1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Catabolism of Amino Acids and Related Compounds

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: Larry Reitzer1
  • Editor: Valley Stewart2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75083-0688; 2: University of California, Davis, Davis, CA
  • Received 11 January 2005 Accepted 24 March 2005 Published 25 July 2005
  • Address correspondence to Larry Reitzer reitzer@utdallas.edu
image of Catabolism of Amino Acids and Related Compounds
    Preview this reference work article:
    Zoom in
    Zoomout

    Catabolism of Amino Acids and Related Compounds, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/2/3_4_7_module-1.gif /docserver/preview/fulltext/ecosalplus/1/2/3_4_7_module-2.gif
  • Abstract:

    This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers , serovar Typhimurium, and species. The latter is included because the pathways in species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. , serovar Typhimurium, and can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.

  • Citation: Reitzer L. 2005. Catabolism of Amino Acids and Related Compounds, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.4.7

Key Concept Ranking

Aromatic Amino Acids
1.4485681
Amino Acids
0.94642365
Proteins
0.6226795
Nitrogen Sources
0.5127614
Transcription Start Site
0.5123314
Amino Acid Decarboxylase
0.5081605
1.4485681

References

1. Botsford JL, Demoss RD. 1972. Escherichia coli tryptophanase in the enteric environment. J Bacteriol 109:74–80. [PubMed]
2. Hahn DR, Maloy SR. 1986. Regulation of the put operon in Salmonella typhimurium: characterization of promoter and operator mutations. Genetics 114:687–703. [PubMed]
3. Fuchs G. 1999. Biosynthesis of building blocks, p 110–160. In Lengeler JW, Drews G, and Schlegel HG (ed), Biology of the Prokaryotes. Blackwell Science, New York, N.Y.
4. Neijssel OM, Teixeira de Mattos MJ, Tempest DW. 1996. Growth yield and energy distribution, p 1683–1692. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D.C.
5. Ikeda TP, Shauger AE, Kustu S. 1996. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J Mol Biol 259:589–607. [PubMed][CrossRef]
6. Reitzer L. 2003. Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155–176. [PubMed][CrossRef]
7. Lind RM, Sukhodolets VV, Smirnov YU. 1973. Mutations affecting deamination and transport of cytosine in Escherichia coli. Genetika 9:116–121.
8. Muse WB, Rosario CJ, Bender RA. 2003. Nitrogen regulation of the codBA (cytosine deaminase) operon from Escherichia coli by the nitrogen assimilation control protein, NAC. J Bacteriol 185:2920–2926. [PubMed][CrossRef]
9. Soupene E, He L, Yan D, Kustu S. 1998. Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci USA 95:7030–7034. [PubMed][CrossRef]
10. Soupene E, Lee H, Kustu S. 2002. Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc Natl Acad Sci USA 99:3926–3931. [PubMed][CrossRef]
11. Schellenberg GD, Furlong CE. 1977. Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coli. J Biol Chem 252:9055–9064. [PubMed]
12. Masters PS, Hong JS. 1981. Genetics of the glutamine transport system in Escherichia coli. J Bacteriol 147:805–819. [PubMed]
13. Weiner JH, Heppel LA. 1971. A binding protein for L-glutamine and its relation to active transport in Esherichia coli. J Biol Chem 246:6933–6941.
14. Kustu SG, McFarland NC, Hui SP, Esmon B, Ames GF. 1979. Nitrogen control of Salmonella typhimurium: co-regulation of synthesis of glutamine synthetase and amino acid transport systems. J Bacteriol 138:218–234. [PubMed]
15. Hiles ID, Higgins CF. 1986. Peptide uptake by Salmonella typhimurium. The periplasmic oligopeptide-binding protein. Eur J Biochem 158:561–567. [PubMed][CrossRef]
16. Urbanowski ML, Stauffer LT, Stauffer GV. 2000. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 37:856–868. [PubMed][CrossRef]
17. Kashiwagi K, Tsuhako MH, Sakata K, Saisho T, Igarashi A, da Costa SO, Igarashi K. 1998. Relationship between spontaneous aminoglycoside resistance in Escherichia coli and a decrease in oligopeptide binding protein. J Bacteriol 180:5484–5488. [PubMed]
18. Lessard IA, Walsh CT. 1999. VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Proc Natl Acad Sci USA 96:11028–11032. [PubMed][CrossRef]
19. Kahane S, Levitz R, Halpern YS. 1978. Specificity and regulation of γ-aminobutyrate transport in Escherichia coli. J Bacteriol 135:295–299. [PubMed]
20. Walshaw DL, Poole PS. 1996. The general L-amino acid permease of Rhizobium leguminosarum is an ABC uptake system that also influences efflux of solutes. Mol Microbiol 21:1239–1252. [PubMed][CrossRef]
21. Cosloy SD. 1973. D-Serine transport system in Escherichia coli K-12. J Bacteriol 114:679–684. [PubMed]
22. Robbins JC, Oxender DL. 1973. Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J Bacteriol 116:12–18. [PubMed]
23. Wargel RJ, Shadur CA, Neuhaus FC. 1971. Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine. J Bacteriol 105:1028–1035. [PubMed]
24. Ernsting BR, Atkinson MR, Ninfa AJ, Matthews RG. 1992. Characterization of the regulon controlled by the leucine-responsive regulatory protein in Escherichia coli. J Bacteriol 174:1109–1118. [PubMed]
25. Nagatani H, Shimizu M, Valentine RC. 1971. The mechanism of ammonia assimilation in nitrogen fixing bacteria. Arch Mikrobiol 79:164–175. [PubMed][CrossRef]
26. Pahel G, Zelenetz AD, Tyler BM. 1978. gltB gene and regulation of nitrogen metabolism by glutamine synthetase in Escherichia coli. J Bacteriol 133:139–148. [PubMed]
27. Arfin SM, Long AD, Ito ET, Tolleri L, Riehle MM, Paegle ES, Hatfield GW. 2000. Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J Biol Chem 275:29672–29684. [PubMed][CrossRef]
28. Paul L, Blumenthal RM, Matthews RG. 2001. Activation from a distance: roles of Lrp and integration host factor in transcriptional activation of gltBDF. J Bacteriol 183:3910–3918. [PubMed][CrossRef]
29. Goss TJ, Perez-Matos A, Bender RA. 2001. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. J Bacteriol 183:6607–6619. [PubMed][CrossRef]
30. Yan D, Ikeda TP, Shauger AE, Kustu S. 1996. Glutamate is required to maintain the steady-state potassium pool in Salmonella typhimurium. Proc Natl Acad Sci USA 93:6527–6531. [PubMed][CrossRef]
31. Castano I, Bastarrachea F, Covarrubias AA. 1988. gltBDF operon of Escherichia coli. J Bacteriol 170:821–827. [PubMed]
32. Castano I, Flores N, Valle F, Covarrubias AA, Bolivar F. 1992. gltF, a member of the gltBDF operon of Escherichia coli, is involved in nitrogen-regulated gene expression. Mol Microbiol 6:2733–2741. [PubMed][CrossRef]
33. Grassl G, Bufe B, Muller B, Rosel M, Kleiner D. 1999. Characterization of the gltF gene product of Escherichia coli. FEMS Microbiol Lett 179:79–84. [PubMed][CrossRef]
34. Reitzer LJ, Magasanik B. 1982. Asparagine synthetases of Klebsiella aerogenes: properties and regulation of synthesis. J Bacteriol 151:1299–1313. [PubMed]
35. Broach J, Neumann C, Kustu S. 1976. Mutant strains (nit) of Salmonella typhimurium with a pleiotropic defect in nitrogen metabolism. J Bacteriol 128:86–98. [PubMed]
36. Schneider BL, Reitzer LJ. 1998. Salmonella typhimurium nit is nadE: defective nitrogen utilization and ammonia-dependent NAD synthetase. J Bacteriol 180:4739–4741. [PubMed]
37. Mergeay M, Gigot D, Beckmann J, Glansdorff N, Pierard A. 1974. Physiology and genetics of carbamoylphosphate synthesis in Escherichia coli K12. Mol Gen Genet 133:299–316. [PubMed][CrossRef]
38. Applebaum DM, Dunlap JC, Morris DR. 1977. Comparison of the biosynthetic and biodegradative ornithine decarboxylases of Escherichia coli. Biochemistry 16:1580–1584. [PubMed][CrossRef]
39. Tabor H, Tabor CW. 1969. Formation of 1,4-diaminobutane and of spermidine by an ornithine auxotroph of Escherichia coli grown on limiting ornithine or arginine. J Biol Chem 244:2286–2292. [PubMed]
40. Holtta E, Janne J, Pispa J. 1972. Ornithine decarboxylase from Escherichia coli: stimulation of the enzyme activity by nucleotides. Biochem Biophys Res Commun 47:1165–1171. [PubMed][CrossRef]
41. Holtta E, Janne J, Pispa J. 1974. The regulation of polyamine synthesis during the stringent control in Escherichia coli. Biochem Biophys Res Commun 59:1104–1111. [PubMed][CrossRef]
42. Sakai TT, Cohen SS. 1976. Regulation of ornithine decarboxylase activity by guanine nucleotides: in vivo test in potassium-depleted Escherichia coli. Proc Natl Acad Sci USA 73:3502–3505. [PubMed][CrossRef]
43. Anagnostopoulos CG, Kyriakidis DA. 1996. Regulation of the Escherichia coli biosynthetic ornithine decarboxylase activity by phosphorylation and nucleotides. Biochim Biophys Acta 1297:228–234. [PubMed]
44. Lioliou EE, Kyriakidis DA. 2004. The role of bacterial antizyme: From an inhibitory protein to AtoC transcriptional regulator. Microb Cell Fact 3:8. [CrossRef]
