate and glyoxylate metabolism

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Generic image for table
Table 3

Genes of propionate metabolism

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4
Generic image for table
Table 4

Gene-protein relationships in fatty acid oxidation

Citation: Clark D, Cronan J. 2005. Two-Carbon Compounds and Fatty Acids as Carbon Sources, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.4

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error