45. Canellakis ES, Paterakis AA, Huang SC, Panagiotidis CA, Kyriakidis DA. 1993. Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli. Proc Natl Acad Sci USA 90:7129–7133. [PubMed][CrossRef]
46. Ivanov IP, Gesteland RF, Atkins JF. 1998. Does antizyme exist in Escherichia coli? Mol Microbiol 29:1521–1522. [PubMed][CrossRef]
47. Kashiwagi K, Igarashi K. 1987. Nonspecific inhibition of Escherichia coli ornithine decarboxylase by various ribosomal proteins: detection of a new ribosomal protein possessing strong antizyme activity. Biochim Biophys Acta 911:180–190. [PubMed]
48. Wright JM, Boyle SM. 1982. Negative control of ornithine decarboxylase and arginine decarboxylase by adenosine-3′:5′-cyclic monophosphate in Escherichia coli. Mol Gen Genet 186:482–487. [PubMed][CrossRef]
49. Wright JM, Satishchandran C, Boyle SM. 1986. Transcription of the speC (ornithine decarboxylase) gene of Escherichia coli is repressed by cyclic AMP and its receptor protein. Gene 44:37–45. [PubMed][CrossRef]
50. Shaibe E, Metzer E, Halpern YS. 1985. Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol 163:933–937. [PubMed]
51. Wu WH, Morris DR. 1973. Biosynthetic arginine decarboxylase from Escherichia coli. Purification and properties. J Biol Chem 248:1687–1695.[PubMed]
52. Moore RC, Boyle SM. 1991. Cyclic AMP inhibits and putrescine represses expression of the speA gene encoding biosynthetic arginine decarboxylase in Escherichia coli. J Bacteriol 173:3615–3621. [PubMed]
53. Shaibe E, Metzer E, Halpern YS. 1985. Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol 163:938–942. [PubMed]
54. Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S. 2000. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97:14674–14679. [PubMed][CrossRef]
55. Buch JK, Boyle SM. 1985. Biosynthetic arginine decarboxylase in Escherichia coli is synthesized as a precursor and located in the cell envelope. J Bacteriol 163:522–527. [PubMed]
56. Sercarz EE, Gorini L. 1964. Different contribution of exogenous and endogenous arginine to repressor formation. J Mol Biol 78:254–262. [CrossRef]
57. Tabor H, Tabor CW. 1969. Partial separation of two pools of arginine in Escherichia coli: preferential use of exogenous rather than endogenous arginine for the biosynthesis of 1,4-diaminobutane. J Biol Chem 244:6383–6387. [PubMed]
58. Schneider BL, Kiupakis AK, Reitzer LJ. 1998. Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J Bacteriol 180:4278–4286. [PubMed]
59. Wertheimer SJ, Leifer Z. 1983. Putrescine and spermidine sensitivity of lysine decarboxylase in Escherichia coli: evidence for a constitutive enzyme and its mode of regulation. Biochem Biophys Res Commun 114:882–888. [PubMed][CrossRef]
60. Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H. 1997. The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst 72:167–172. [PubMed][CrossRef]
61. Goldemberg SH. 1980. Lysine decarboxylase mutants of Escherichia coli: evidence for two enzyme forms. J Bacteriol 141:1428–1431. [PubMed]
62. Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y. 1997. Characterization of a second lysine decarboxylase isolated from Escherichia coli. J Bacteriol 179:4486–4492. [PubMed]
63. Lemonnier M, Lane D. 1998. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 144:751–760. [PubMed][CrossRef]
64. Tabor CW, Tabor H. 1985. Polyamines in microorganisms. Microbiol Rev 49:81–99. [PubMed]
65. Gale EF. 1940. The production of amines by bacteria. 1. The decarboxylation of amino acids by a strain of Bacterium coli. Biochem J 34:392–413. [PubMed]
66. Melnykovych G, Snell EE. 1958. Nutritional requirements for the formation of arginine decarboxylase in Escherichia coli. J Bacteriol 76:518–523. [PubMed]
67. Blethen SL, Boeker EA, Snell EE. 1968. Arginine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme. J Biol Chem 243:1671–1677. [PubMed]
68. Boeker EA, Fischer EH, Snell EE. 1969. Arginine decarboxylase from Escherichia coli. III. Subunit structure. J Biol Chem 244:5239–5245. [PubMed]
69. Auger EA, Redding KE, Plumb T, Childs LC, Meng SY, Bennett GN. 1989. Construction of lac fusions to the inducible arginine- and lysine decarboxylase genes of Escherichia coli K12. Mol Microbiol 3:609–620. [PubMed][CrossRef]
70. Stim KP, Bennett GN. 1993. Nucleotide sequence of the adi gene, which encodes the biodegradative acid-induced arginine decarboxylase of Escherichia coli. J Bacteriol 175:1221–1234. [PubMed]
71. Rowbury RJ. 1997. Regulatory components, including integration host factor, CysB and H-NS, that influence pH responses in Escherichia coli. Lett Appl Microbiol 24:319–328. [PubMed][CrossRef]
72. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. 1999. Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535. [PubMed]
73. Gong S, Richard H, Foster JW. 2003. YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185:4402–4409. [PubMed][CrossRef]
74. Iyer R, Williams C, Miller C. 2003. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556–6561. [PubMed][CrossRef]
75. Applebaum D, Sabo DL, Fischer EH, Morris DR. 1975. Biodegradative ornithine decarboxylase of Escherichia coli. Purification, properties, and pyridoxal 5′-phosphate binding site. Biochemistry 14:3675–3681. [PubMed][CrossRef]
76. Kashiwagi K, Suzuki T, Suzuki F, Furuchi T, Kobayashi H, Igarashi K. 1991. Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J Biol Chem 266:20922–20927. [PubMed]
77. Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igrashi K. 2004. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 51:1401–1412. [PubMed][CrossRef]
78. Kashiwagi K, Watanabe R, Igarashi K. 1994. Involvement of ribonuclease III in the enhancement of expression of the speF-potE operon encoding inducible ornithine decarboxylase and polyamine transport protein. Biochem Biophys Res Commun 200:591–597. [PubMed][CrossRef]
79. Sabo DL, Boeker EA, Byers B, Waron H, Fischer EH. 1974. Purification and physical properties of inducible Escherichia coli lysine decarboxylase. Biochemistry 13:662–670. [PubMed][CrossRef]
80. Cascieri T, Jr, Mallette MF. 1973. Stimulation of lysine decarboxylase production in Escherichia coli by amino acids and peptides. Appl Microbiol 26:975–981. [PubMed]
81. Popkin PS, Maas WK. 1980. Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase. J Bacteriol 141:485–492. [PubMed]
82. Meng SY, Bennett GN. 1992. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174:2659–2669. [PubMed]
83. Meng SY, Bennett GN. 1992. Regulation of the Escherichia coli cad operon: location of a site required for acid induction. J Bacteriol 174:2670–2678. [PubMed]
84. Watson N, Dunyak DS, Rosey EL, Slonczewski JL, Olson ER. 1992. Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 174:530–540.[PubMed]
85. Neely MN, Dell CL, Olson ER. 1994. Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon. J Bacteriol 176:3278–3285. [PubMed]
86. Neely MN, Olson ER. 1996. Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine. J Bacteriol 178:5522–5528. [PubMed]
87. Dell CL, Neely MN, Olson ER. 1994. Altered pH and lysine signalling mutants of cadC, a gene encoding a membrane-bound transcriptional activator of the Escherichia coli cadBA operon. Mol Microbiol 14:7–16. [PubMed][CrossRef]
88. Steffes C, Ellis J, Wu J, Rosen BP. 1992. The lysP gene encodes the lysine-specific permease. J Bacteriol 174:3242–3249. [PubMed]
89. Shi X, Waasdorp BC, Bennett GN. 1993. Modulation of acid-induced amino acid decarboxylase gene expression by hns in Escherichia coli. J Bacteriol 175:1182–1186. [PubMed]
90. Reams SG, Lee N, Mat-Jan F, Clark DP. 1997. Effect of chelating agents and respiratory inhibitors on regulation of the cadA gene in Escherichia coli. Arch Microbiol 167:209–216. [PubMed][CrossRef]
91. Takayama M, Ohyama T, Igarashi K, Kobayashi H. 1994. Escherichia coli cad operon functions as a supplier of carbon dioxide. Mol Microbiol 11:913–918. [PubMed][CrossRef]
92. Pruss BM, Markovic D, Matsumura P. 1997. The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. J Bacteriol 179:3818–3821. [PubMed]
93. De Biase D, Tramonti A, John RA, Bossa F. 1996. Isolation, overexpression, and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli. Protein Expr Purif 8:430–438. [PubMed][CrossRef]
94. Smith DK, Kassam T, Singh B, Elliott JF. 1992. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174:5820–5826. [PubMed]
95. Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Grutter MG. 2003. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 22:4027–4037. [PubMed][CrossRef]
96. Strausbauch PH, Fischer EH. 1970. Chemical and physical properties of Escherichia coli glutamate decarboxylase. Biochemistry 9:226–233. [PubMed][CrossRef]
97. Tikhonenko AS, Sukhareva BS, Braunstein AE. 1968. Electron-microscopic investigation of Escherichia coli glutamate decarboxylase. Biochim Biophys Acta 167:476–479. [PubMed]
98. To CM. 1971. Quaternary structure of glutamate decarboxylase of Escherichia coli as revealed by electron microscopy. J Mol Biol 59:215–217. [PubMed][CrossRef]
99. Lupo M, Halpern YS. 1970. Comparison of some physicochemical and catalytic properties of glutamate decarboxylase from various Escherichia coli K-12 sources. Biochim Biophys Acta 206:295–304. [PubMed]
100. Najjar VA, Fisher J. 1954. Studies on L-glutamic acid decarboxylase from Escherichia coli. J Biol Chem 206:215–219. [PubMed]
101. Shukuya R, Schwert GW. 1960. Glutamic acid decarboxylase. I. Isolation procedures and properties of the enzyme. J Biol Chem 235:1649–1652. [PubMed]
102. Gerig JT, Kwock L. 1979. Inhibition of bacterial glutamate decarboxylase by tricarboxylic acid cycle intermediates. FEBS Lett 105:155–157. [PubMed][CrossRef]
103. O'Leary MH, Brummund W, Jr. 1974. pH jump studies of glutamate decarboxylase. Evidence for a pH-dependent conformation change. J Biol Chem 249:3737–3745. [PubMed]
104. Jung IL, Kim IG. 2003. Polyamines and glutamate decarboxylase-based acid resistance in Escherichia coli. J Biol Chem 278:22846–22852. [PubMed][CrossRef]
105. Blankenhorn D, Phillips J, Slonczewski JL. 1999. Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216. [PubMed]
106. Bordi C, Theraulaz L, Mejean V, Jourlin-Castelli C. 2003. Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Mol Microbiol 48:211–223. [PubMed][CrossRef]
107. Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL. 2002. pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 184:4246–4258. [PubMed][CrossRef]
108. Yohannes E, Barnhart DM, Slonczewski JL. 2004. pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol 186:192–199. [PubMed][CrossRef]
109. De Biase D, Tramonti A, Bossa F, Visca P. 1999. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198–1211. [PubMed][CrossRef]
110. Hersh BM, Farooq FT, Barstad DN, Blankenhorn DL, Slonczewski JL. 1996. A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178:3978–3981. [PubMed]
111. Masuda N, Church GM. 2003. Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699–712. [PubMed][CrossRef]
112. Iyer R, Iverson TM, Accardi A, Miller C. 2002. A biological role for prokaryotic ClC chloride channels. Nature 419:715–718. [PubMed][CrossRef]
113. Castanie-Cornet MP, Foster JW. 2001. Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147:709–715. [PubMed]
114. Tramonti A, Visca P, De Canio M, Falconi M, De Biase D. 2002. Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184:2603–2613. [PubMed][CrossRef]
115. Tucker DL, Tucker N, Ma Z, Foster JW, Miranda RL, Cohen PS, Conway T. 2003. Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol 185:3190–3201. [PubMed][CrossRef]
116. Hommais F, Krin E, Coppee JY, Lacroix C, Yeramian E, Danchin A, Bertin P. 2004. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150:61–72. [PubMed][CrossRef]
117. Ma Z, Gong S, Richard H, Tucker DL, Conway T, Foster JW. 2003. GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49:1309–1320. [PubMed][CrossRef]
118. Tucker DL, Tucker N, Conway T. 2002. Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184:6551–6558. [PubMed][CrossRef]
119. Ma Z, Richard H, Tucker DL, Conway T, Foster JW. 2002. Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 184:7001–7012. [PubMed][CrossRef]
120. Shin S, Castanie-Cornet MP, Foster JW, Crawford JA, Brinkley C, Kaper JB. 2001. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol Microbiol 41:1133–1150. [PubMed][CrossRef]
121. Masuda N, Church GM. 2002. Escherichia coli gene expression responsive to levels of the response regulator EvgA. J Bacteriol 184:6225–6234. [PubMed][CrossRef]
122. Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P. 2001. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36. [PubMed][CrossRef]
123. Arnold CN, McElhanon J, Lee A, Leonhart R, Siegele DA. 2001. Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol 183:2178–2186. [PubMed][CrossRef]
124. Li H, Park JT. 1999. The periplasmic murein peptide-binding protein MppA is a negative regulator of multiple antibiotic resistance in Escherichia coli. J Bacteriol 181:4842–4847. [PubMed]
125. Spory A, Bosserhoff A, von Rhein C, Goebel W, Ludwig A. 2002. Differential regulation of multiple proteins of Escherichia coli and Salmonella enterica serovar Typhimurium by the transcriptional regulator SlyA. J Bacteriol 184:3549–3559. [PubMed][CrossRef]
126. McFall E, Newman EB. 1996. Amino acids as carbon sources, p 358–379. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
127. Schneider F, Kramer R, Burkovski A. 2004. Identification and characterization of the main β-alanine uptake system in Escherichia coli. Appl Microbiol Biotechnol 24:24.
128. Esaki N, Walsh CT. 1986. Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. Biochemistry 25:3261–3267. [PubMed][CrossRef]
129. Wasserman SA, Daub E, Grisafi P, Botstein D, Walsh CT. 1984. Catabolic alanine racemase from Salmonella typhimurium: DNA sequence, enzyme purification, and characterization. Biochemistry 23:5182–5187. [PubMed][CrossRef]
130. Strych U, Benedik MJ. 2002. Mutant analysis shows that alanine racemases from Pseudomonas aeruginosa and Escherichia coli are dimeric. J Bacteriol 184:4321–4325. [PubMed][CrossRef]
131. Yokoigawa K, Okubo Y, Soda K. 2003. Subunit interaction of monomeric alanine racemases from four Shigella species in catalytic reaction. FEMS Microbiol Lett 221:263–267. [PubMed][CrossRef]
132. Franklin FC, Venables WA. 1976. Biochemical, genetic, and regulatory studies of alanine catabolism in Escherichia coli K12. Mol Gen Genet 149:229–237. [PubMed][CrossRef]
133. Olsiewski PJ, Kaczorowski GJ, Walsh C. 1980. Purification and properties of D-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli B. J Biol Chem 255:4487–4494. [PubMed]
134. Haldar K, Olsiewski PJ, Walsh C, Kaczorowski GJ, Bhaduri A, Kaback HR. 1982. Simultaneous reconstitution of Escherichia coli membrane vesicles with D-lactate and D-amino acid dehydrogenases. Biochemistry 21:4590–4596. [PubMed][CrossRef]
135. Olsiewski PJ, Kaczorowski GJ, Walsh CT, Kaback HR. 1981. Reconstitution of Escherichia coli membrane vesicles with D-amino acid dehydrogenase. Biochemistry 20:6272–6279. [PubMed][CrossRef]
136. Beelen RH, Feldmann AM, Wijsman HJ. 1973. A regulatory gene and a structural gene for alaninase in Escherichia coli. Mol Gen Genet 121:369–374. [PubMed][CrossRef]
137. Franklin FC, Venables WA, Wijsman HJ. 1981. Genetic studies of D-alanine-dehydrogenase-less mutants of Escherichia coli K12. Genet Res 38:197–208. [PubMed][CrossRef]
138. Janes BK, Bender RA. 1998. Alanine catabolism in Klebsiella aerogenes: molecular characterization of the dadAB operon and its regulation by the nitrogen assimilation control protein. J Bacteriol 180:563–570. [PubMed]
139. Reitzer L, Schneider BL. 2001. Metabolic context and possible physiological themes of σ54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65:422–444. [PubMed][CrossRef]
140. Cunin R, Glansdorff N, Pierard A, Stalon V. 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352. [PubMed]
141. Wilson OH, Holden JT. 1969. Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli W. J Biol Chem 244:2737–2742.[PubMed]
142. Friedrich B, Magasanik B. 1978. Utilization of arginine by Klebsiella aerogenes. J Bacteriol 133:680–685. [PubMed]
143. Stalon V. 1985. Evolution of arginine metabolism, p 277–308. In Schleifer KH and E Stackebrandt (ed), Evolution of Prokaryotes. Academic Press, New York, N.Y.
144. Riley M, Glansdorff N. 1983. Cloning the Escherichia coli K-12 argD gene specifying acetylornithine δ-transaminase. Gene 24:335–339. [PubMed][CrossRef]
145. Forsyth GW, Theil EC, Jones EE, Vogel HJ. 1970. Isolation and characterization of arginine-inducible acetylornithine δ-transaminase from Escherichia coli. J Biol Chem 245:5354–5359. [PubMed]
146. Friedrich B, Friedrich CG, Magasanik B. 1978. Catabolic N2-acetylornithine 5-aminotransferase of Klebsiella aerogenes: control of synthesis by induction, catabolite repression, and activation by glutamine synthetase. J Bacteriol 133:686–691. [PubMed]
147. Billhemier JT, Carnevale HN, Leisinger T, Eckhardt T, Jones EE. 1976. Ornithine δ-transaminase activity in Escherichia coli: its identity with acetylornithine δ-transaminase. J Bacteriol 127:1315–1323. [PubMed]
148. Shirai H, Mizuguchi K. 2003. Prediction of the structure and function of AstA and AstB, the first two enzymes of the arginine succinyltransferase pathway of arginine catabolism. FEBS Lett 555:505–510. [PubMed][CrossRef]
149. Tocilj A, Schrag JD, Li Y, Schneider BL, Reitzer L, Matte A, Cygler M. 2005. Crystal structure of N-succinylarginine dihydrolase, AstB, bound to substrate and product, an enzyme of the arginine catabolic pathway of Escherichia coli. J Biol Chem 280:15800–15808. [CrossRef]
150. Fraley CD, Kim JH, McCann MP, Matin A. 1998. The Escherichia coli starvation gene cstC is involved in amino acid catabolism. J Bacteriol 180:4287–4290. [PubMed]
151. Lu CD, Abdelal AT. 1999. Role of ArgR in activation of the ast operon, encoding enzymes of the arginine succinyltransferase pathway in Salmonella typhimurium. J Bacteriol 181:1934–1938. [PubMed]
152. Kiupakis AK, Reitzer L. 2002. ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184:2940–2950. [PubMed][CrossRef]
153. Baca-DeLancey RR, South MM, Ding X, Rather PN. 1999. Escherichia coli genes regulated by cell-to-cell signaling. Proc Natl Acad Sci USA 96:4610–4614. [PubMed][CrossRef]
154. Wang D, Ding X, Rather PN. 2001. Indole can act as an extracellular signal in Escherichia coli. J Bacteriol 183:4210–4216. [PubMed][CrossRef]
155. Celis TF. 1977. Independent regulation of transport and biosynthesis of arginine in Escherichia coli K-12. J Bacteriol 130:1244–1252. [PubMed]
156. Celis TF. 1977. Properties of an Escherichia coli K-12 mutant defective in the transport of arginine and ornithine. J Bacteriol 130:1234–1243. [PubMed]
157. Rosen BP. 1971. Basic amino acid transport in Escherichia coli. J Biol Chem 246:3653–3662. [PubMed]
158. Ames GF, Lever JE. 1972. The histidine-binding protein J is a component of histidine transport. Identification of its structural gene, hisJ. J Biol Chem 247:4309–4316. [PubMed]
159. Kustu SG, Ames GF. 1973. The hisP protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component. J Bacteriol 116:107–113. [PubMed]
160. Higgins CF, Hiles ID, Whalley K, Jamieson DJ. 1985. Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J 4:1033–1039. [PubMed]
161. Mimura CS, Admon A, Hurt KA, Ames GF. 1990. The nucleotide-binding site of HisP, a membrane protein of the histidine permease. Identification of amino acid residues photoaffinity labeled by 8-azido-ATP. J Biol Chem 265:19535–19542. [PubMed]
162. Schmitz G, Nikaido K, Ames GF. 1988. Regulation of a transport operon promoter in Salmonella typhimurium: identification of sites essential for nitrogen regulation. Mol Gen Genet 215:107–117. [PubMed][CrossRef]
163. Ames GF, Nikaido K. 1985. Nitrogen regulation in Salmonella typhimurium. Identification of an ntrC protein-binding site and definition of a consensus binding sequence. EMBO J 4:539–547. [PubMed]
164. Celis TF, Rosenfeld HJ, Maas WK. 1973. Mutant of Escherichia coli K-12 defective in the transport of basic amino acids. J Bacteriol 116:619–626. [PubMed]
165. Rosen BP. 1973. Basic amino acid transport in Escherichia coli: properties of canavanine-resistant mutants. J Bacteriol 116:627–635. [PubMed]
166. Stern MJ, Higgins CF, Ames GF. 1984. Isolation and characterization of lac fusions to two nitrogen-regulated promoters. Mol Gen Genet 195:219–227. [PubMed][CrossRef]
167. Wissenbach U, Six S, Bongaerts J, Ternes D, Steinwachs S, Unden G. 1995. A third periplasmic transport system for L-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport. Mol Microbiol 17:675–686. [PubMed][CrossRef]
168. Celis RT. 1981. Chain-terminating mutants affecting a periplasmic binding protein involved in the active transport of arginine and ornithine in Escherichia coli. J Biol Chem 256:773–779. [PubMed]
169. Celis RT. 1982. Mapping of two loci affecting the synthesis and structure of a periplasmic protein involved in arginine and ornithine transport in Escherichia coli K-12. J Bacteriol 151:1314–1319. [PubMed]
170. Celis RT. 1984. Phosphorylation in vivo and in vitro of the arginine-ornithine periplasmic transport protein of Escherichia coli. Eur J Biochem 145:403–411. [PubMed][CrossRef]
171. Rosen BP. 1973. Basic amino acid transport in Escherichia coli. II. Purification and properties of an arginine-specific binding protein. J Biol Chem 248:1211–1218. [PubMed]
172. Mironov AA, Koonin EV, Roytberg MA, Gelfand MS. 1999. Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. Nucleic Acids Res 27:2981–2989. [PubMed][CrossRef]
173. Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL. 2001. Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183:6466–6477. [PubMed][CrossRef]
174. Russo TA, Carlino UB, Mong A, Jodush ST. 1999. Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine. Infect Immun 67:5306–5314. [PubMed]
175. Celis RT. 1990. Mutant of Escherichia coli K-12 with defective phosphorylation of two periplasmic transport proteins. J Biol Chem 265:1787–1793. [PubMed]
176. Celis RT, Leadlay PF, Roy I, Hansen A. 1998. Phosphorylation of the periplasmic binding protein in two transport systems for arginine incorporation in Escherichia coli K-12 is unrelated to the function of the transport system. J Bacteriol 180:4828–4833. [PubMed]
177. Urban C, Celis RT. 1990. Purification and properties of a kinase from Escherichia coli K-12 that phosphorylates two periplasmic transport proteins. J Biol Chem 265:1783–1786. [PubMed]
178. Maas WK. 1972. Mapping of genes involved in the synthesis of spermidine in Escherichia coli. Mol Gen Genet 119:1–9. [PubMed][CrossRef]
179. Celis RT. 1999. Repression and activation of arginine transport genes in Escherichia coli K-12 by the ArgP protein. J Mol Biol 294:1087–1095. [PubMed][CrossRef]
180. Nandineni MR, Gowrishankar J. 2004. Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. J Bacteriol 186:3539–3546. [PubMed][CrossRef]
181. Han JS, Kwon HS, Yim JB, Hwang DS. 1998. Effect of IciA protein on the expression of the nrd gene encoding ribonucleoside diphosphate reductase in E. coli. Mol Gen Genet 259:610–614. [PubMed][CrossRef]
182. Hwang DS, Kornberg A. 1990. A novel protein binds a key origin sequence to block replication of an E. coli minichromosome. Cell 63:325–331. [PubMed][CrossRef]
183. Hwang DS, Kornberg A. 1992. Opposed actions of regulatory proteins, DnaA and IciA, in opening the replication origin of Escherichia coli. J Biol Chem 267:23087–23091. [PubMed]
184. Lee YS, Kim H, Hwang DS. 1996. Transcriptional activation of the dnaA gene encoding the initiator for oriC replication by IciA protein, an inhibitor of in vitro oriC replication in Escherichia coli. Mol Microbiol 19:389–396. [PubMed][CrossRef]
185. Thony B, Hwang DS, Fradkin L, Kornberg A. 1991. iciA, an Escherichia coli gene encoding a specific inhibitor of chromosomal initiation of replication in vitro. Proc Natl Acad Sci USA 88:4066–4070. [PubMed][CrossRef]
186. Han JS, Park JY, Lee YS, Thony B, Hwang DS. 1999. PhoB-dependent transcriptional activation of the iciA gene during starvation for phosphate in Escherichia coli. Mol Gen Genet 262:448–452. [PubMed][CrossRef]
187. Hwang DS, Thony B, Kornberg A. 1992. IciA protein, a specific inhibitor of initiation of Escherichia coli chromosomal replication. J Biol Chem 267:2209–2213. [PubMed]
188. Large PJ. 1992. Enzymes and pathways of polyamine breakdown in microorganisms. FEMS Microbiol Rev 8:249–262. [PubMed]
189. Kim KH. 1963. Isolation and properties of a putrescine-degrading mutant of Escherichia coli. J Bacteriol 86:320–323. [PubMed]
190. Prieto-Santos MI, Martin-Checa J, Balana-Fouce R, Garrido-Pertierra A. 1986. A pathway for putrescine catabolism in Escherichia coli. Biochim Biophys Acta 880:242–244. [PubMed]
191. Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L. 2002. The Escherichia coli gabDTPC operon: specific γ-aminobutyrate catabolism and nonspecific induction. J Bacteriol 184:6976–6986. [PubMed][CrossRef]
192. Satishchandran C, Boyle SM. 1984. Antagonistic transcriptional regulation of the putrescine biosynthetic enzyme agmatine ureohydrolase by cyclic AMP and agmatine in Escherichia coli. J Bacteriol 157:552–559. [PubMed]
193. Szumanski MB, Boyle SM. 1990. Analysis and sequence of the speB gene encoding agmatine ureohydrolase, a putrescine biosynthetic enzyme in Escherichia coli. J Bacteriol 172:538–547. [PubMed]
194. Satishchandran C, Boyle SM. 1986. Purification and properties of agmatine ureohydrolyase, a putrescine biosynthetic enzyme in Escherichia coli. J Bacteriol 165:843–848. [PubMed]
195. Szumanski MB, Boyle SM. 1992. Influence of cyclic AMP, agmatine, and a novel protein encoded by a flanking gene on speB (agmatine ureohydrolase) in Escherichia coli. J Bacteriol 174:758–764. [PubMed]
196. Tweeddale H, Notley-McRobb L, Ferenci T. 1998. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116. [PubMed]
197. Friedrich B, Magasanik B. 1979. Enzymes of agmatine degradation and the control of their synthesis in Klebsiella aerogenes. J Bacteriol 137:1127–1133. [PubMed]
198. Kim KH, Tchen TT. 1962. Putrescine—α-ketoglutarate transaminase in E. coli. Biochem Biophys Res Commun 9:99–102. [PubMed][CrossRef]
199. Pybus C. 2002. Roles of the omega-transaminases of Escherichia coli in nitrogen metabolism and characterization of a putrescine aminotransferase. M.S. thesis. The University of Texas at Dallas, Richardson, Tex.
200. Samsonova NN, Smirnov SV, Altman IB, Ptitsyn LR. 2003. Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol 3:2. [CrossRef]
201. Prieto MI, Martin J, Balana-Fouce R, Garrido-Pertierra A. 1987. Properties of γ-aminobutyraldehyde dehydrogenase from Escherichia coli. Biochimie 69:1161–1168. [PubMed][CrossRef]
202. Igarashi K, Ito K, Kashiwagi K. 2001. Polyamine uptake systems in Escherichia coli. Res Microbiol 152:271–278. [PubMed][CrossRef]
203. Igarashi K, Kashiwagi K. 1999. Polyamine transport in bacteria and yeast. Biochem J 344(Pt. 3):633–642. [CrossRef]
204. Kashiwagi K, Miyamoto S, Nukui E, Kobayashi H, Igarashi K. 1993. Functions of PotA and PotD proteins in spermidine-preferential uptake system in Escherichia coli. J Biol Chem 268:19358–19363. [PubMed]
205. Antognoni F, Del Duca S, Kuraishi A, Kawabe E, Fukuchi-Shimogori T, Kashiwagi K, Igarashi K. 1999. Transcriptional inhibition of the operon for the spermidine uptake system by the substrate-binding protein PotD. J Biol Chem 274:1942–1948. [PubMed][CrossRef]
206. Pistocchi R, Kashiwagi K, Miyamoto S, Nukui E, Sadakata Y, Kobayashi H, Igarashi K. 1993. Characteristics of the operon for a putrescine transport system that maps at 19 minutes on the Escherichia coli chromosome. J Biol Chem 268:146–152. [PubMed]
207. Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K. 1992. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci USA 89:4529–4533. [PubMed][CrossRef]
208. Kashiwagi K, Igarashi K. 1988. Adjustment of polyamine contents in Escherichia coli. J Bacteriol 170:3131–3135. [PubMed]
209. Schiller D, Kruse D, Kneifel H, Kramer R, Burkovski A. 2000. Polyamine transport and role of potE in response to osmotic stress in Escherichia coli. J Bacteriol 182:6247–6249. [PubMed][CrossRef]
210. Dover S, Halpern YS. 1972. Utilization of γ-aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants. J Bacteriol 109:835–843. [PubMed]
211. Niegemann E, Schulz A, Bartsch K. 1993. Molecular organization of the Escherichia coli gab cluster: nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene. Arch Microbiol 160:454–460. [PubMed][CrossRef]
212. King SC, Brown-Istvan L. 2003. Use of the transport specificity ratio and cysteine-scanning mutagenesis to detect multiple substrate specificity determinants in the consensus amphipathic region of the Escherichia coli GABA (γ-aminobutyric acid) transporter encoded by gabP. Biochem J 376:633–644. [PubMed][CrossRef]
213. King SC, Hu LA, Pugh A. 2003. Induction of substrate specificity shifts by placement of alanine insertions within the consensus amphipathic region of the Escherichia coli GABA (γ-aminobutyric acid) transporter encoded by gabP. Biochem J 376:645–653. [PubMed][CrossRef]
214. Metzer E, Levitz R, Halpern YS. 1979. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of γ-aminobutyrate. J Bacteriol 137:1111–1118. [PubMed]
215. Bartsch K, Dichmann R, Schmitt P, Uhlmann E, Schulz A. 1990. Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination: cloning, characterization, and overexpression of the gene encoding a phosphinothricin-specific transaminase from Escherichia coli. Appl Environ Microbiol 56:7–12. [PubMed]
216. Schulz A, Taggeselle P, Tripier D, Bartsch K. 1990. Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination: isolation and characterization of a phosphinothricin-specific transaminase from Escherichia coli. Appl Environ Microbiol 56:1–6. [PubMed]
217. Donnelly MI, Cooper RA. 1981. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and γ-aminobutyrate. Eur J Biochem 113:555–561. [PubMed][CrossRef]
218. Donnelly MI, Cooper RA. 1981. Two succinic semialdehyde dehydrogenases are induced when Escherichia coli K-12 Is grown on γ-aminobutyrate. J Bacteriol 145:1425–1427. [PubMed]
219. Bartsch K, von Johnn-Marteville A, Schulz A. 1990. Molecular analysis of two genes of the Escherichia coli gab cluster: nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydrogenase gene (gabD). J Bacteriol 172:7035–7042. [PubMed]
220. Dover S, Halpern YS. 1972. Control of the pathway of γ-aminobutyrate breakdown in Escherichia coli K-12. J Bacteriol 110:165–170. [PubMed]
221. Metzner M, Germer J, Hengge R. 2004. Multiple stress signal integration in the regulation of the complex σS-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol Microbiol 51:799–811. [PubMed][CrossRef]
222. Schellhorn HE, Audia JP, Wei LIC, Chang L. 1998. Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J Bacteriol 180:6283–6291. [PubMed]
223. Joloba ML, Rather PN. 2003. Mutations in deoB and deoC alter an extracellular signaling pathway required for activation of the gab operon in Escherichia coli. FEMS Microbiol Lett 228:151–157. [PubMed][CrossRef]
224. Vander Wauven C, Jann A, Haas D, Leisinger T, Stalon V. 1988. N2-succinylornithine in ornithine catabolism of Pseudomonas aeruginosa. Arch Microbiol 150:400–404. [PubMed][CrossRef]
225. Nikaido K, Ames GF. 1992. Purification and characterization of the periplasmic lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium. J Biol Chem 267:20706–20712. [PubMed]
226. Ng H, Gartner TK. 1963. Selection of mutants of Escherichia coli constitutive for tryptophanase. J Bacteriol 85:245–246. [PubMed]
227. Snell EE. 1975. Tryptophanase: structure, catalytic activities, and mechanism of action. Adv Enzymol Relat Areas Mol Biol 42:287–333. [PubMed][CrossRef]
228. Yanofsky C, Horn V, Gollnick P. 1991. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J Bacteriol 173:6009–6017.[PubMed]
229. Gutnick D, Calvo JM, Klopotowski T, Ames BN. 1969. Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J Bacteriol 100:215–219. [PubMed]
230. Paris CG, Magasanik B. 1981. Tryptophan metabolism in Klebsiella aerogenes: regulation of the utilization of aromatic amino acids as sources of nitrogen. J Bacteriol 145:257–265. [PubMed]
231. Hansen DS, Aucken HM, Abiola T, Podschun R. 2004. Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 42:3665–3669. [PubMed][CrossRef]
232. Maslow JN, Brecher SM, Adams KS, Durbin A, Loring S, Arbeit RD. 1993. Relationship between indole production and differentiation of Klebsiella species: indole-positive and -negative isolates of Klebsiella determined to be clonal. J Clin Microbiol 31:2000–2003. [PubMed]
233. Gish K, Yanofsky C. 1995. Evidence suggesting cis action by the TnaC leader peptide in regulating transcription attenuation in the tryptophanase operon of Escherichia coli. J Bacteriol 177:7245–7254. [PubMed]
234. Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S. 2003. Effect of cysteine desulfhydrase gene disruption on L-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol 62:239–243. [PubMed][CrossRef]
235. Ikushiro H, Hayashi H, Kawata Y, Kagamiyama H. 1998. Analysis of the pH- and ligand-induced spectral transitions of tryptophanase: activation of the coenzyme at the early steps of the catalytic cycle. Biochemistry 37:3043–3052. [PubMed][CrossRef]
236. Isupov MN, Antson AA, Dodson EJ, Dodson GG, Dementieva IS, Zakomirdina LN, Wilson KS, Dauter Z, Lebedev AA, Harutyunyan EH. 1998. Crystal structure of tryptophanase. J Mol Biol 276:603–623. [PubMed][CrossRef]
237. Phillips RS, Demidkina TV, Faleev NG. 2003. Structure and mechanism of tryptophan indole-lyase and tyrosine phenol-lyase. Biochim Biophys Acta 1647:167–172. [PubMed]
238. Deeley MC, Yanofsky C. 1981. Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. J Bacteriol 147:787–796. [PubMed]
239. Edwards RM, Yudkin MD. 1982. Location of the gene for the low-affinity tryptophan-specific permease of Escherichia coli. Biochem J 204:617–619. [PubMed]
240. Happold FC, Hoyle L. 1936. The coli tryptophan-indole reaction. II. The non-production of tryptophanase (tnase) in medium containing glucose. Br J Exp Pathol 17:136–143.
241. Freundlich M, Lichstein HC. 1960. Inhibitory effect of glucose on tryptophanase. J Bacteriol 80:633–638. [PubMed]
242. Pastan I, Perlman RL. 1969. Stimulation of tryptophanase synthesis in Escherichia coli by cyclic 3′,5′-adenosine monophosphate. J Biol Chem 244:2226–2232. [PubMed]
243. Deeley MC, Yanofsky C. 1982. Transcription initiation at the tryptophanase promoter of Escherichia coli K-12. J Bacteriol 151:942–951. [PubMed]
244. Botsford JL. 1975. Metabolism of cyclic adenosine 3′,5′-monophosphate and induction of tryptophanase in Escherichia coli. J Bacteriol 124:380–390. [PubMed]
245. Stewart V, Yanofsky C. 1985. Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12. J Bacteriol 164:731–740. [PubMed]
246. Stewart V, Yanofsky C. 1986. Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12. J Bacteriol 167:383–386. [PubMed]
247. Gollnick P, Yanofsky C. 1990. tRNATrp translation of leader peptide codon 12 and other factors that regulate expression of the tryptophanase operon. J Bacteriol 172:3100–3107. [PubMed]
248. Gong F, Yanofsky C. 2002. Instruction of translating ribosome by nascent peptide. Science 297:1864–1867. [PubMed][CrossRef]
249. Konan KV, Yanofsky C. 1997. Regulation of the Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon. J Bacteriol 179:1774–1779. [PubMed]
250. Konan KV, Yanofsky C. 1999. Role of ribosome release in regulation of tna operon expression in Escherichia coli. J Bacteriol 181:1530–1536. [PubMed]
251. Gong F, Ito K, Nakamura Y, Yanofsky C. 2001. The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNAPro. Proc Natl Acad Sci USA 98:8997–9001. [PubMed][CrossRef]
252. Gong F, Yanofsky C. 2002. Analysis of tryptophanase operon expression in vitro: accumulation of TnaC-peptidyl-tRNA in a release factor 2-depleted S-30 extract prevents Rho factor action, simulating induction. J Biol Chem 277:17095–17100. [PubMed][CrossRef]
253. Gong F, Yanofsky C. 2001. Reproducing tna operon regulation in vitro in an S-30 system. Tryptophan induction inhibits cleavage of TnaC peptidyl-tRNA. J Biol Chem 276:1974–1983. [PubMed]
254. Yanofsky C, Horn V, Nakamura Y. 1996. Loss of overproduction of polypeptide release factor 3 influences expression of the tryptophanase operon of Escherichia coli. J Bacteriol 178:3755–3762.[PubMed]
255. Konan KV, Yanofsky C. 2000. Rho-dependent transcription termination in the tna operon of Escherichia coli: roles of the boxA sequence and the rut site. J Bacteriol 182:3981–3988. [PubMed][CrossRef]
256. Stewart V, Landick R, Yanofsky C. 1986. Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12. J Bacteriol 166:217–223. [PubMed]
257. Yanofsky C, Horn V. 1995. Bicyclomycin sensitivity and resistance affect Rho factor-mediated transcription termination in the tna operon of Escherichia coli. J Bacteriol 177:4451–4456.[PubMed]
258. Gong F, Yanofsky C. 2003. A transcriptional pause synchronizes translation with transcription in the tryptophanase operon leader region. J Bacteriol 185:6472–6476. [PubMed][CrossRef]
259. Rompf A, Schmid R, Jahn D. 1998. Changes in protein synthesis as a consequence of heme depletion in Escherichia coli. Curr Microbiol 37:226–230. [PubMed][CrossRef]
260. Ohba A, Inoue R, Akimitsu N, Mizushima T, Sekimizu K. 1998. Identification of proteins whose amounts are altered by mutation in the pgsA gene of Escherichia coli. Biol Pharm Bull 21:1139–1141. [PubMed]
261. Burns RO, Demoss RD. 1962. Properties of tryptophanase from Escherichia coli. Biochim Biophys Acta 65:233–244. [PubMed][CrossRef]
262. Di Martino P, Merieau A, Phillips R, Orange N, Hulen C. 2002. Isolation of an Escherichia coil strain mutant unable to form biofilm on polystyrene and to adhere to human pneumocyte cells: involvement of tryptophanase. Can J Microbiol 48:132–137. [PubMed][CrossRef]
263. Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS. 2003. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49:443–449. [PubMed][CrossRef]
264. Paris CG, Magasanik B. 1981. Purification and properties of aromatic amino acid aminotransferase from Klebsiella aerogenes. J Bacteriol 145:266–271. [PubMed]
265. Koyanagi T, Katayama T, Suzuki H, Kumagai H. 2004. Identification of the LIV-I/LS system as the third phenylalanine transporter in Escherichia coli K-12. J Bacteriol 186:343–350. [PubMed][CrossRef]
266. Pittard AJ. 1996. Biosynthesis of the aromatic amino acids, p 458–484. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
267. Halpern YS, Umbarger HE. 1960. Conversion of ammonia to amino groups in Escherichia coli. J Bacteriol 80:285–288. [PubMed]
268. Halpern YS, Umbarger HE. 1961. Utilization of L-glutamic and 2-oxoglutaric acid as sole sources of carbon by Escherichia coli. J Gen Microbiol 26:175–183. [PubMed]
269. Vender J, Jayaraman K, Rickenberg HV. 1965. Metabolism of glutamic acid in a mutant of Escherichia coli. J Bacteriol 90:1304–1307. [PubMed]
270. Vender J, Rickenberg HV. 1964. Ammonia metabolism in a mutant of Escherichia coli lacking glutamate dehydrogenase. Biochim Biophys Acta 90:218–220. [PubMed]
271. Marcus M, Halpern YS. 1969. The metabolic pathway of glutamate in Escherichia coli K-12. Biochim Biophys Acta 177:314–320. [PubMed]
272. Spencer ME, Lebeter VM, Guest JR. 1976. Location of the aspartase gene (aspA) on the linkage map of Escherichia coli K12. J Gen Microbiol 97:73–82. [PubMed]
273. Spring KJ, Jerlstrom PG, Burns DM, Beacham IR. 1986. L-Asparaginase genes in Escherichia coli: isolation of mutants and characterization of the ansA gene and its protein product. J Bacteriol 166:135–142. [PubMed]
274. Goux WJ, Strong AA, Schneider BL, Lee WN, Reitzer LJ. 1995. Utilization of aspartate as a nitrogen source in Escherichia coli. Analysis of nitrogen flow and characterization of the products of aspartate catabolism. J Biol Chem 270:638–646. [PubMed][CrossRef]
275. Wasserman SA, Walsh CT, Botstein D. 1983. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol 153:1439–1450.[PubMed]
276. Nishimura N, Kisumi M. 1984. Aspartase-hyperproducing mutants of Escherichia coli B. Appl Environ Microbiol 48:1072–1075. [PubMed]
277. Dreyfus LA, Brubaker RR. 1978. Consequences of aspartase deficiency in Yersinia pestis. J Bacteriol 136:757–764. [PubMed]
278. Kay WW. 1971. Two aspartate transport systems in Escherichia coli. J Biol Chem 246:7373–7382. [PubMed]
279. Reitzer LJ, Magasanik B. 1985. Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci USA 82:1979–1983. [PubMed][CrossRef]
280. Salinas P, Contreras A. 2003. Identification and analysis of Escherichia coli proteins that interact with the histidine kinase NtrB in a yeast two-hybrid system. Mol Genet Genomics 269:574–581. [PubMed][CrossRef]
281. Viola RE. 2000. L-Aspartase: new tricks from an old enzyme. Adv Enzymol Relat Areas Mol Biol 74:295–341. [PubMed][CrossRef]
282. Guest JR, Roberts RE, Wilde RJ. 1984. Cloning of the aspartase gene (aspA) of Escherichia coli. J Gen Microbiol 130:1271–1278. [PubMed]
283. Rudolph FB, Fromm HJ. 1971. The purification and properties of aspartase from Escherichia coli. Arch Biochem Biophys 147:92–98. [PubMed][CrossRef]
284. Suzuki S, Yamaguchi J, Tokushige M. 1973. Studies on aspartase. I. Purification and molecular properties of aspartase from Escherichia coli. Biochim Biophys Acta 321:369–381. [PubMed]
285. Takagi JS, Ida N, Tokushige M, Sakamoto H, Shimura Y. 1985. Cloning and nucleotide sequence of the aspartase gene of Escherichia coli W. Nucleic Acids Res 13:2063–2074. [PubMed][CrossRef]
286. Woods SA, Miles JS, Roberts RE, Guest JR. 1986. Structural and functional relationships between fumarase and aspartase. Nucleotide sequences of the fumarase (fumC) and aspartase (aspA) genes of Escherichia coli K12. Biochem J 237:547–557.[PubMed]
287. Jayasekera MM, Saribas AS, Viola RE. 1997. Enhancement of catalytic activity by gene truncation: activation of L-aspartase from Escherichia coli. Biochem Biophys Res Commun 238:411–414. [PubMed][CrossRef]
288. Karsten WE, Gates RB, Viola RE. 1986. Kinetic studies of L-aspartase from Escherichia coli: substrate activation. Biochemistry 25:1299–1303. [PubMed][CrossRef]
289. Falzone CJ, Karsten WE, Conley JD, Viola RE. 1988. L-Aspartase from Escherichia coli: substrate specificity and role of divalent metal ions. Biochemistry 27:9089–9093. [PubMed][CrossRef]
290. Karsten WE, Viola RE. 1991. Kinetic studies of L-aspartase from Escherichia coli: pH-dependent activity changes. Arch Biochem Biophys 287:60–67. [PubMed][CrossRef]
291. Gale EF. 1938. Factors influencing bacterial deamination. III. Aspartase II: its occurrence in and extraction from Bacterium coli and its activation by adenosine and related compounds. Biochem J 32:1583–1599. [PubMed]
292. Tosa T, Sato T, Nishida Y, Chibata I. 1977. Reason for higher stability of aspartase activity of immobilized Escherichia coli cells. Biochim Biophys Acta 483:193–202. [PubMed]
293. Jayasekera MM, Shi W, Farber GK, Viola RE. 1997. Evaluation of functionally important amino acids in L-aspartate ammonia-lyase from Escherichia coli. Biochemistry 36:9145–9150. [PubMed][CrossRef]
294. Shi W, Dunbar J, Jayasekera MM, Viola RE, Farber GK. 1997. The structure of L-aspartate ammonia-lyase from Escherichia coli. Biochemistry 36:9136–9144. [PubMed][CrossRef]
295. Golby P, Kelly DJ, Guest JR, Andrews SC. 1998. Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli. J Bacteriol 180:6586–6596. [PubMed]
296. Epps HMR, Gale EF. 1942. The influence of the presence of glucose during growth on the enzymic activities of Escherichia coli: comparison of the effect with that produced by fermentation acids. Biochem J 36:619–623. [PubMed]
297. Woods SA, Guest JR. 1987. Differential roles of the Escherichia coli fumarases and fnr-dependent expression of fumarase B and aspartase. FEMS Microbiol Lett 48:219–224. [CrossRef]
298. Jerlstrom PG, Liu J, Beacham IR. 1987. Regulation of Escherichia coli L-asparaginase II and L-aspartase by the fnr gene-product. FEMS Microbiol Lett 41:127–130. [CrossRef]
299. Spiro S, Guest JR. 1990. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev 6:399–428. [PubMed][CrossRef]
300. Funanage VL, Ayling PD, Dendinger SM, Brenchley JE. 1978. Salmonella typhimurium LT-2 mutants with altered glutamine synthetase levels and amino acid uptake activities. J Bacteriol 136:588–596. [PubMed]
301. Chesney RH, Sollitti P, Vickery DR. 1985. Identification of a new locus in the Escherichia coli cotransduction gap that represents a new genetic component of the L-asparagine utilization system. J Gen Microbiol 131:2079–2085. [PubMed]
302. Del Casale T, Sollitti P, Chesney RH. 1983. Cytoplasmic L-asparaginase: isolation of a defective strain and mapping of ansA. J Bacteriol 154:513–515. [PubMed]
303. Willis RC, Woolfolk CA. 1974. Asparagine utilization in Escherichia coli. J Bacteriol 118:231–241.[PubMed]
304. Resnick AD, Magasanik B. 1976. L-Asparaginase of Klebsiella aerogenes. Activation of its synthesis by glutamine synthetase. J Biol Chem 251:2722–2728. [PubMed]
305. Jerlstrom PG, Bezjak DA, Jennings MP, Beacham IR. 1989. Structure and expression in Escherichia coli K-12 of the L-asparaginase I-encoding ansA gene and its flanking regions. Gene 78:37–46. [PubMed][CrossRef]
306. Svobodova O, Strbanova-Necinova S. 1973. Induction of L-asparaginase synthesis in Escherichia coli. Biochim Biophys Acta 321:643–652. [PubMed]
307. Jennings MP, Beacham IR. 1990. Analysis of the Escherichia coli gene encoding L-asparaginase II, ansB, and its regulation by cyclic AMP receptor and FNR proteins. J Bacteriol 172:1491–1498. [PubMed]
308. Ho PP, Milikin EB, Bobbitt JL, Grinnan EL, Burck PJ, Frank BH, Boeck LD, Squires RW. 1970. Crystalline L-asparaginase from Escherichia coli B. I. Purification and chemical characterization. J Biol Chem 245:3708–3715. [PubMed]
309. Cedar H, Schwartz JH. 1968. Production of L-asparaginase II by Escherichia coli. J Bacteriol 96:2043–2048. [PubMed]
310. Russell L, Yamazaki H. 1978. The dependence of Escherichia coli asparaginase II formation on cyclic AMP and cyclic AMP receptor protein. Can J Microbiol 24:629–631. [PubMed]
311. Green J, Anjum MF, Guest JR. 1997. Regulation of the ndh gene of Escherichia coli by integration host factor and a novel regulator, Arr. Microbiology 143:2865–2875. [PubMed][CrossRef]
312. Jennings MP, Beacham IR. 1993. Co-dependent positive regulation of the ansB promoter of Escherichia coli by CRP and the FNR protein: a molecular analysis. Mol Microbiol 9:155–164. [PubMed][CrossRef]
313. Jennings MP, Scott SP, Beacham IR. 1993. Regulation of the ansB gene of Salmonella enterica. Mol Microbiol 9:165–172. [PubMed][CrossRef]
314. Willis RC, Woolfolk CA. 1975. L-Asparagine uptake in Escherichia coli. J Bacteriol 123:937–945.[PubMed]
315. Jennings MP, Anderson JK, Beacham IR. 1995. Cloning and molecular analysis of the Salmonella enterica ansP gene, encoding an L-asparagine permease. Microbiology 141:141–146. [PubMed][CrossRef]
316. Betteridge PR, Ayling PD. 1976. The regulation of glutamine transport and glutamine synthetase in Salmonella typhimurium. J Gen Microbiol 96:324–334. [PubMed]
317. Willis RC, Iwata KK, Furlong CE. 1975. Regulation of glutamine transport in Escherichia coli. J Bacteriol 122:1032–1037.[PubMed]
318. Nohno T, Saito T, Hong JS. 1986. Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ). Mol Gen Genet 205:260–269. [PubMed][CrossRef]
319. Hsiao CD, Sun YJ, Rose J, Wang BC. 1996. The crystal structure of glutamine-binding protein from Escherichia coli. J Mol Biol 262:225–242. [PubMed][CrossRef]
320. Nohno T, Saito T. 1987. Two transcriptional start sites found in the promoter region of Escherichia coli glutamine permease operon, glnHPQ. Nucleic Acids Res 15:2777. [CrossRef]
321. Claverie-Martin F, Magasanik B. 1991. Role of integration host factor in the regulation of the glnHp2 promoter of Escherichia coli. Proc Natl Acad Sci USA 1631–1635. [CrossRef]
322. Xu J, Johnson RC. 1995. Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in Escherichia coli. J Bacteriol 177:938–947.[PubMed]
323. Greene RC. 1996. Biosynthesis of methionine, p 542–560. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
324. Atkinson MR, Blauwkamp TA, Bondarenko V, Studitsky V, Ninfa AJ. 2002. Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. J Bacteriol 184:5358–5363. [PubMed][CrossRef]
325. Hartman SC, Stochaj EM. 1973. Glutaminase A of Escherichia coli. Subunit structure and cooperative behavior. J Biol Chem 248:8511–8517. [PubMed]
326. Hartman SC. 1968. Glutaminase of Escherichia coli. I. Purification and general catalytic properties. J Biol Chem 243:853–863. [PubMed]
327. Prusiner S. 1975. Regulation of glutaminase levels in Escherichia coli. J Bacteriol 123:992–999. [PubMed]
328. Prusiner S, Miller RE, Valentine RC. 1972. Adenosine 3′:5′-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. Proc Natl Acad Sci USA 69:2922–2926. [PubMed][CrossRef]
329. Prusiner S. 1973. Glutaminases of Escherichia coli: properties, regulation and evolution, p 293–316. In Prusiner S and Stadtman ER (ed), The Enzymes of Glutamine Metabolism. Academic Press, New York, N.Y.
330. Prusiner S, Davis JN, Stadtman ER. 1976. Regulation of glutaminase B in Escherichia coli. I. Purification, properties, and cold lability. J Biol Chem 251:3447–3456. [PubMed]
331. Prusiner S, Stadtman ER. 1976. Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations. J Biol Chem 251:3463–3469. [PubMed]
332. Tyler B. 1978. Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem 47:1127–1162. [PubMed][CrossRef]
333. Collins JM, Wallenstein A, Monty KJ. 1973. Regulatory features of the cysteine desulfhydrase of Salmonella typhimurium. Biochim Biophys Acta 313:156–162. [PubMed]
334. Roberts RB, Abelson PH, Cowie DB, Bolton ET, Britten RJ. 1955. Studies on Biosynthesis in Escherichia coli. Carnegie Institute, Washington, D.C.
335. Rowley D. 1953. Interrelationships between amino-acids in the growth of coliform organisms. J Gen Microbiol 9:37–43. [PubMed]
336. Sorensen MA, Pedersen S. 1991. Cysteine, even in low concentrations, induces transient amino acid starvation in Escherichia coli. J Bacteriol 173:5244–5246. [PubMed]
337. Delaney JM, Ang D, Georgopoulos C. 1992. Isolation and characterization of the Escherichia coli htrD gene, whose product is required for growth at high temperatures. J Bacteriol 174:1240–1247. [PubMed]
338. Harris CL. 1981. Cysteine and growth inhibition of Escherichia coli: threonine deaminase as the target enzyme. J Bacteriol 145:1031–1035. [PubMed]
339. Datta P. 1967. Regulation of homoserine biosynthesis by L-cysteine, a terminal metabolite of a linked pathway. Proc Natl Acad Sci USA 58:635–641. [PubMed][CrossRef]
340. Hama H, Kayahara T, Tsuda M, Tsuchiya T. 1991. Inhibition of homoserine dehydrogenase I by L-serine in Escherichia coli. J Biochem (Tokyo) 109:604–608. [PubMed]
341. Alfoldi L, Rasko I, Kerekes E. 1968. L-Serine deaminase of Escherichia coli. J Bacteriol 96:1512–1518. [PubMed]
342. Cicchillo RM, Baker MA, Schnitzer EJ, Newman EB, Krebs C, Booker SJ. 2004. Escherichia coli L-serine deaminase requires a [4Fe-4S] cluster in catalysis. J Biol Chem 279:32418–32425. [PubMed][CrossRef]
343. Collins JM, Monty KJ. 1973. The cysteine desulfhydrase of Salmonella typhimurium. Kinetic and catalytic properties. J Biol Chem 248:5943–5949. [PubMed]
344. Guarneros G, Ortega MV. 1970. Cysteine desulfhydrase activities of Salmonella typhimurium and Escherichia coli. Biochim Biophys Acta 198:132–142. [PubMed]
345. Kredich NM, Foote LJ, Keenan BS. 1973. The stoichiometry and kinetics of the inducible cysteine desulfhydrase from Salmonella typhimurium. J Biol Chem 248:6187–6196. [PubMed]
346. Berglin EH, Carlsson J. 1985. Potentiation by sulfide of hydrogen peroxide-induced killing of Escherichia coli. Infect Immun 49:538–543. [PubMed]
347. Berglin EH, Edlund MB, Nyberg GK, Carlsson J. 1982. Potentiation by L-cysteine of the bactericidal effect of hydrogen peroxide in Escherichia coli. J Bacteriol 152:81–88. [PubMed]
348. Anderson DC, Johansson KR. 1963. Effects of glucose on the production by Escherichia coli of hydrogen sulphide from cysteine. J Gen Microbiol 30:485–495. [PubMed]
349. Nakamori S, Kobayashi SI, Kobayashi C, Takagi H. 1998. Overproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol 64:1607–1611. [PubMed]
350. Collins JM, Monty KJ. 1973. The cysteine desulfhydrase of Salmonella typhimurium. Formation of an altered enzyme by cryloysis. J Biol Chem 248:3769–3776. [PubMed]
351. Crawford IP, Ito J. 1964. Serine deamination by the B protein of Escherichia coli tryptophan synthetase. Proc Natl Acad Sci USA 51:390–397. [PubMed][CrossRef]
352. Dwivedi CM, Ragin RC, Uren JR. 1982. Cloning, purification, and characterization of β-cystathionase from Escherichia coli. Biochemistry 21:3064–3069. [PubMed][CrossRef]
353. Kredich NM, Keenan BS, Foote LJ. 1972. The purification and subunit structure of cysteine desulfhydrase from Salmonella typhimurium. J Biol Chem 247:7157–7162. [PubMed]
354. Rowbury RJ, Woods DD. 1964. Repression by methionine of cystathionase formation in Escherichia coli. J Gen Microbiol 35:145–158. [PubMed]
355. Flint DH, Tuminello JF, Miller TJ. 1996. Studies on the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase in Escherichia coli crude extract. Isolation of O-acetylserine sulfhydrylases A and B and β-cystathionase based on their ability to mobilize sulfur from cysteine and to participate in Fe-S cluster synthesis. J Biol Chem 271:16053–16067. [PubMed][CrossRef]
356. Nagasawa T, Ishii T, Kumagai H, Yamada H. 1985. D-Cysteine desulfhydrase of Escherichia coli. Purification and characterization. Eur J Biochem 153:541–551. [PubMed][CrossRef]
357. Saz A, Brownell LW. 1954. D-Cysteine desulfhydrase in Escherichia coli. Arch Biochem Biophys 52:291–293. [CrossRef]
358. Soutourina J, Blanquet S, Plateau P. 2001. Role of D-cysteine desulfhydrase in the adaptation of Escherichia coli to D-cysteine. J Biol Chem 276:40864–40872. [PubMed][CrossRef]
359. Baptist EW, Kredich NM. 1977. Regulation of L-cystine transport in Salmonella typhimurium. J Bacteriol 131:111–118. [PubMed]
360. Berger EA, Heppel LA. 1972. A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J Biol Chem 247:7684–7694. [PubMed]
361. Leive L, Davis BD. 1965. The transport of diaminopimelate and cystine in Escherichia coli. J Biol Chem 240:4362–4369. [PubMed]
362. Butler JD, Levin SW, Facchiano A, Miele L, Mukherjee AB. 1993. Amino acid composition and N-terminal sequence of purified cystine binding protein of Escherichia coli. Life Sci 52:1209–1215. [PubMed][CrossRef]
363. Mytelka DS, Chamberlin MJ. 1996. Escherichia coli fliAZY operon. J Bacteriol 178:24–34. [PubMed]
364. Lombardi FJ, Kaback HR. 1972. Mechanisms of active transport in isolated bacterial membrane vesicles. VIII. The transport of amino acids by membranes prepared from Escherichia coli. J Biol Chem 247:7844–7857. [PubMed]
365. Pittman MS, Corker H, Wu G, Binet MB, Moir AJ, Poole RK. 2002. Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. J Biol Chem 277:49841–49849. [PubMed][CrossRef]
366. Georgiou CD, Fang H, Gennis RB. 1987. Identification of the cydC locus required for expression of the functional form of the cytochrome d terminal oxidase complex in Escherichia coli. J Bacteriol 169:2107–2112. [PubMed]
367. Poole RK, Gibson F, Wu G. 1994. The cydD gene product, component of a heterodimeric ABC transporter, is required for assembly of periplasmic cytochrome c and of cytochrome bd in Escherichia coli. FEMS Microbiol Lett 117:217–223. [PubMed][CrossRef]
368. Poole RK, Williams HD, Downie JA, Gibson F. 1989. Mutations affecting the cytochrome d-containing oxidase complex of Escherichia coli K12: identification and mapping of a fourth locus, cydD. J Gen Microbiol 135:1865–1874. [PubMed]
369. Cook GM, Loder C, Soballe B, Stafford GP, Membrillo-Hernandez J, Poole RK. 1998. A factor produced by Escherichia coli K-12 inhibits the growth of E. coli mutants defective in the cytochrome bd quinol oxidase complex: enterochelin rediscovered. Microbiology 144:3297–3308. [PubMed][CrossRef]
370. Goldman BS, Gabbert KK, Kranz RG. 1996. The temperature-sensitive growth and survival phenotypes of Escherichia coli cydDC and cydAB strains are due to deficiencies in cytochrome bd and are corrected by exogenous catalase and reducing agents. J Bacteriol 178:6348–6351. [PubMed]
371. Goldman BS, Gabbert KK, Kranz RG. 1996. Use of heme reporters for studies of cytochrome biosynthesis and heme transport. J Bacteriol 178:6338–6347. [PubMed]
372. Delaney JM, Wall D, Georgopoulos C. 1993. Molecular characterization of the Escherichia coli htrD gene: cloning, sequence, regulation, and involvement with cytochrome d oxidase. J Bacteriol 175:166–175. [PubMed]
373. Poole RK, Hatch L, Cleeter MW, Gibson F, Cox GB, Wu G. 1993. Cytochrome bd biosynthesis in Escherichia coli: the sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter. Mol Microbiol 10:421–430. [PubMed][CrossRef]
374. Cook GM, Membrillo-Hernandez J, Poole RK. 1997. Transcriptional regulation of the cydDC operon, encoding a heterodimeric ABC transporter required for assembly of cytochromes c and bd in Escherichia coli K-12: regulation by oxygen and alternative electron acceptors. J Bacteriol 179:6525–6530. [PubMed]
375. Dassler T, Maier T, Winterhalter C, Bock A. 2000. Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol Microbiol 36:1101–1112. [PubMed][CrossRef]
376. Seiflein TA, Lawrence JG. 2001. Methionine-to-cysteine recycling in Klebsiella aerogenes. J Bacteriol 183:336–346. [PubMed][CrossRef]
377. Sekowska A, Denervaud V, Ashida H, Michoud K, Haas D, Yokota A, Danchin A. 2004. Bacterial variations on the methionine salvage pathway. BMC Microbiol 4:9. [CrossRef]
378. Walker J, Barrett J. 1997. Parasite sulphur amino acid metabolism. Int J Parasitol 27:883–897. [PubMed][CrossRef]
379. Heilbronn J, Wilson J, Berger BJ. 1999. Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. J Bacteriol 181:1739–1747. [PubMed]
380. Dolzan M, Johansson K, Roig-Zamboni V, Campanacci V, Tegoni M, Schneider G, Cambillau C. 2004. Crystal structure and reactivity of YbdL from Escherichia coli identify a methionine aminotransferase function. FEBS Lett 571:141–146. [PubMed][CrossRef]
381. Magasanik B, Bowser HR. 1955. The degradation of histidine by Aerobacter aerogenes. J Biol Chem 213:571–580. [PubMed]
382. Neidhardt FC, Magasanik B. 1957. Reversal of the glucose inhibition of histidase biosynthesis in Aerobacter aerogenes. J Bacteriol 73:253–259. [PubMed][CrossRef]
383. Revel HRB, Magasanik B. 1958. Utilization of the imidazole carbon 2 of histidine for the biosynthesis of purines in bacteria. J Biol Chem 233:439–443. [PubMed]
384. Magasanik B. 1978. Regulation in the hut system, p 373–387. In Miller JH and Reznikoff WS (ed), The Operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
385. Brill WJ, Magasanik B. 1969. Genetic and metabolic control of histidase and urocanase in Salmonella typhimurium, strain 15–59. J Biol Chem 244:5392–5402. [PubMed]
386. Meiss HK, Brill WJ, Magasanik B. 1969. Genetic control of histidine degradation in Salmonella typhimurium, strain LT-2. J Biol Chem 244:5382–5391. [PubMed]
387. Magasanik B, Lund P, Neidhardt FC, Schwartz DT. 1965. Induction and repression of the histidine-degrading enzymes in Aerobacter aerogenes. J Biol Chem 240:4320–4324. [PubMed]
388. Goldberg RB, Hanau R. 1980. Regulation of Klebsiella pneumoniae hut operons by oxygen. J Bacteriol 141:745–750. [PubMed]
389. Hanau R, Goldberg RB. 1982. Effects of anaerobiosis and nitrate on the expression of succinate dehydrogenase and enzymes associated with nitrogen metabolism in Klebsiella pneumoniae. J Gen Microbiol 128:1467–1471. [PubMed]
390. Revel HR, Magasanik B. 1958. The enzymatic degradation of urocanic acid. J Biol Chem 233:930–935. [PubMed]
391. Smith GR, Halpern YS, Magasanik B. 1971. Genetic and metabolic control of enzymes responsible for histidine degradation in Salmonella typhimurium. 4-Imidazolone-5-propionate amidohydrolase and N-formimino-L-glutamate formiminohydrolase. J Biol Chem 246:3320–3329. [PubMed]
392. Lund P, Magasanik B. 1965. N-formimino-L-glutamate formiminohydrolase of Aerobacter aerogenes. J Biol Chem 240:4316–4319. [PubMed]
393. Boylan SA, Bender RA. 1984. Genetic and physical maps of Klebsiella aerogenes genes for histidine utilization (hut). Mol Gen Genet 193:99–103. [PubMed][CrossRef]
394. Goldberg RB, Magasanik B. 1975. Gene order of the histidine utilization (hut) operons in Klebsiella aerogenes. J Bacteriol 122:1025–1031. [PubMed]
395. Schwacha A, Cohen JA, Gehring KB, Bender RA. 1990. Tn1000-mediated insertion mutagenesis of the histidine utilization (hut) gene cluster from Klebsiella aerogenes: genetic analysis of hut and unusual target specificity of Tn1000. J Bacteriol 172:5991–5998. [PubMed]
396. Smith GR, Magasanik B. 1971. The two operons of the histidine utilization system in Salmonella typhimurium. J Biol Chem 246:3330–3341. [PubMed]
397. Schlesinger S, Magasanik B. 1965. Imidazolepropionate, a nonmetabolizable inducer for the histidine-degrading enzymes in Aerobacter aerogenes. J Biol Chem 240:4325–4330. [PubMed]
398. Smith GR, Magasanik B. 1971. Nature and self-regulated synthesis of the repressor of the hut operons in Salmonella typhimurium. Proc Natl Acad Sci USA 68:1493–1497. [PubMed][CrossRef]
399. Hagen DC, Magasanik B. 1973. Isolation of the self-regulated repressor protein of the Hut operons of Salmonella typhimurium. Proc Natl Acad Sci USA 70:808–812. [PubMed][CrossRef]
400. Schwacha A, Bender RA. 1990. Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Klebsiella aerogenes. J Bacteriol 172:5477–5481. [PubMed]
401. Cooper TG, Tyler B. 1977. Transcription of the hut operons of Salmonella typhimurium. J Bacteriol 130:192–199. [PubMed]
402. Schlesinger S, Scotto P, Magasanik B. 1965. Exogenous and endogenous induction of the histidine-degrading enzymes in Aerobacter aerogenes. J Biol Chem 240:4331–4337. [PubMed]
403. Prival MJ, Magasanik B. 1971. Resistance to catabolite repression of histidase and proline oxidase during nitrogen-limited growth of Klebsiella aerogenes. J Biol Chem 246:6288–6296. [PubMed]
404. Hagen DC, Magasanik B. 1976. Deoxyribonucleic acid-binding studies on the hut repressor and mutant forms of the hut repressor of Salmonella typhimurium. J Bacteriol 127:837–847. [PubMed]
405. Osuna R, Schwacha A, Bender RA. 1994. Identification of the hutUH operator (hutUo) from Klebsiella aerogenes by DNA deletion analysis. J Bacteriol 176:5525–5529. [PubMed]
406. Osuna R, Janes BK, Bender RA. 1994. Roles of catabolite activator protein sites centered at -81.5 and -41.5 in the activation of the Klebsiella aerogenes histidine utilization operon hutUH. J Bacteriol 176:5513–5524. [PubMed]
407. Prival MJ, Brenchley JE, Magasanik B. 1973. Glutamine synthetase and the regulation of histidase formation in Klebsiella aerogenes. J Biol Chem 248:4334–4344.